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Decentralized systems

are everywhere . . .



Communication
Networks



Sensor Networks



Surveillance Networks



Transportation
Networks



Control Systems



Monitoring and
Diagnostic Systems



Robotics



Multi-core
CPUs



Power Distribution



. . . and many others . . .



Basic research premise

The various applications where decentralized systems arise are

independent areas of research with dedicated communities.

However, most applications share common features and

common design principles.

Develop a systematic methodology

that addresses these commonalities.

Such a methodology will provide design guidelines for all

applications.



Characteristics of decentralized systems

Multiple agents that have different

information need to cooperate and coordinate

Required:
a theory for decentralized decision making



Outline

1. Overview of decentralized systems

Classification: games vs. teams; single- vs. multi-stage; etc.

Objective: structural results and sequential decomposition

2. Why can't we directly use Markov decision theory

3. n-step delayed sharing structure

Information states

Summarizing the affect of past on future performance

4. Conclusion



Classification of decentralized systems

Decentralized
Systems

Objective

Teams

Games

Coupling

Static

Dynamic



Classification of decentralized systems

Dynamic
Teams

Non-

sequential
Sequential

Classical
Non-

classical
info strc



Sequential dynamic teams

with

non-classical info strc



Salient Features

Sequential Team

Order in which the agents act can

be fixed in advance: A1, A2, … , An.
Non-classical information structures

Let 𝒥i represent the “information” known to Ai.∃i such that 𝒥i ̸⊆ 𝒥i+1



Literature Overview

Economics

R. Radner, Team decision problems, Ann. Math. Statistics, 1962.

J. Marschak and R. Radner, Economic Theory of Teams, Yale

Univ Press, 1972.

C.B. McGuire, Comparison of Information Structures, Cowles

Foundation, 1959.

Controls

H.S. Witsenhausen, On information structures, Feedback and

Causality, SIAM J. Control, 1971

H.S. Witsenhausen, Separation of estimation and control for

discrete time systems, Proc of IEEE, 1971.
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This talk
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Solution Concept

Structural results

Discard irrelevant information

Compress relevant information to a compact statistic

Restrict attention to a sub-class of decision rules

Sequential decomposition

Divide and conquer: Exploit sequential and multi-stage

nature of the problem

Convert a one-shot optimal design problem into a sequence

of nested optimization problems.



Same solution concepts
as centralized systems



Markov decision process (MDP)

Sys Agent
Xt

Ut
Xt+1 = ft(Xt, Ut,Wt)Ut = gt(X1:t, U1:t−1)min𝐄{ T∑t=1 ct(Xt, Ut) }



Markov decision process (MDP)

Sys Agent
Xt

Ut
Structural Results: Discard past observations and actions

Choose current action based on current state ƣ𝐭
Sequential decomposition: Dynamic programming

Recursively compute the next action 𝐔𝐭 for

each realization of the current state Xt



Partially observable MDP (POMDP)

Sys Obs Agent
Xt Yt

Ut
Xt+1 = ft(Xt, Ut,Wt)Yt = ht(Xt, Qt)Ut = gt(Y1:t, U1:t−1)min𝐄{ T∑t=1 ct(Xt, Ut) }



Partially observable MDP (POMDP)

Sys Obs Agent
Xt Yt

Ut
Structural Results: Compress past observations and actions

Choose current action based on current info stateπ =Pr(state of system | all data at agent)

Sequential decomposition: Dynamic programming

Recursively compute the next action 𝐔𝐭 for each

realization of the current information state πt



Objective

Find a systematic methodology to

determine structural results and sequential

decomposition for sequential teams



Why can't we
use what we know?



Markov decision

theory makes an

implicit assumption:

information is centralized



MDP revisited

Sys Agent

Information State

current state ƣ𝐭 of the system

Implicit Assumption

one agent with perfect recall



POMDP revisited

Sys Obs Agent
Xt Yt

Ut
Information State

πt = Pr(state of system | all data at agent)

Implicit Assumption

data at time t ⊆ data at time t + 1
one agent with perfect recall



What happens if this

assumption is not satisfied?



An example with two agents

Sys

Obs

Obs

Agent 1

Agent 2

Xt
Y1t

Y2t
U1t

U2t



From the p.o.v. of agent 1

SysSys

Obs

Obs

Agent 1

Agent 2

Xt
Y1t

Y2t
U1t

U2t
π1t = Pr(Xt, Y21:t, U21:t−1 | Y11:t, U11:t−1)



From the p.o.v. of agent 2

SysSys

Obs

Obs

Agent 1

Agent 2

Xt
Y1t

Y2t
U1t

U2t
π2t = Pr(Xt, Y11:t, U11:t−1 | Y21:t, U21:t−1)



What happens when we try
to combine the two p.o.v.

Each agent's belief on the other agent's obs

π1t = Pr(Xt, Y21:t, U21:t−1 | Y11:t, U11:t−1)π2t = Pr(Xt, Y11:t, U11:t−1 | Y21:t, U21:t−1)
Each agent's belief on the other agent's belief on the first agent's

obs

π̂1t = Pr(Xt, π2t | π1t)π̂2t = Pr(Xt, π1t | π2t)



Each agent is

second-guessing the other





An example with one agent
without perfect recall

Sys Obs Agent
Xt Yt

Ut
Finite Memory Mt

Xt+1 = ft(Xt, Ut,Wt)Yt = ht(Xt, Qt)Ut = gt(Yt,Mt)Mt+1 = lt(Yt,Mt)



What happens if we use the
same approach as POMDPs

πt = Pr(Xt | Yt,Mt)
σ(Yt,Mt) ̸⊆ σ(Yt+1,Mt+1)

πt cannot be updated recursively



What is the correct

notion of state



Difficulties in decentralized control

The notion of state

How do we choose information states

The second guessing argument

How does an agent know what other

agent think about what it knows

Triple-aspect of control — estimation,

control, and communication/signaling



Our approach

The notion of state

Start from first principles

State for what purpose? State for whom?

The second guessing argument

Exploit common knowledge

Triple-aspect of control

Each step of the dynamic program is a functional

optimization problem



An Example

Delayed sharing

information structure



Delayed sharing info structure (DSIS)

Ƥʆ𝐭−𝐧,𝐔ʆ𝐭−𝐧

Ƥʅ𝐭−𝐧,𝐔ʅ𝐭−𝐧

Sys

Obs

Obs

Agent 1

Agent 2

Xt
Y1t

Y2t
U1t

U2t



Delayed sharing info structure (DSIS)

Ƥʆ𝐭−𝐧,𝐔ʆ𝐭−𝐧

Ƥʅ𝐭−𝐧,𝐔ʅ𝐭−𝐧

Sys

Obs

Obs

Agent 1

Agent 2

Xt
Y1t

Y2t
U1t

U2t

K controllers that share

information with a delay of n time

steps

𝐧 = ʄ ⇒ classical info structure

(centralized system)

𝐧 = ∞ ⇒ non-classical info structure with no sharing (completely

decentralized system)



Delayed sharing info structure (DSIS)

Common information: Δt = (Y11:t−n, Y21:t−n, U11:t−n, U21:t−n)
Private information: Λkt = (Ykt−n+1:t, Ukt−n+1:t−1), k = 1, 2.
Dynamics

Xt = ft(Xt−1, U1t , U2t ,Wt)Ykt = hkt (Xt, Nkt )Ukt = gkt (Λkt , Δt)
Objective min𝐄{ T∑t=1 ct(Xt, U1t , U2t) }



History of the problem

Witsenhausen, 1971 proposed the n-DSIS and asserted a

structural result Ukt = gkt (Λkt , Θt)
where Θt = Pr(Xt−n | Δt).

The domain of Δt increases with

time, the domain of Θt does not.

Varaiya and Walrand, 1979 proved that Witsenhausen's assertion

is true for 𝐧 = ʅ but false of 𝐧 > ʅ



What is the

structure of optimal

controllers for DSIS?

(Open problem for 39 years)



Our Results

Derive two structural results𝐔𝐤𝐭 = 𝐠𝐤𝐭 (𝚲𝐤𝐭 ,𝚷𝐭), where Πt = Pr(Xt−1, Λ1t , Λ2t | Δt)
𝐔𝐤𝐭 = 𝐠𝐤𝐭 (𝚲𝐤𝐭 ,𝚯𝐭, 𝐫ʅ𝐭 , 𝐫ʆ𝐭 ), where Θt = Pr(Xt−n | Δt) and rkt is a

collection of partial functions of the previous n − 1 control laws

of each controller.rkt = { gkm+n(⋅, Ykm+1:t−n, Ukm+1:t−1, Δm+n), m = t − 2n + 1,…, t − n − 1}
Both Πt and (Θt, r1t , r2t) have time-invariant domains



First Solution Approach

Consider a coordinator that observes common information Δt
(but does not observe the private information (Λ1t , Λ2t)).
Formulate a centralized optimization problem from the point of

view of the coordinator

Show that the coordinator's problem is equivalent to the original

problem

Find states sufficient for input-output mapping for the

coordinator

Find information states (state sufficient for dynamic

programming) for the coordinator



A coordinator for system

Sys

Obs

Obs

Agent 1

Agent 2

Coordinator
(Y1,2t−n, U1,2t−n) γ1t

γ2t
St

Λ1t

Λ2t

U1t

U2t
(γ1t , γ2t) = ψt(Δt)U1t = γ1t(Λ1t) U2t = γ2t(Λ2t)



State sufficient for input-output mapping

Define: St = (Xt−1, Λ1t , Λ2t)
Recursive update:

St+1 = f̂t(St, γ1t , γ2t ,Wt, N1t , N2t)
Observation function:

(Y1t−n, Y2t−n, U1t−n, U2t−n) = ĥt(St)
Cost can be written in terms of state

ct(Xt, U1t , U2t) = ĉt(St, St+1, γ1t , γ2t)



Information State

Πt = Pr(state | past data)= Pr(St | Δt, γ11:t, γ21:t)
Recursive update:

πt+1 = f̃t(πt, γ1t , γ2t , (Y1t−n, Y2t−n, U1t−n, U2t−n))
Controlled Markov process:

Pr(Πt+1 | Δt, Π1:t, γ11:t, γ21:t) = Pr(Πt+1 | Πt, γ1t , γ2t)
Expected cost:

𝐄{ĉt(St, St+1, γ1t , γ2t) | Δt, Π1:t, γ11:t, γ21:t} = c̃t(Πt, γ1t , γ2t)



First structural result

For the coordinator's problem

(γ1t , γ2t) = ψt(Πt)
For the original problem

Ukt = gkt (Λkt , Πt) = γkt (Πt)(Λkt )
dynamic programming decomposition

VT (π) = min(γ1,γ2) c̃T (π, γ1, γ2)Vt(π) = min(γ1,γ2) � c̃T (π, γ1, γ2) + 𝐄{ Vt+1(Πt+1) | π, γ1, γ2 } �



Features of the solution

Πt = Pr(Xt−1, Λ1t , Λ2t | Δtγ11:t, γ21:t)Πt has time invariant domain
Πt is not independent of the agent's policies (it is independent

of the coordinator's policies)

In each step of the dynamic program, we are choosing partial

functions (γ1t , γ2t).



Features of the solution

Πt = Pr(Xt−1, Λ1t , Λ2t | Δtγ11:t, γ21:t)Πt has time invariant domain
Πt is not independent of the agent's policies (it is independent

of the coordinator's policies)

In each step of the dynamic program, we are choosing partial

functions (γ1t , γ2t).
Can we exploit the “partial function is control

action” nature of the problem at the coordinator



Affect of functions

on future can be

compressed by partially

evaluating the function



Partially evaluating a function

Consider Xt+1 = ft(Xt, Yt)
How do we compress the affect (ft, Xt) affect Xt+1?



Partially evaluating a function

Consider Xt+1 = ft(Xt, Yt)
How do we compress the affect (ft, Xt) affect Xt+1?

ft(Xt, ⋅)



Second Solution Approach

Consider a coordinator that observes common information Δt
(but does not observe the private information (Λ1t , Λ2t)).
Formulate a centralized optimization problem from the point of

view of the coordinator

Show that the coordinator's problem is equivalent to the original

problem

Compress the information at the coordinator into control law

independent part and partially evaluating past control laws.



A coordinator for system

Sys

Obs

Obs

Agent 1

Agent 2

Coordinator
(Y1,2t−n, U1,2t−n) γ1t

γ2t
St

Λ1t

Λ2t

U1t

U2t
(γ1t , γ2t) = ψt(Δt)U1t = γ1t(Λ1t) U2t = γ2t(Λ2t)



Information state for optimization

Define: Θt = Pr(Xt−n | Δt)rkt = { gkm+n(⋅, Ykm+1:t−n, Ukm+1:t−1, Δm+n), m = t − 2n + 1,…, t − n − 1}
Recursive update:

Θt = Qt(Θt, Y1t−n+1, Y2t−n+1, U1t−n+1, U2t−n+1)rkt+1 = Qkt (rkt , Y1t−n+1, Y2t−n+1, U1t−n+1, U2t−n+1, γkt )
Controlled Markov process:

Pr(Θt+1 | Δt, Π1:t, r11:t, r21:t, γ11:t, γ21:t) = Pr(Θt+1 | Δt, r1t , r2t , γ1t , γ2t)
Expected cost

𝐄{ct(Xt, U1t , U2t)|Δtr11:t, r21:t, γ11:t, γ21:t} = ĉt(Θt, r1t , r2t , γ1t , γ2t)



Second structural result

For the coordinator's problem

(γ1t , γ2t) = ψt(Θt, r1t , r2t)
For the original problem

Ukt = gkt (Λkt , Θt, r1t , r2t) = γkt (Θt, r1t , r2t)(Λkt )
dynamic programming decomposition

VT (θ, r1, r2) = min(γ1,γ2) ĉT (θ, r1, r2, γ1, γ2)Vt(θ, r1, r2) = min(γ1,γ2) � ĉT (θ, r1, r2, γ1, γ2)+ 𝐄{ Vt+1(Θt+1, r1t+1, r2t+1) | θ, r1, r2, γ1, γ2 } �



Features of the solution

Θt = Pr(Xt−n | Δt)rkt = { gkm+n(⋅, Ykm+1:t−n, Ukm+1:t−1, Δm+n), m = t − 2n + 1,…, t − n − 1}(Θt, r1t , r2t) has time invariant domain
Θt is independent of the agent's policies
The past control laws affect the information state only through(r1t , r2t).
In each step of the dynamic program, we are choosing partial

functions (γ1t , γ2t).



Summary of approach



Solution Methodology

Find common information at each time

Look at the problem for the point of view of a coordinator that

observes this common information and choose partial functions

Find an information state for the problem at the coordinator

Pr(state for input-output mapping | common information)

( Pr(past state | common information),

past partial control laws )



Salient Features

Information state has time invariant domain

The methodology is also applicable

to infinite horizon problems

Each step of DP is a functional optimization problem

Form of the DP is similar to that of POMDP



Methodology applicable
to general problems

General two-agent teams (M, Sequential decomposition of sequential teams, 2008)

Sufficient conditions for sequential decomposition of dynamic

teams (M, Nayyar, and Teneketzis, Identifying tractable decentralized problems on the basis

of information structures, 2008) (1st set of general conditions in the last 35 years)

Automated tools to derive structural results for sequential teams

(M and Tatikonda, Sequential team form and its simplification using graphical models, 2009)

Applications:

Real-time communication (M and Teneketzis, 2008, 2009)

Control over noisy channels (M and Teneketzis 2009)

Decentralized sequential detection (Nayyar and Teneketzis 2009)

Multi-terminal communication (M 2009, Nayyar and Teneketzis 2009



Real-time communication

Source ChannelEncoder Decoder

Communication with zero-delay or fixed finite delay.

noisy communication channels

Structure of optimal encoding and decoding strategies

Sequential decomposition to find optimal strategies

M and Teneketzis, Optimal design of real-time communication, IT-2009.



Block Markov superposition
codes for multiple access channel

Encoder 1

Encoder 2

MAC Receiver

Use block Markov coding scheme that decode with a finite delay

Structure of optimal sequential transmission systems

M, Block Markov superposition coding schemes for MAC with feedback, ITA-2010.



Optimal control over noisy channels

System ChannelSensor Controller

Sensor and controller are connected over noisy communication

channel

Optimize performance (minimize total cost)

Structure of optimal sensor and controller strategies

Sequential decomposition to find optimal strategies

M and Teneketzis, Optimal performance of networked control systems with non-classical

information structures, SICON, 2009



Decentralized diagnosis
with communication

Sys

Obs

Obs

Diagnoser 1

Diagnoser 2

decentralized diagnosers that can communicate information.

Modeled as discrete event systems: non-sequential and

non-probabilistic



Conclusion



Conclusion

Important concepts

coordinator

information state

partial functions

Axiomatic approach

Insights can be generalized

Solution can be automated

Developing a software to algorithmically identify structural

results

http://pantheon.yale.edu/~am894/code/teams/



Reflections

Non-sequential information structures

Conceptual difficulties

Computational difficulties

Provides high-level design guidelines

The optimal solution needs to computed numerically

Provides some design insights: structural properties, which

modeling assumption makes the problem easier, etc.

Actual solution requires “domain knowledge”



Domain knowledge tells us

how to approximate a model.

Stochastic control tells us which

simplification of the model

makes the overall design easier



Thank you


