16  Computational complexity of value interation

Updated

May 31, 2023

Keywords

infinite horizon, discounted cost, computational complexity, value iteration

How many computations are needed to run the value or policy iteration algorithm to obtain a policy that in within \(ε\) of the optimal? In this section, we provide an answer for this question for the value iteration algorithm.

Conisder an MDP with a finite state space \(\ALPHABET S = \{1, \dots, n \}\) with a finite non-empty set of actions \(\ALPHABET A(s)\) available at each \(s \in \ALPHABET S\). Each action set consists of \(M_s\) actions with a total number of \(M = \sum_{s=1}^n M_s\) actions. This number can be interpreted as the total number of state-action pairs. Let \(γ \in (0, 1)\) be the discount factor. We present the value iteration algorithm from the notes on MDP algorithms to achieve a pre-specified accuracy \(ε\).

Value Iteration Algorithm

For given MDP, discount factor \(γ \in (0,1)\), and constant \(ε > 0\)

  1. Start with any \(V_0 \in \reals^n\).
  2. Recursively compute \(V_{k} = \mathcal B V_{k-1} = \mathcal B_{π_{k-1}} V_{k-1}.\)
  3. Define \[ Δ_k = \max\{ V_k(s) - V_{k-1}(s) \} - \min \{ V_k(s) - V_{k-1}(s) \}. \]
  4. If \(Δ_k > \frac{1 - γ}{γ} ε\), continue to step 2. Else carry out one more step of value update and choose the policy \(π_k\).

As established in the notes on MDP algorithms, the algorithm stops in a finite number of iterations and the resulting policy is \(ε\)-optimal. engine

16.1 Span norm contraction

Let \(\SPAN(v) = \max(v) - \min(v)\) denotes the span semi-norm. We start by stating some basic properties of span semi-norm.

  1. \(\SPAN(v) \ge 0\) for all \(v \in \reals^n\)
  2. \(\SPAN(v + w) \le \SPAN(v) + \SPAN(w)\) for all \(v, w \in \reals^n\).
  3. \(\SPAN(m v) \le |m| \SPAN(v)\) for all \(v \in \reals^n\) and \(m \in \reals\).
  4. \(\SPAN(v + m \mathbf{1}) = \SPAN(v)\) for all \(m \in \reals\).
  5. \(\SPAN(v) = \SPAN(-v)\).
  6. \(\SPAN(v) \le 2\|v\|\).

Properties 1–3 imply that \(\SPAN(v)\) is a semi-norm. However, it is not a norm because of property 4; that is, \(\SPAN(v) = 0\) does not imply that \(v = 0\). If \(\SPAN(v) = 0\), then \(v = m \mathbf{1}\) for some scalar \(m\).

A basic result for our analysis is the following:

Proposition 16.1 Let \(v \in \reals^n\) and \(P\) be any matrix of compatible dimensions. Then, \[ \SPAN(P v) \le β_P \SPAN(v), \] where \[\begin{equation} \label{eq:span-matrix} β_P = 1 - \min_{s, s' \in \ALPHABET S} \sum_{z \in \ALPHABET S} \min\{ P_{sz}, P_{s'z} \}. \end{equation}\] Furhermore, \(β_P \in [0, 1]\) and there exists a \(v \in \reals^n\) such that \(\SPAN(Pv) = β_P \SPAN(v)\).

Note that for any \(v \in \reals^n\) \[\begin{align*} \SPAN(Pv) &= \max_{s \in \ALPHABET S} \sum_{z \in \ALPHABET S} P_{sz} v_z - \min_{s' \in \ALPHABET S} \sum_{z \in \ALPHABET S} P_{s'z} v_z \\ &= \max_{s, s' \in \ALPHABET S} \sum_{z \in \ALPHABET S} P_{sz} v_z - \sum_{z \in \ALPHABET S} P_{s'z} v_z \end{align*}\] Let \(B(z; s,s') = \min\{ P_{sz}, P_{s'z} \}\). Then consider \[\begin{align*} \sum_{z \in \ALPHABET S} P_{sz} v_z - \sum_{z \in \ALPHABET S} P_{s'z} v_z &= \sum_{z \in \ALPHABET S} [ P_{sz} - B(z; s,s') ] v_z - \sum_{z \in \ALPHABET S} [ P_{s'z} - B(z; s,s') ] v_z \\ &\le \sum_{z \in \ALPHABET S} [ P_{sz} - B(z; s,s') ] \max(v) - \sum_{z \in \ALPHABET S} [ P_{s'z} - B(z; s,s') ] \min(v) \\ &= \biggl[ 1 - \sum_{z \in \ALPHABET S} B(z; s, s') \biggr] \SPAN(v). \end{align*}\] Hence, \[ \SPAN(Pv) \le \max_{s, s' \in \ALPHABET S} \biggl[ 1 - \sum_{z \in \ALPHABET S} B(z; s, ) \biggr] \SPAN(v). \]

Now we show that there exists a \(v\) such that \eqref{eq:span-matrix} holds with equality. If \(β_P = 0\), then \(P\) has equal rows, so that \(\SPAN(Pv) = 0 = 0 \cdot \SPAN(v)\) for all \(v \in \reals^n\). Suppose \(β_P > 0\). Using the identity \([ a - b]^{+} = a - \min(a,b)\), we can write \[ β_P = \max_{s,s' \in \ALPHABET S} \sum_{z \in \ALPHABET S} \bigl[ P_{sz} - P_{s'z} \bigr]^{+}. \] Let \(s^*\) and \(s'^*\) be such that \[ β_P = \sum_{z \in \ALPHABET S} \sum_{z \in \ALPHABET S} \bigl[ P_{s^*z} - P_{s'^*z} \bigr]^{+}. \] Define \(v\) by \[ v_z = \IND\{ P_{s^*z} > P_{s'^*z} \}. \] Then, note that \(\SPAN(v) = 1\) and \[\begin{align*} \SPAN(Pv) &\ge \sum_{z \in \ALPHABET S} P_{s^* z} v_z - \sum_{z \in \ALPHABET S} P_{s'^* z} v_z \\ &= \sum_{z \in \ALPHABET S} \bigl[ P_{s^*z} - P_{s'^*z} \bigr]^{+} \\ &= β_P \SPAN(v). \end{align*}\] Combining with \eqref{eq:span-matrix}, we get \(\SPAN(Pv) = β_P \SPAN(v)\).

Proposition 16.1 illustrates the “averaging” property of a transition matrix. By multiplying a vector by a transition matrix, the resulting vector has components which are more nearly equal. When \(P\) is a square matrix, the quantity \(β_P\) is called the ergodicity coefficient, which is often written in an alternative form by using the relation \(|a - b| = (a + b) - 2 \min(a,b)\): \[ β_P = \frac12 \max_{s,s' \in \ALPHABET S} \sum_{z \in \ALPHABET S} \bigl| P_{sz} - P_{s'z} \bigr|. \] The ergodicity coefficient is an upper bound on the second largest eigenvalue of \(P\). \(β_P\) equals \(0\) if all rows of \(P\) are equal and equals \(1\) if at least two rows of \(P_d\) are orthogonal. From a different perspective, \(β_P < 1\) if for each pair of states there exists at least one state which they both can reach with positive probability in one step.

Remark

Note that \[\begin{equation}\label{eq:ergodicity-bound} β_P \le 1 - \sum_{z \in \ALPHABET S} \min_{s \in \ALPHABET S} P_{sz} =: β_P' \end{equation}\] which is easier to compute.

Define the contraction factor \[\begin{equation}\label{eq:contraction} β = \max_{\substack{ s,s' \in \ALPHABET S \\ a \in \ALPHABET A(s), w \in \ALPHABET A(s')}} \biggl[ 1 - \sum_{z \in \ALPHABET S} \min\{ P(z | s,a), P(z | s', w) \biggr]. \end{equation}\] Note that \(β \in [0, 1]\).

Theorem 16.1 For any \(V_1, V_2 \in \reals^n\), \[ \SPAN(\mathcal B V_1 - \mathcal B V_2) \le γ β\, \SPAN(V_1 - V_2). \]

Let \(π_i\) be such that \(\mathcal B V_i = \mathcal B_{π_i}V_i\). Let \[\begin{align*} s^* &= \arg \max_{s \in \ALPHABET S}(\mathcal B V_1(s) - \mathcal B V_2(s)), \\ s_* &= \arg \min_{s \in \ALPHABET S}(\mathcal B V_1(s) - \mathcal B V_2(s)), \end{align*}\] Then, \[ \mathcal B V_1(s^*) - \mathcal B V_2(s^*) \le \mathcal B_{π_2} V_1(s^*) - \mathcal B_{π_2} V_2(s^*) = γ P_{π_2}(V_1 - V_2)(s^*) \] and \[ \mathcal B V_1(s_*) - \mathcal B V_2(s_*) \ge \mathcal B_{π_1} V_1(s^*) - \mathcal B_{π_1} V_2(s^*) = γ P_{π_1}(V_1 - V_2)(s^*). \] Therefore, \[\begin{align*} \SPAN(\mathcal B V_1 - \mathcal B V_2) &\le γ P_{π_2}(V_1 - V_2)(s^*) - γ P_{π_1}(V_1 - V_2)(s_*) \\ &\le \max_{s \in \ALPHABET S} γ P_{π_2} (V_1 - V_2)(s) - \min_{s \in \ALPHABET S} γ P_{π_1}(V_1 - V_2)(s) \\ &\le \SPAN(γ\, \ROWS(P_{π_2}, P_{π_1})(V_1 - V_2). \end{align*}\] By applying Proposition 16.1, we get \[ \SPAN(\mathcal B V_1 - \mathcal B V_2) \le γβ_{\bar P} \SPAN(V_1 - V_2), \] where \(β_{\bar P}\) is given by \eqref{eq:span-matrix} with \(\bar P = \ROWS(P_{π_2}, P_{π_1})\). The result follows by noting that \(β_{\bar P}\) is at most \(β\).

16.2 Computational complexity of value iteration

Note that \(β \in [0, 1]\). We will first rule out the case \(β = 0\). If \(β = 0\), then \(P(z | s, a) = P(z | s', w)\) for all \(s, s', z \in \ALPHABET S\) and \(a \in \ALPHABET A(s)\) and \(w \in \ALPHABET A(s')\), which implies that all deterministic policies have the same transition probabilities. Therefore, a deterministic policy \(π\) is optimal if and only if it minimize the one-step cost. Thus, the case with \(β = 0\) is trivial. So, in the rest of the analysis, we assume that \(β \in (0, 1)\).

Theorem 16.2 Start with an abritrary \(V_0\). If \(Δ_1 = 0\), then we obtain an optimal policy in iteration 1. Otherwise, for any \(ε > 0\), value iteration finds an \(ε\)-optimal policy in no more than \(K^*(γ)\) iterations, where \[\begin{equation}\label{eq:K*} K^*(γ) = \left\lceil \frac{ \log \frac{(1-γ) ε β}{Δ_1} } {\log(γβ)} \right\rceil. \end{equation}\] In addition, each iteration uses at most \(O(nM)\) operations.

If follows from the definition of Bellman operator that each iteration uses at most \(O(nM)\) iterations (to compute the \(Q\) function, for each state-action pair, we need to compute a sum over \(n\) terms).

From Theorem 16.1, we get that \(Δ_k \le (γβ)^{k-1} Δ_1\). Therefore, the minimum number of iterations required to achieve \(Δ_k \le \frac{1-γ}{γ}ε\) is given \(K^*(γ)\)\(\Box\)

Remark

Note that finding the value of \(β\) requires computing the sum in \eqref{eq:contraction} for all couples \(\{ (s,a), (s',b) \}\) of state action pairs such that \((s,a) \neq (s',b)\). The total number of such pairs are \(M(M-1)/2 = O(M^2)\). Therefore, the number of arithematic operators in \eqref{eq:contraction}, which are additions, is \(n\) for each couple. Therefore, computation of \(β\) requires \(O(nM^2)\) operations, which can be significantly larger than the complexity of computing an \(ε\)-optimal policy which is given by Theorem 16.2! Based on \eqref{eq:ergodicity-bound} we can replace \(β\) by in \eqref{eq:K*} by \[ β' = 1 - \sum_{z \in \ALPHABET S} \min_{s \in \ALPHABET S, a \in \ALPHABET A} P(z | s,a) \] which requies \(O(nM)\) operations.

16.3 The bound may be exact

We now present an example (due to Feinberg and He (2020)) to show that the bound in Theorem 16.2 may be exact. Consider an MDP with \(\ALPHABET S = \{1, 2, 3\}\), \(\ALPHABET A = \{1,2 \}\), with \(\ALPHABET A(1) = \{1, 2\}\) and \(\ALPHABET A(2) = \ALPHABET A(3) = \{1\}\). The per-step transitions are \[ P(1) = \MATRIX{0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 }, \quad\text{and}\quad P(2) = \MATRIX{0 & 1 & 0 \\ * & * & * \\ * & * & *}, \] where \(*\) indicates that the corresponding action is infeasible. The reward matrix is \[ r = \MATRIX{1 & 0 \\ 1 & * \\ -1 & *}. \]

Suppose we start with an initial \(V_0 = \VEC(1, 2, -2)\). Then elementary calculations show that \[ V_k = \MATRIX{ γ^k \\ γ^k \\ -γ^k} + \MATRIX{ \sum_{\ell = {\color{red} 1}}^{k} γ^\ell \\ \sum_{\ell = 0}^{k} γ^\ell \\ \sum_{\ell = 0}^{k} γ^\ell }. \] Thus, \[ V_k - V_{k-1} = \MATRIX{ 2 γ^k - γ^{k-1} \\ 2 γ^k - γ^{k-1} \\ - 2 γ^k + γ^{k-1} }. \] Hence, \[ \SPAN(V_k - V_{k-1}) = 2γ^{k-1} |2γ - 1| = γ^{k-1} \SPAN(V_1 - V_0). \]

Thus, for this model, the expression \eqref{eq:K*} is exact.

Remark

The exact number of iterations need not be monotone in \(γ\)! In the above example, let \(ε = 0.02\), then \[ K^*(0.24) = 3, \quad K^*(0.47) = 4, \quad K^*(0.48) = 3. \]

Thus, the number of iterations is not monotone in \(γ\).

Notes

The discussion on span semi-norm and Theorem 16.1 is from Puterman (2014). Theorem 16.2 is from Feinberg and He (2020).