24  Upper bounds on policy loss

Updated

December 26, 2023

Consider a candidate value function \(\hat V \colon \ALPHABET S \to \reals\) which is approximately optimal, i.e., \[ \| V^* - \hat V \|_{∞} \le α. \] Let \(π_{\hat V}\) be a greedy policy with respect to \(\hat V\), i.e., \[ π_{\hat V}(s) \in \GREEDY(\hat V) = \arg \min_{a \in \ALPHABET A} \Bigl[ c(s,a) + γ \sum_{s' \in \ALPHABET S} P(s'|s,a) \hat V(s') \Bigr] \]

We are interested in bounding the loss in performance when using policy \(π_{\hat V}\) instead of the optimal policy, i.e., \(\| V^* - V^{π_{\hat V}}\|_{∞}\). We call this the policy loss.

Theorem 24.1 \[ \| V^* - V^{π_{\hat V}}\|_{∞} \le \frac{2 γ}{1-γ} \| V^* - \hat V\|_{∞}. \]

It is quite likely this bound is loose. See the discussion in the section of model approximation bound for some remarks.

From triangle inequality, we have \[\begin{align*} \| V^* - V^{π_{\hat V}}\|_{∞} &\le \| \BELLMAN V^* - \BELLMAN \hat V \|_{∞} + \| \BELLMAN_{π_{\hat V}} \hat V - \BELLMAN_{π_{\hat V}} V^* \|_{∞} + \| \BELLMAN_{π_{\hat V}} V^* - \BELLMAN_{π_{\hat V}} V^{π_{\hat V}} \|_{∞} \\ &\le γ \| V^* - \hat V \|_{∞} + γ \| \hat V - V^* \|_{∞} + γ \| V^* - V^{π_{\hat V}} \|_{∞} \end{align*}\] where the first inequality uses the fact that \(\BELLMAN \hat V = \BELLMAN_{π_{\hat V}} V\). The result follows from rearranging the terms.

Practical upper bound

The bound of Theorem 24.1 can be difficult to apply because \(\| V^* - \hat V\|_{∞}\) is not always available. A more practical upper bound can be obtained by using the result from Proposition 12.6, which implies that \[ \| V^* - \hat V\| \le \frac{1}{1-γ} \| \BELLMAN \hat V - \hat V\|_{∞}. \] Hence, an upper bound on the result of Theorem 24.1 is \[ \| V^* - V^{π_{\hat V}}\|_{∞} \le \frac{2 γ}{(1-γ)^2} \| \BELLMAN \hat V - \hat V\|_{∞}. \]

24.1 Approximate Bellman update

The definition of \(π_{\hat V}\) assumes that we can perform a Bellman update exactly. Similar to the setup in approximate DP, suppose all we can guarantee is a policy \(\hat π\) such that \[ \| \BELLMAN \hat V - \BELLMAN_{\hat π} \hat V\| \le ε \] Then, we have the following.

Theorem 24.2 \[ \| V^* - V^{\hat π}\|_{∞} \le \frac{2 γ}{1-γ} \| V^* - \hat V\|_{∞} + \frac{ε}{1-γ} \]

From triangle inequality, we have \[\begin{align*} \| V^* - V^{\hat π}\|_{∞} &\le \| \BELLMAN V^* - \BELLMAN \hat V \|_{∞} + \textcolor{red}{\| \BELLMAN \hat V - \BELLMAN_{\hat π} \hat V\|_{∞}} \notag \\ & \quad + \| \BELLMAN_{\hat π} \hat V - \BELLMAN_{\hat π} V^* \|_{∞} + \| \BELLMAN_{\hat π} V^* - \BELLMAN_{\hat π} V^{\hat π} \|_{∞} \\ &\le γ \| V^* - \hat V \|_{∞} + \textcolor{red}{ε} + γ \| \hat V - V^* \|_{∞} + γ \| V^* - V^{\hat π} \|_{∞} \end{align*}\] The result follows from rearranging the terms.

24.2 Policy loss for \(Q\)-learning

A related setting is what happens in \(Q\)-learning. Suppose \(Q^*\) is the optimal action-value function and we obtain an approximation \(\hat Q\). Let \(π_{\hat Q}\) be the greedy policy with respect to \(\hat Q\), i.e., \[ π_{\hat Q}(s) \in \arg \min_{a \in \ALPHABET A} \hat Q(s,a). \] Then, we have the following.

Theorem 24.3 \[ \| V^* - V^{π_{\hat Q}}\|_{∞} \le \frac{2}{1-γ} \| Q - \hat Q\|_{∞} \]

For ease of notation, we use \(\hat π\) to denote \(π_{\hat Q}\). Let \(α = \| Q - \hat Q\|_{∞}\). Now consider \[\begin{align} V^{\hat π}(s) - V^*(s) &= Q^{\hat π}(s, \hat π(s)) - Q^*(s, π^*(s)) \notag \\ &\le Q^{\hat π}(s, \hat π(s)) - Q^*(s, \hat π(s)) + 2 α \label{eq:policy-loss-QL-step1} \end{align}\] where the last inequality uses the fact that \[ Q^*(s, \hat π(s)) - α \le \hat Q(s, \hat π(s)) \le Q^*(s, π^*(s)) \le Q^*(s, π^*(s)) + α. \] Now observe that \[ Q^{\hat π}(s, \hat π(s)) - Q^*(s, \hat π(s)) = γ \sum_{s' \in \ALPHABET S}P(s'|s, \hat π(s)) [ V^{\hat π}(s') - V^*(s') ] \le γ \| V^{\hat π} - V^* \|_{∞}. \] Substituting this in \eqref{eq:policy-loss-QL-step1} and rearranging the terms gives us the result.

Notes

The material in this section is adapted from Singh and Yee (1994). The proof of Theorem 24.1 is from Tsitsiklis and Roy (1996).