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Motivation

Sensor Networks

Smart Grids

Internet of Things

Many applications require:
Sequential transmission of data
Zero- (or inite-) delay reconstruction

Salient features
Sensing is cheap
Transmission is expensive
Size of data-packet is not critical

Analyze a stylized model and evaluate fundamental trade-ofs



A completely solved example of a
“simple” decentralized system with
non-classical information structure
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Brief overview of decentralized stochastic control

Economics Literature
Marschak, ąElements for a Theory of Teams,Ć Management Science, 1955
Radner, "Team decision problems,Ć Ann Math Stat, 1962.
Marschak and Radner, ąEconomics Theory of Teams,Ć 1972.
. . .

Systems and Control Literature
Witsenhausen, ąSeparation of estimation and control,Ć Proc IEEE, 1971.
Witsenhausen, ąOn information structures, feedback and causality,Ć SICON 1971.
Ho and Chu, ąTeam decision theory and information structures,Ć IEEE TAC 1972.
. . .

Artiicial Intelligence Literature
. . .
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Marschak and Radner, ąEconomics Theory of Teams,Ć 1972.
. . .

Systems and Control Literature
Witsenhausen, ąSeparation of estimation and control,Ć Proc IEEE, 1971.
Witsenhausen, ąOn information structures, feedback and causality,Ć SICON 1971.
Ho and Chu, ąTeam decision theory and information structures,Ć IEEE TAC 1972.
. . .

Artiicial Intelligence Literature
. . .

Simpler than non-cooperative game theory.
All ąpre-gameĆ agreements are enforceable.

Simpler than cooperative game theory.
The value of the game does not need to be split between the players.

Main diiculty: Seeking global optimality
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Conceptual difficulties in decentralized control

Witsenhausen
Counterexample

A two step dynamical system with two controllers
Linear dynamics, quadratic cost, and Gaussian disturbance
Non-linear controllers outperform linear control strategies . . .

. . . cannot use Kalman iltering + Riccati equations

Whittle
and Rudge

Example

Ininite horizon dynamical system with two symmetric controllers
Linear dynamics, quadratic cost, and Gaussian disturbance
A priori restrict attention to linear controllers
Best linear controllers not representable by recursions of inite
order

Complexity
analysis

All random variables are inite valued
Finite horizon setup
The problem of inding the best control strategy is in NEXP

Witsenhausen, ąA counterexample in stochastic optimum control,Ć SICON 1969.
Whittle and Rudge, ąThe optimal linear solution of a symmetric team control problem,Ć App. Prob. 1974.
Bernstein, et al, ąThe complexity of decentralized control of Markov decision processes,Ć MOR 2002.
Goldmand and Zilberstein, ąDecentralized control of cooperative systems: categorization and complexity,Ć JAIR 2004.
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Solution concepts

Non-Classical info. struct.

Structure of optimal strategies
Instead of f(history of obs) use f(info state).
Compute optimal strategy using DPV(info state) = min

action
[ℬactionV ](info state)

No general solution methodology

Person-by-person approach Common-information approach

Structure of optimal strategies
Instead of f(history of obs)
use f(local info, common info based state).
Compute optimal strategy using DPV(info state) = minφ:local data→action

[ℬφV ](info state)
Nayyar, Mahajan, Teneketzis, ąDecentralized stochastic control

with partial history sharingĆ, TAC 2013.

Allows us to use tools from MDP literature
to decentralized stochastic control
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The system model

Markov
Process

Transmitter Receiver
Xt Ut

Yt X̂t

Communication Strategies
Transmission strategy f = {ft}∞t=0.
Estimation strategy g = {gt}∞t=0.

Ut = ft(X1:t, U1:t−1)

Yt = {Xt, if Ut = 1ε, if Ut = 0
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The system model

Markov
Process

Transmitter Receiver
Xt Ut

Yt X̂t

1. Discounted setup, β ∈ (0, 1)
Dβ(f, g) = (1 − β)�(f,g)0 [ ∞∑t=0βtd(Xt − X̂t)]; Nβ(f, g) = (1 − β)�(f,g)0 [ ∞∑t=0βtUt]

2. Average cost setup, β = 1
D1(f, g) = lim supT→∞

1T �(f,g)0 [ T−1∑t=0 d(Xt − X̂t)]; N1(f, g) = lim supT→∞
1T �(f,g)0 [ T−1∑t=0Ut]

Ut = ft(X1:t, U1:t−1)

Yt = {Xt, if Ut = 1ε, if Ut = 0

X̂t = gt(Y1:t)

Distortiond(Xt − X̂t)
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Optimization problems

Costly communication
For λ ∈ ℝ>0, C∗β(λ) = Cβ(f∗, g∗; λ) ∶= inf(f,g){Dβ(f, g) + λNβ(f, g)}

Constrained communication
For α ∈ (0, 1), D∗β(α) ∶= inf(f,g){Dβ(f, g) : Nβ(f, g) Ņ α}
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Optimization problems

Costly communication
For λ ∈ ℝ>0, C∗β(λ) = Cβ(f∗, g∗; λ) ∶= inf(f,g){Dβ(f, g) + λNβ(f, g)}

Constrained communication
For α ∈ (0, 1), D∗β(α) ∶= inf(f,g){Dβ(f, g) : Nβ(f, g) Ņ α}

λ

C∗β

C∗β is cts, inc, and concave

α

D∗β

D∗β is cts, dec, and convex

Our result: Provide computable
expressions for these curves and

identify strategies that achieve them.
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Periodic transmission strategy

Error process

D = 0.69 N ≈ 1/3
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An alternative strategy

Error process

D = 0.24 N ≈ 1/3
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Distortion-transmission function
D

is
to

rt
io

n

α0 0.25 0.5 0.75 10
0.25

0.5
0.75

1
1.25

Periodic transmission strategy

Threshold based strategy
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Identify strategies that achieve the optimal trade-off
Simple and intuitive threshold based strategies are optimal.

Provide computable expressions for distortion-transmission function
Based on simple matrix calculations for discrete Markov processes

Based on solving Fredholm integral equations for Gaussian processes
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Identify strategies that achieve the optimal trade-off
Simple and intuitive threshold based strategies are optimal.

Provide computable expressions for distortion-transmission function
Based on simple matrix calculations for discrete Markov processes

Based on solving Fredholm integral equations for Gaussian processes

Beautiful example of stochastics and optimization
Decentralized stochastic control and POMDPs

Stochastic orders and majorization

Markov chain analysis, stopping times, and renewal theory

Constrained MDPs and Lagrangian relaxations



So how do we start?
Decentralized stochastic control
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The common information approach

Nayyar, Mahajan and Teneketzis, ąDecentralized stochastic control with partial history sharing: A common information
approach,Ć IEEE TAC 2013.

Xt, Y1:t−1

Y1:t−1

Original system

ft

gt−1

Ut

X̂t
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The common information approach

Nayyar, Mahajan and Teneketzis, ąDecentralized stochastic control with partial history sharing: A common information
approach,Ć IEEE TAC 2013.

Xt, Y1:t−1

Y1:t−1

Original system

Ɵ Y1:t−1

Xt

–

Coordinated system

ht (φt, X̂t−1)
φt

X̂t−1

Ut

X̂t−1
Ficticious coordinator

ft

gt−1

Ut

X̂t
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The common information approach

The coordinated system is equivalent to the original system.ft(x, y1:t−1) = h1t(y1:t−1)(x).
The coordinated system is centralized. Belief state ℙ(Xt | Y1:t−1).

Nayyar, Mahajan and Teneketzis, ąDecentralized stochastic control with partial history sharing: A common information
approach,Ć IEEE TAC 2013.

Xt, Y1:t−1

Y1:t−1

Original system

Ɵ Y1:t−1

Xt

–

Coordinated system

ht (φt, X̂t−1)
φt

X̂t−1

Ut

X̂t−1
Ficticious coordinator

ft

gt−1

Ut

X̂t
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Information states and dynamic program

Information states Pre-transmission belief : Πt(x) = ℙ(Xt = x | Y1:t−1).
Post-transmission belief : Ξt(x) = ℙ(Xt = x | Y1:t).

Π1 Ξ1
U1 X̂1

Π2 Ξ2
U2 X̂2

Π3 Ξ3
U3 X̂3

Π4 Ξ4
U4 X̂4
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Information states Pre-transmission belief : Πt(x) = ℙ(Xt = x | Y1:t−1).
Post-transmission belief : Ξt(x) = ℙ(Xt = x | Y1:t).

Π1 Ξ1
U1 X̂1

Π2 Ξ2
U2 X̂2

Π3 Ξ3
U3 X̂3

Π4 Ξ4
U4 X̂4

Structural results There is no loss of optimality in using

Ut = ft(Xt, Πt) and X̂t = gt(Ξt).
Dynamic Program WT+1(π) = 0

and for t = T, . . . , 0
Vt(ξ) = minx̂∈� �[d(Xt − x̂) +Wt+1(Πt+1) | Ξt = ξ],
Wt(π) = minφ:�→{0,1} �[λφ(Xt) + Vt(Ξt) | Πt = π,φt = φ].

ąStandardĆ POMDP. Optimal strategies
can be computed numerically.



Can we use the DP to say something
more about the optimal strategy?
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Step 1 Structure of optimal strategies (finite horizon)

Oblivious estimation
process

Zt = {Xt if Ut = 1 (or Yt ≠ ε)aZt−1 if Ut = 0 (or Yt = ε)

Error process Et = Xt − aZt−1
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Step 1 Structure of optimal strategies (finite horizon)

Oblivious estimation
process

Zt = {Xt if Ut = 1 (or Yt ≠ ε)aZt−1 if Ut = 0 (or Yt = ε)

Error process Et = Xt − aZt−1

Optimal estimator X̂t = g∗t(Zt) = Zt

Optimal transmitter There exists thresholds {kt}∞t=0 such that

Ut = f∗t(Et) = {1 if |Et| ņ kt0 if |Et| < kt
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The transmitter does not try to send information through timing information.
The estimation strategy is the same to the one for intermittent observations.
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The transmitter does not try to send information through timing information.
The estimation strategy is the same to the one for intermittent observations.

Proof outline
. . .
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Preliminaries

Almost uniform and
unimodal (ASU)

distribution about ≥ ≥ πc ņ πc+1 ņ πc−1 ņ πc+2 ņ ⋅ ⋅ ⋅

ASU Rearrangement ƞπ π+
Majorization π ⪰ ξ if

n∑i=−nπ+i ņ
n∑i=−n ξ+i and

n+1∑i=−nπ+i ņ
n+1∑i=−n ξ+i

Invariant to permutations.

[LM11, NBTV13]

⪰
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Proof outline

Use backward induction to show that value function is “almost” Schur-concave
If ξ′ ⪰ ξ and ξ is ASU, then Vt(ξ′) ņ Vt(ξ)
If π′ ⪰ π and π is ASU, then Wt(π′) ņ Wt(π)

Use backward induction to show that
If ξ is ASU about ≥, then ≥ is the arg min of

Vt(ξ) = minx̂∈� �[d(Xt − x̂) +Wt+1(Πt+1) | Ξt = ξ],
If π is ASU about ≥, then the arg min of

Wt(π) = minφ:�→{0,1} �[λφ(Xt) + Vt(Ξt) | Πt = π,φt = φ]
is of the threshold form in |x − a≥|.

Use forward induction to show that under the optimal strategyΠt is ASU around Zt−1Ξt is ASU around Zt

[LM11, NBTV13]



The results extend to infinite horizon setup
under appropriate regularity conditions.

Time-homogeneous threshold-
based strategies are optimal.



How do we find the optimal
threshold-based strategy?



Step 1 Structure of optimal strategies

Search space of
strategies (f, g)

Step 2 Performance of arbitrary
threshold strategies f(k)

τ(k) t
k

−k
Et

Step 3 Optimal costly comm.

λ(�)β λ(�+1)β
λ�(�)β

�(�+1)β
�(�+2)β

Step 4 Distortion-transmission
trade-off

0 1α�α

�∗β(α) (�(�)β ,�(�)β )
(�(�+1)β ,�(�+1)β )
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−k k



Estimation under communication constraints–(Mahajan and Chakravorty)
18

Step 2 Performance of threshold strategies
Consider a threshold-based strategy

f(k)(e) = {1 if |e| ņ k0 otherwise

−k k

Let τ(k) denote the stopping time of
irst transmission (starting at E0 = 0).

τ(k) t
k

−k
Et



Estimation under communication constraints–(Mahajan and Chakravorty)
18

Step 2 Performance of threshold strategies

Define L(k)β (e) = (1 − β)� [ τ(k)−1∑t=0 βtd(Et)|E0 = e].
M(k)β (e) = (1 − β)� [ τ(k)−1∑t=0 βt|E0 = e].

Consider a threshold-based strategy

f(k)(e) = {1 if |e| ņ k0 otherwise

−k k

Let τ(k) denote the stopping time of
irst transmission (starting at E0 = 0).

τ(k) t
k

−k
Et



Estimation under communication constraints–(Mahajan and Chakravorty)
18

Step 2 Performance of threshold strategies

Define L(k)β (e) = (1 − β)� [ τ(k)−1∑t=0 βtd(Et)|E0 = e].
M(k)β (e) = (1 − β)� [ τ(k)−1∑t=0 βt|E0 = e].

Proposition {Et}∞t=0 is a regenerative process. By renewal theory,

D(k)β ∶= Dβ(f(k), g∗) = L(k)β (0)M(k)β (0) and N(k)β ∶= Nβ(f(k), g∗) = 1M(k)β (0) − (1 − β).

Consider a threshold-based strategy

f(k)(e) = {1 if |e| ņ k0 otherwise

−k k

Let τ(k) denote the stopping time of
irst transmission (starting at E0 = 0).

τ(k) t
k

−k
Et



Estimation under communication constraints–(Mahajan and Chakravorty)
18

Step 2 Performance of threshold strategies

Define L(k)β (e) = (1 − β)� [ τ(k)−1∑t=0 βtd(Et)|E0 = e].
M(k)β (e) = (1 − β)� [ τ(k)−1∑t=0 βt|E0 = e].

Proposition {Et}∞t=0 is a regenerative process. By renewal theory,

D(k)β ∶= Dβ(f(k), g∗) = L(k)β (0)M(k)β (0) and N(k)β ∶= Nβ(f(k), g∗) = 1M(k)β (0) − (1 − β).

Consider a threshold-based strategy

f(k)(e) = {1 if |e| ņ k0 otherwise

−k k

Let τ(k) denote the stopping time of
irst transmission (starting at E0 = 0).

τ(k) t
k

−k
Et

Computing L(k)β and M(k)β is suicient
to compute the performance of f(k)

(i.e., to compute D(k)β and N(k)β ).



Estimation under communication constraints–(Mahajan and Chakravorty)
19

Step 2 Computing Ʊ(�)β and Ʋ(�)β
Markov chain setup L(k)β (e) = d(e) + β k∑n=−kpn−eL(k)β (n)

M(k)β (e) = 1 + β k∑n=−kpn−eM(k)β (n)−k k
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Markov chain setup L(k)β (e) = d(e) + β k∑n=−kpn−eL(k)β (n)

M(k)β (e) = 1 + β k∑n=−kpn−eM(k)β (n)

Proposition L(k)β = [[I − βP(k)]−1d(k)]. P(k) is substochastic.

M(k)β = [[I − βP(k)]−1ʠ(k)].

−k k
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Step 2 Computing Ʊ(�)β and Ʋ(�)β
Markov chain setup L(k)β (e) = d(e) + β k∑n=−kpn−eL(k)β (n)

M(k)β (e) = 1 + β k∑n=−kpn−eM(k)β (n)

Proposition L(k)β = [[I − βP(k)]−1d(k)]. P(k) is substochastic.

M(k)β = [[I − βP(k)]−1ʠ(k)].

−k k

D(k)β and N(k)β can be computed using these expressions.



We found the performance of a
generic threshold-based strategy

How does this lead to
identifying an optimal strategy?



Step 1 Structure of optimal strategies

Search space of
strategies (f, g)

Step 2 Performance of arbitrary
threshold strategies f(k)

τ(k) t
k

−k
Et

Step 3 Optimal costly comm.

λ(�)β λ(�+1)β
λ�(�)β

�(�+1)β
�(�+2)β

Step 4 Distortion-transmission
trade-off

0 1α�α

�∗β(α) (�(�)β ,�(�)β )
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Step 3 Properties of optimal thresholds

Monotonicity L(k+1)β > L(k)β and M(k+1)β > M(k)β

Depends on
unimodularity of noise
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Step 3 Properties of optimal thresholds

Monotonicity L(k+1)β > L(k)β and M(k+1)β > M(k)β
Implication:

D(k+1)β ņ D(k)β and N(k+1)β < N(k)β
Use DP and monotonicity

of Bellman operator
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Step 3 Properties of optimal thresholds

Monotonicity L(k+1)β > L(k)β and M(k+1)β > M(k)β
Implication:

D(k+1)β ņ D(k)β and N(k+1)β < N(k)β

Submodularity C(k)β (λ) ∶= D(k)β + λN(k)β is submodular in (k, λ).
Proposition k∗β(λ) ∶= arg mink∈ℤ≥0C(k)β (λ) is increasing in λ.

Thus, optimal threshold increases with increase in λ.



Characterizing the optimal threshold
for a given communication cost is tricky.

Instead, we will characterize the optimal
communication cost for a given threshold.
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Step 3 Optimal costly communication: Markov chain

λ

�∗β(λ)

λ(k−1) λ(k)

Deine Λ(k)β ∶= {λ ∈ ℝ≥0 : k∗β(λ) = k}= [λ(k−1)β , λ(k)β ].
C(k)β (λ(k)β ) = C(k+1)β (λ(k)β )
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Theorem Strategy f(k+1) is optimal for λ ∈ (λ(k)β , λ(k+1)β ] .

C∗β(λ) = mink∈ℤ≥0 C(k)β is piecewise linear, continuous,
concave, and increasing function of λ.
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λ

�(�)β

�(�+1)β

�(�+2)β

(λ(k)β , D(k)β + λ(k)β N(k)β )

Theorem Strategy f(k+1) is optimal for λ ∈ (λ(k)β , λ(k+1)β ] .

C∗β(λ) = mink∈ℤ≥0 C(k)β is piecewise linear, continuous,
concave, and increasing function of λ.
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Step 4 Distortion-transmission trade-off: Markov chain

Sufficient conditions for constrained optimality
A strategy (f∘, g∘) is optimal for the constrained communication problem if

(C1) Nβ(f∘, g∘) = α
(C2) There exists λ∘ ņ 0 such that (f∘, g∘) is optimal for Cβ(f, g; λ∘).
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Let k∗β be such thatN(k∗β)β > α > N(k∗β+1)β
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Randomized strategy (θ∗, f(k), fk+1) is optimal where

θ∗N(k)β + (1 − θ∗)N(k+1)β = α
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Conclusion

Analyze fundamental limits of estimation
under communication constraints

Possible generalizations to more realistic models
Packet drops
Rate constraints (efect of quantization)
Network delays

A simple non-trivial “toy-problem” for decentralized control
Decentralized control is full of diicult problems and negative results.

It is important to identify ąeasyĆ problems and positive results.

Full version available at arXiv:1505.04829.
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A bandit variation

Markov
Process

Markov
Process

Markov
Process

Transmitter Receiver

X1t

X2t

X3t

Ut
Yt X̂t
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The system model

Markov
Process

Transmitter Receiver
Xt Ut

Yt X̂t

1. Discounted setup, β ∈ (0, 1)
Dβ(f, g) = (1 − β)�(f,g)0 [ ∞∑t=0βtd(Xt − X̂t)]; Nβ(f, g) = (1 − β)�(f,g)0 [ ∞∑t=0βtUt]

2. Average cost setup, β = 1
D1(f, g) = lim supT→∞

1T �(f,g)0 [ T−1∑t=0 d(Xt − X̂t)]; N1(f, g) = lim supT→∞
1T �(f,g)0 [ T−1∑t=0Ut]

Ut = ft(X1:t, U1:t−1)

Yt = {Xt, if Ut = 1ε, if Ut = 0

X̂t = gt(Y1:t)

Distortiond(Xt − X̂t)
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Optimization problems

Costly communication
For λ ∈ ℝ>0, C∗β(λ) = Cβ(f∗, g∗; λ) ∶= inf(f,g){Dβ(f, g) + λNβ(f, g)}

Constrained communication
For α ∈ (0, 1), D∗β(α) ∶= inf(f,g){Dβ(f, g) : Nβ(f, g) Ņ α}

λ

C∗β

C∗β is cts, inc, and concave

α

D∗β

D∗β is cts, dec, and convex
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The common information approach

The coordinated system is equivalent to the original system.ft(x, y1:t−1) = h1t(y1:t−1)(x).
The coordinated system is centralized. Belief state ℙ(Xt | Y1:t−1).

Nayyar, Mahajan and Teneketzis, ąDecentralized stochastic control with partial history sharing: A common information
approach,Ć IEEE TAC 2013.

Xt, Y1:t−1

Y1:t−1

Original system

Ɵ Y1:t−1

Xt

–

Coordinated system

ht (φt, X̂t−1)
φt

X̂t−1

Ut

X̂t−1
Ficticious coordinator

ft

gt−1

Ut

X̂t

Estimation under communication constraints–(Mahajan and Chakravorty)
12

Information states and dynamic program

Information states Pre-transmission belief : Πt(x) = ℙ(Xt = x | Y1:t−1).
Post-transmission belief : Ξt(x) = ℙ(Xt = x | Y1:t).

Π1 Ξ1
U1 X̂1

Π2 Ξ2
U2 X̂2

Π3 Ξ3
U3 X̂3

Π4 Ξ4
U4 X̂4

Structural results There is no loss of optimality in using

Ut = ft(Xt, Πt) and X̂t = gt(Ξt).
Dynamic Program WT+1(π) = 0

and for t = T, . . . , 0
Vt(ξ) = minx̂∈� �[d(Xt − x̂) +Wt+1(Πt+1) | Ξt = ξ],
Wt(π) = minφ:�→{0,1} �[λφ(Xt) + Vt(Ξt) | Πt = π,φt = φ].
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Simplifying modeling assumptions

Markov process Xt+1 = aXt +Wt

Markov chain setup Guass-Markov setup

State spaces Xt, a, Wt ∈ ℤ Xt, a, Wt ∈ ℝ
Noise distribution Unimodal and symmetricpe = p−e ņ pe+1

Zero-mean Gaussianφσ(⋅)
Distortion Even and increasingd(e) = d(−e) Ņ d(e + 1) Mean-squaredd(e) = |e|2

Unimodal and symmetric distribution Even and increasing distortion

Estimation under communication constraints–(Mahajan and Chakravorty)
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Step 1 Structure of optimal strategies (finite horizon)

Oblivious estimation
process

Zt = {Xt if Ut = 1 (or Yt ≠ ε)aZt−1 if Ut = 0 (or Yt = ε)

Error process Et = Xt − aZt−1

Optimal estimator X̂t = g∗t(Zt) = Zt

Optimal transmitter There exists thresholds {kt}∞t=0 such that

Ut = f∗t(Et) = {1 if |Et| ņ kt0 if |Et| < kt

Estimation under communication constraints–(Mahajan and Chakravorty)
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Step 2 Performance of threshold strategies

Define L(k)β (e) = (1 − β)� [ τ(k)−1∑t=0 βtd(Et)|E0 = e].
M(k)β (e) = (1 − β)� [ τ(k)−1∑t=0 βt|E0 = e].

Proposition {Et}∞t=0 is a regenerative process. By renewal theory,

D(k)β ∶= Dβ(f(k), g∗) = L(k)β (0)M(k)β (0) and N(k)β ∶= Nβ(f(k), g∗) = 1M(k)β (0) − (1 − β).

Consider a threshold-based strategy

f(k)(e) = {1 if |e| ņ k0 otherwise

−k k

Let τ(k) denote the stopping time of
irst transmission (starting at E0 = 0).

τ(k) t
k

−k
Et
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λ(k)β = D(k+1)β −D(k)βN(k)β −N(k+1)β

Step 3 Optimal costly communication: Markov chain

λ(�)β λ(�+1)βΛ(�+1)β
λ

�(�)β

�(�+1)β

�(�+2)β

λ

�∗β(λ)

λ(k−1) λ(k)

Deine Λ(k)β ∶= {λ ∈ ℝ≥0 : k∗β(λ) = k}= [λ(k−1)β , λ(k)β ].
C(k)β (λ(k)β ) = C(k+1)β (λ(k)β )

Estimation under communication constraints–(Mahajan and Chakravorty)
22

Let k∗β be such thatN(k∗β)β > α > N(k∗β+1)β

Step 4 Distortion-transmission trade-off: Markov chain

Sufficient conditions for constrained optimality
A strategy (f∘, g∘) is optimal for the constrained communication problem if

(C1) Nβ(f∘, g∘) = α
(C2) There exists λ∘ ņ 0 such that (f∘, g∘) is optimal for Cβ(f, g; λ∘).

λ(k)β

f(k) optimal

f(k+1) optimal

λ
D(k)β

D(k+1)β

D(k+2)β

Randomized strategy (θ∗, f(k), fk+1) is optimal where

θ∗N(k)β + (1 − θ∗)N(k+1)β = α

0 1αcα

D∗β(α)
(N(k)β , D(k)β )

(N(k+1)β , D(k+1)β )


