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Motivation B
Many applications require:

> Sequential transmission of data
> Zero- (or fnite-) delay reconstruction
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Motivation B
Many applications require:

> Sequential transmission of data

&= Zero- (or fnite-) delay reconstruction

> Sensing is cheap
e Transmission is expensive
& Size of data-packet is not critical
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mlotivation B

Many applications require:
B> Sequential transmission of data
= Zero- (or fnite-) delay reconstruction
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= Sensing is cheap
> Transmission is expensive
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A completely solved example of a
“simple” decentralized system with
non-classical information structure



Brief overview of decentralized stochastic control I

Economics Literature

B= Marschak, “Elements for a Theory of Teams,” Management Science, 1955
B= Radner, "Team decision problems,” Ann Math Stat, 1962.

B Marschak and Radner, “Economics Theory of Teams,” 1972.

Systems and Control Literature

> Witsenhausen, “Separation of estimation and control,” Proc IEEE, 1971.

B Witsenhausen, “On information structures, feedback and causality,” SICON 1971.
© Ho and Chu, “Team decision theory and information structures,” |EEE TAC 1972.
L~ S

Artificial Intelligence Literature
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> Marschak, “Elements for a Theory of Teams,” Management Science, 1955
B Radner, "Team decision problems,” Ann Math Stat, 1962.

B> Marschak and Radner, “Economics Theory of Teams,” 1972.

> ..

Systems and Control Literature

B Witsenhausen, “Separation of estimation and control,” Proc IEEE, 1971.

> Witsenhausen, “On information structures, feedback and causality,” SICON 1971.
B Ho and Chu, “Team decision theory and information structures,” IEEE TAC 1972.
=

Artificial Intelligence Literature
>

Simpler than non-cooperative game theory.
All “pre-game” agreements are enforceable.

Simpler than cooperative game theory.
The value of the game does not need to be split between the players.
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Main difficulty: Seeking global optimality
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rConceptual difficulties in decentralized control B

Witsenhausen
Counterexample

Whittle
and Rudge
Example

Complexity
analysis

& A two step dynamical system with two controllers

> Linear dynamics, quadratic cost, and Gaussian disturbance

> Non-linear controllers outperform linear control strategies . . .
...cannot use Kalman fltering + Riccati equations

& Infnite horizon dynamical system with two symmetric controller

& Linear dynamics, quadratic cost, and Gaussian disturbance

& A priori restrict attention to linear controllers

& Best linear controllers not representable by recursions of finite
order

& All random variables are fnite valued
t= Finite horizon setup
B The problem of finding the best control strategy is in NEXP

B= Witsenhausen, “A counterexample in stochastic optimum control,” SICON 19689.

B Whittle and Rudge, “The optimal linear solution of a symmetric team control problem,” App. Prob. 1974.

&= Bernstein, et al, “The complexity of decentralized control of Markov decision processes,” MOR 2002.

P> Goldmand and Zilberstein, “Decentralized control of cooperative systems: categorization and complexity,” JAIR 2004;"

Estimation under communication constraints-(Mahajan and Chakravorty) J



"Solution concepts

—1

Classical info. struct.
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"Solution concepts B

> Structure of optimal strategies

W i Instead of f(history of obs) use f(info state).

& Compute optimal strategy using DP
Classical info. struct. V(info state) = [Baction V| (info state)

in
action

1,
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"Solution concepts

Non-Classical info. struct.

No general solution methodology

Person-by-person approach
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> Structure of optimal strategies
Instead of f(history of obs) use f(info state).

& Compute optimal strategy using DP
V(info state) = [Baction V] (info state)

in
action

Common-information approach

» Structure of optimal strategies
Instead of f(history of obs)
use f(local info, common info based state).

> Compute optimal strategy using DP
V(info state) = min [B, V] (info state)
:local data—action
Nayyar, Mahajan, Teneketzis, “Decentralized stochastic control

with partial history sharing”, TAC 2013. .
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"Solution concepts B

Allows us to use tools from MDP literature
to decentralized stochastic control

Common-information approach

> Structure of optimal strategies
Instead of f(history of obs)
use f(local info, common info based state).

& Compute optimal strategy using DP
V(info state) = min [B, V] (info state)

:local data—action

Nayyar, Mahajan, Teneketzis, “Decentralized stochastic control
with partial history sharing”, TAC 2013.
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"The system model

Markov
Process

Transmitter

Pan?

| Receiver
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"The system model

Markov Xt _
| Transmitter

Process

| Receiver
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"The system model I

Xty IFU.t = 1
Vi = .
&, IFU.t =0

Markov Xy Yi : N
| Receiver —* X,
Process U,

ut - ft(x1 ity U1 t—1 )

X] ———sz ———>X3

RN

U1 -——bUz—bUg

II/,’
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"The system model

e {xt, iFU, = 1

e, iIFU =0 Distortion
d(Xy — Xy)
Markov X Y N
. Transmitter . : Xt
Process Uy
U = ft(xht’uht—ﬂ ﬁt = gt(Y1 )
/-R‘\‘\‘
X1 —»Xo —»X3 Y1 Y2 Y3
U]w‘—%—’us )/(\1 W‘ﬁg
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"The system model

- {xt, iFU, = 1

e, iIFU =0 Distortion
d(Xe — X¢)
Markov X Y. N
L Transmitter / ' Receiver — X,
Process Uy

Uy = f(Xq:ey Urie—1) ﬁt = ge(Y1:¢)

Communication Strategies
> Transmission strategy f = {f{}2 .
& Estimation strategy g = {g¢}2,.
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"The system model I

Y . Xty IFU.t = 1
T e, iU =0 Distortion

d(X¢ — Xy)

Markov X Y _ N
- Transmitter / ——»{ Receiver — Xt
Process

Uy = f(Xq:ey Urie—1) ﬁt = ge(Y1:¢)

1. Discounted setup, f € (0, 1)

Dgl(f,0) = (1-BYES"® | > taxc —R)|;  Nalf,9) = (1-BIESY |3 pru]
t=0

2. Average cost setup, p =1

T—1
_ »9 — i g)
D;(f,g) = lerlsolip T [Z d(X ] N (f,g) = |rTTLs;p T [;Out]

II/,’
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r0ptimization problems I

Costly communication
ForA € Roo,  Ch(A) = Cp(ff,g%5A) = (Lng) {Dg(f,g) +ANg(f,g)}

Constrained communication

Fora € (0,1), Djle) = inf {Dg(f,g): Np(f,g) < «}

B (f,9)

II/,’
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mptimization problems B

Costly communication
ForAe R.o, Cj(A) =Cp(ff,g5A) = (Lng) {Dg(f,g) +ANg(f,9)}

Constrained communication

Fora e (0,1), Dj(a) = (LnF) {Ds(f,g): Ng(f,g) < «}
)g

1y,
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II/,’

Estimation under communication constraints-(Mahajan and Chakravorty) J



mptimization problems B

Costly communication
ForAe R.o, Cj(A) =Cp(ff,g5A) = (Lng) {Dg(f,g) +ANg(f,g)}

Constrained communication

Fora e (0,1), Dj(a) = (LnF) {Ds(f,g): Ng(f,g) < «}
)g

v

}‘3 is cts, inc, and concave

II/,’

Estimation under communication constraints-(Mahajan and Chakravorty) J



mptimization problems B

Costly communication
ForAe R.o, Cj(A) =Cp(ff,g5A) = (Lng) {Dg(f,g) +ANg(f,g)}

Constrained communication

Fora e (0,1), Dj(a) = (LnF) {Ds(f,g): Ng(f,g) < «}
)g

v

X

}‘3 is cts, inc, and concave D}g is cts, dec, and convex
II/,’
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r0ptimization problems I

TW/ANB(f,g)}

Our result: Provide computable
expressions for these curves and
identify strategies that achieve them.

v

x

C}; is cts, inc, and concave D’I‘g is cts, dec, and convex
II/,’

L - . . 6
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rXt+1 = X¢ + W, Wi ~N(0, 1)
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X1 = Xt + Wy, Wi ~N(0,1)

=I.It] TIT, . r[l.

I
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"Periodic transmission strategy

J.H] fl, . T[[_YL

il
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"Periodic transmission strategy

J.H]TTe o, 1[.\»L

il

Error process
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"Periodic transmission strategy B

J.H]TTe o, 1[.\»L

il

Error process

D=069 N=~1/3

II/,’
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"An alternative strategy

J.H] l, . rH_rL

il
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"An alternative strategy A

J.H]TTe o, T[.vL

il

Error process

OO0 ==

i l\§
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"An alternative strategy A

J.H]TTe o, T[.vL

il

Error process

D=024 N=~1/3

OO0 ==

i l\§
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ﬁistortion-transmission function B

4

LO

N

— Periodic transmission strategy
c Threshold based strategy
=
8 3
o)
0

b

(&)

Ln

N

(&)
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9
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Identify strategies that achieve the optimal trade-off
Simple and intuitive threshold based strategies are optimal.

Provide computable expressions for distortion-transmission function
Based on simple matrix calculations for discrete Markov processes

Based on solving Fredholm integral equations for Gaussian processes

oS
i anNy
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Identify strategies that achieve the optimal trade-off
Simple and intuitive threshold based strategies are optimal.

Provide computable expressions for distortion-transmission function
Based on simple matrix calculations for discrete Markov processes

Based on solving Fredholm integral equations for Gaussian processes

Beautiful example of stochastics and optimization
Decentralized stochastic control and POMDPs

Stochastic orders and majorization
Markov chain analysis, stopping times, and renewal theory

Constrained MDPs and Lagrangian relaxations

oS
i TN
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TN
So how do we start? %

Decentralized stochastic control




"The common information approach B

Original system

—
ft Xt> Y] t—1 ut
91| Yier X,

& Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information
approach,” IEEE TAC 2013. Iy,

1Mz
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ﬁhe common information

Original system

ft Xt> Y] t—1 ut

approach

h

Ficticious coordinator

Coordinated system

Y1e—1

Pt Xt Ut
((-pt) >/<\t71 )
ﬁt—1 o ﬁt—1

B> Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information

approach,” IEEE TAC 2013.

Estimation under communication constraints-(Mahajan and Chakravorty)

II/,’
1Mz
W

|



"The common information approach B

Original system Coordinated system

ft Xt> Y1 t—1 ut (5 Xt Ut

— Nl Y (oo Xe1)

Ficticious coordinator

9t—1 Y11 Xt >A<t_1 - X

> The coordinated system is equivalent to the original system.
fe(X,Yy1:e-1) = hl (Yr:—1) (x).
B> The coordinated system is centralized.  Belief state P(X | Y7.¢_1).

B Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information
approach,” IEEE TAC 2013. Uy,

1Mz
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"Information states and dynamic program B

Information states Pre-transmission belief : TT¢(x) = P(Xy = x | Y7.4—1).
Post-transmission belief : Z;(x) = P(X; = x| Y7.¢).
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"Information states and dynamic program B

Information states Pre-transmission belief : TTy(x) = P(X¢ = x| Y1.0—1).
Post-transmission belief : Z;(x) = P(X; = x| Y7.¢).

Structural results There is no loss of optimality in using
U = f(Xe, TTe) and Xy = ge(Ze).
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"Information states and dynamic program B

Information states Pre-transmission belief : TTy(x) = P(X¢ = x| Y1.0—1).
Post-transmission belief : Z;(x) = P(X; = x| Y7.¢).

Structural results There is no loss of optimality in using
U = f(Xe, TTe) and Xy = ge(Ze).

Dynamic Program Wi () =0
andfort=T,...,0

Vi (&) = 222 E[d(X¢ —X) + Wi () | 2 = &,

Welm) = min  ERQ@(Xe) + V() [T =7, o = @l.
@:X—{0,1}
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"Information states and dynamic program B

“Standard” POMDP. Optimal strategies
can be computed numerically.

Structural results There is no loss of optimality in using
U = f(Xe, TTe) and Xy = ge(Ze).

Dynamic Program Wi () =0
andfort=T,...,0

Vi (&) = 222 E[d(X¢ —X) + Wi () | 2 = &,

Welm) = min  ERQ@(Xe) + V() [T =7, o = @l.
@:X—{0,1}
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Can we use the DP to say something
more about the optimal strategy?



rSimplifying modeling assumptions

Markov process Xir1 = aX¢ + Wy
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rSimplifying modeling assumptions

Markov process Xir1 = aX¢ + Wy

Markov chain setup
State spaces Xt, a, Wy € Z

Noise distribution Unimodal and symmetric
Pe =P—e = Pe+1

Distortion Even and increasing
dle) =d(—e) < d(e+1)

Guass-Markov setup
Xt, a, Wt € R

Zero-mean Gaussian
(PG(')

Mean-squared
d(e) = lel?

/N

Unimodal and symmetric distribution

N

Even and increasing distortion
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rSimplifying modeling assumptions

Markov process

State spaces

Noise distribution

Distortion

Xip1 = aXy + Wy

i Markov chain setup ‘w

Xt, a, Wt € Z.

Unimodal and symmetric
Pe = P—e 2 Pe+1
Even and increasing

dle) =d(—e) < d(e+1)

——————

Guass-Markov setup
Xt, a, Wt € R

Zero-mean Gaussian
(PG(')

Mean-squared
d(e) = lel?

/N

Unimodal and symmetric distribution

NS

Even and increasing distortion
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N QRN Structure of optimal strategi Performance of arbitrary

threshold strategies f(*)

Search space of
strategies (f, g)

N JER Optimal costly comm. N W W Distortion-transmission
trade-off

B



Structure of optimal strategies (finite horizon)

Oblivious estimation Zi = {th 'Eﬁt - (1) & \Y(t 7€)
process aZe—1 Fe=0(orY: =e)
Error process Ee = X; —aZi 1

Estimation under communication constraints-(Mahajan and Chakravorty) m\\‘J



Structure of optimal strategies (finite horizon)

Oblivious estimation
process

Error process

Optimal estimator

Optimal transmitter

7. — Xt IFU.t =1 (OI“ Yt 7£ 8)
"7 ) azy FU =0(orY, =¢)

Et = Xt — aZt_1
X = gt (Zt) = Z¢

There exists thresholds {kt}zo such that

1 if[E > ke

U, = £ (E,) =
¢ = filEe) {o iF[E,| < k¢

Estimation under communication constraints-(Mahajan and Chakravorty)



"Some comments I

The result is non-intuitive
& The transmitter does not try to send information through timing information.
& The estimation strategy is the same to the one for intermittent observations.

/8
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"Some comments I

The result is non-intuitive
» The transmitter does not try to send information through timing information.
B The estimation strategy is the same to the one for intermittent observations.

Proof outline
= ...

/8
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Greliminaries [LM11, NBTV13] B

Almost uniform and
unimodal (ASU)
distribution about ¢ ? | T T T ¢

1y,

103
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Greliminaries [LM11, NBTV13] B

Almost uniform and

unimodal (ASU)
distribution about c ? T T T ¢
I Te 2 M1 2 Mo 2 Teq2 2"
ASU Rearrangement T T T
tlelell = 21011y
7T

i

II/,
16:
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Greliminaries [LM11, NBTV13] B

Almost uniform and
unimodal (ASU) T
distribution about ¢ T
AMAEIE:

ASU Rearrangement TT 9 | ¢ T — i T T T T i

T "
Majorization > Eiff
1 n n+1 n+1
2 > & ad ) >
i=—m i=—mn i=—mn i=—m
> Invariant to permutations.

II/,’

16:
Estimation under communication constraints-(Mahajan and Chakravorty) ’/m\\‘J



Groof outline [LM11, NBTV13] B

Use backward induction to show that value function is “almost” Schur-concave
> IFE > & and & is ASU, then V(&) > Vi (&)

> IF 7 > 7t and 7tis ASU, then W, (77') > W, (7)

Use backward induction to show that
& IF & is ASU about c, then c is the arg min of

Vi (&) = gneljlg Eld(X¢ —X) + W1 (TTeq1) | Z¢ = &,

> |F7tis ASU about c, then the arg min of
Wi(n) = min  ERAe(Xy) + Vi(Zt) [Ty = 1, @1 = @]

@:X—{0,1}

is of the threshold form in [x — ac|.

Use forward induction to show that under the optimal strategy
& TT; is ASU around Z,_;
& = is ASU around Z,

1y,
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The results extend to infinite horizon setup
under appropriate regularity conditions.

Time-homogeneous threshold-
based strategies are optimal.



How do we find the optimal
threshold-based strategy?



;. h

N QRN Structure of optimal strategies

2

Search space of
strategies (f, g)

Performance of arbitrary
threshold strategies f(*)

N JER Optimal costly comm. N W W Distortion-transmission
trade-off




Performance of threshold strategies A

Consider a threshold-based strategy

£K) (e) = 1 iflel >k
0 otherwise

Estimation under communication constraints-(Mahajan and Chakravorty) ”Im\\‘J



Performance of threshold strategies A

Consider a threshold-based strategy Let T%) denote the stopping time of
first transmission (starting at Eo = 0).

0 otherwise

£ (e] {1 ifle| > k
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Performance of threshold strategies A

Consider a threshold-based strategy Let T%) denote the stopping time of
first transmission (starting at Eo = 0).

£ (e) = 1 iflel >k
0 otherwise

Define
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Performance of threshold strategies A

Consider a threshold-based strategy Let T%) denote the stopping time of
first transmission (starting at Eo = 0).

0 otherwise

£ (e] {1 ifle| > k

(k)1

Define L (e)=(1-B)E [ Y BUA(E[Eo = e].
t=0
()1
M (e) = (1—B)E [ Y BYE :e}
t=0
Proposition {E¢}$2, is a regenerative process. By renewal theory,
Lg”(0) 1
DU =Dg(fM), g*) = —B and N = Ng(f0) g*) = —(1=B).

Estimation under communication constraints-(Mahajan and Chakravorty) ”Im\\‘J



Performance of threshold strategies A

Computing LY and M) is sufficient

puting Lg B

to compute the performance of (%)
(i.e., to compute Dg{) and Ng‘)).

S i

(k)1

Define Lg‘)(e):U—B)E[ ; Btd(E,)

Eoze-.

()1

M e)=(1-B)E| > Bt

t=0

E():e:|.

Proposition {E¢}$2, is a regenerative process. By renewal theory,

D(k) —D f(k) *) __ L(Bk)(o) d N(k) — N f(k) *\ 1 1 )

Mg (0)

Estimation under communication constraints-(Mahajan and Chakravorty) ”Im\\‘J



Computing Lg{) and M(k

Markov chain setup L (e e)+ B Z Prn—cl
n=—k
o\
NNSBORORNN MBI =118 3 pucM
—k k n=—%k

Estimation under communication constraints-(Mahajan and Chakravorty)



Computing Lék)

Markov chain setup

Proposition

Estimation under communication constraints-(Mahajan and Chakravorty)

and M(k) A

L (e +Bane

n=—k

M (e)=1+8 an e

n=—k

P js substochastic.



Computing Lék)

Markov chain setup

Proposition

and M(k) A

L (e +Bane
n=—k
My (e) =1+ Z Pn—eM
n=—k

P js substochastic.

(k) (k)
D[3 and NB

can be computed using these expressions.

|-

Estimation under communication constraints-(Mahajan and Chakravorty) ”Im\\‘J




We found the performance of a
generic threshold-based strategy

How does this lead to
identifying an optimal strategy?



a

N QRN Structure of optimal strategies Performance of arbitrary

threshold strategies f(*)

Search space of
strategies (f, g)

N JER Optimal costly comm. N Wl Distortion-transmission
trade-off

B



Step .3 Properties of optimal thresholds B

Monotonicity Lt > 15 and MY > MG

Depends on
unimodularity of noise
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Step .3 Properties of optimal thresholds B

Monotonicity Lt > 15 and MY > MG

Use DP and monotonicity Jgllizsli.
k+1 k k+1 k
of Bellman operator D > DY and NETY < NG
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{ Step 3 Properties of optimal thresholds

Estimation under communication constraints-(Mahajan and Chakravorty)

Monotonicity Lt > 15 and MY > MG
Implication:
Dgﬁq) > Dék) and Nék+1) < N(Bk)
Submodularity Cg‘) (A) = Dg‘) + AN g‘) is submodular in (k,A).



Step .3 Properties of optimal thresholds B

Monotonicity

Submodularity

Proposition

(k+1) (k) (k+1) (k)
LB >L(5 and MB >M(z’>

Implication:
(k+1) (k) (k+1) (k)
Dg >Dg’ and Ng < Ng

C3Y(A) =D + AN is submodular in (k, A).

K% (A) = are min CY)(A) is increasing in A.
5 (A) g min Cp (A) g
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Step .3 Properties of optimal thresholds B

Monotonicity

Submodularity

Proposition

(k+1) (k) (k+1) (k)
LB >L(5 and MB >M(z’>

Implication:
(k+1) (k) (k+1) (k)
DB > DB and NB < NB

C3Y(A) =D + AN is submodular in (k, A).

K% (A) = are min CY)(A) is increasing in A.
5 (A) g min Cp (A) g

Thus, optimal threshold increases with increase in A.

L — Iy,
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Characterizing the optimal threshold
for a given communication cost is tricky.

Instead, we will characterize the optimal
communication cost for a given threshold.



BTE Optimal costly communication: Markov chain B

Define AL :={A € R0 : k§(A) = k}

_ k5 (A)
:[Aék 1),}\g<)]' ; 4,—’—,7
C(k)()\(k))

_ Cék—k])()\ék))
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BTE Optimal costly communication: Markov chain B

A

Define Al :={A € R0 : k§(A) = k} .
_ [7\(k_1) }\(k)] 2
- R \

k) (k k+1 13 >
CEa )()\(B )) _ C}S + )()\é )) AG=) AR A
sy
Snz
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BTE Optimal costly communication: Markov chain B

A
D|(3k+2) ,
| (k+1) _ )
| N Pg
Dy’ :
Y » )\
Ay

Define Al :={A € R0 : k§(A) = k} .
_ [7\(k_1) }\(k)] 2
- R \

k) (k k+1 13 >
CEa )()\(B )) _ C}S + )()\é )) AG=) AR A
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BTE Optimal costly communication: Markov chain B

Di*? ! (k+1) (k)
Ao _ P —Dpg
il E i
}\E;kj }\gcﬂ) =0

Define Al :={A € R0 : k§(A) = k} .
_ [7\(k_1) }\(k)] 2
- R \
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BTE Optimal costly communication: Markov chain

Define Al :={A € R0 : k§(A) = k}

— Ak=1) 4 (k)
= NG AL,

C(k) ()\(k)) _ C}Sk_'_] ) (}\(Bk))
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Step :3 Optimal costly communication: Markov chain B

(k+1) ; i (k) ~ (k+1)
Theorem Strategy f is optimal for A € (A5, A" .

C’é()\) = MiNkez., Cg‘) is piecewise linear, continuous,
concave, and increasing function of A.

R "'f’_
=215
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BTE Optimal costly communication: Markov chain B

(k+1) ; 3 (k) ~ (k+1)
Theorem Strategy f is optimal for A € (A5, A" .

C’é(?\) = MiNkez., Cg‘) is piecewise linear, continuous,

concave, and increasing function of A.
s My

=215
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N QRN Structure of optimal strategies Performance of arbitrary

threshold strategies f(*)

Search space of
strategies (f, g)

N JER Optimal costly comm.

(Wl Distortion-transmission
trade-off




Step 'l Distortion-transmission trade-off: Markov chain

Sufficient conditions for constrained optimality
A strategy (f°, g°) is optimal for the constrained communication problem if

(C1) Ng(f°,9°) =«

(C2) There exists A° > 0 such that (f°, g°) is optimal for Cp(f, g;A°).
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Step 'l Distortion-transmission trade-off: Markov chain

Sufficient conditions for constrained optimality
A strategy (f°, g°) is optimal for the constrained communication problem if

(C1) Ng(f°,9°) =«

(C2) There exists A° > 0 such that (f°, g°) is optimal for Cp(f, g;A°).

Let kE be such that

(k%) (K5 +1)
NB > o> Nﬁ

2
e
v
>
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Step 'l Distortion-transmission trade-off: Markov chain

Sufficient conditions for constrained optimality
A strategy (f°, g°) is optimal for the constrained communication problem if

(C1) Ng(f°,9°) =«

(C2) There exists A° > 0 such that (f°, g°) is optimal for Cp(f, g;A°).

Let kE be such that

(k%) (K5 +1)
NB > o> Nﬁ

\

() optimal

=
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Step 'l Distortion-transmission trade-off: Markov chain

Sufficient conditions for constrained optimality
A strategy (f°, g°) is optimal for the constrained communication problem if

(C1) Ng(f°,9°) =«

(C2) There exists A° > 0 such that (f°, g°) is optimal for Cp(f, g;A°).

‘/f(k“) optimal
Let kE be such that

Dng) :
(k3) (kKp+1)
/: Ng® >a>Ng™"
|
DUk+D) |
s (%) optimal |
|
|
(k)

DB :
|

- 2
B
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Step 'l Distortion-transmission trade-off: Markov chain

Sufficient conditions for constrained optimality
A strategy (f°, g°) is optimal for the constrained communication problem if

(C1) Ng(f°,9°) =«

(C2) There exists A° > 0 such that (f°, g°) is optimal for Cp(f, g;A°).

— f/f“‘*” optimal

Randomized strategy (0%, f(*), f**1) is optimal where

O*NG) + (1 — 09 NG = «
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Step 'l Distortion-transmission trade-off: Markov chain

Sufficient conditions for constrained optimality

A stra m if
(
( = (N(k+1) D(k+1)) ))'
Dj (o) R I g
(NG, DE)
0 Xc 1 >
[0 8

Randomized strategy (0%, f(*), f**1) is optimal where
O*NG) + (1 — 09 NG = «

s\ "[4
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Step 'l Distortion-transmission trade-off: Markov chain

Sufficient conditions for constrained optimality
A strg m if

—~

—~
T
—

v

Randomized strategy (0%, f(*), f**1) is optimal where
O*NG) + (1 — 09 NG = «

s\ "[4
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" Conclusion I

Analyze fundamental limits of estimation
under communication constraints

s\\ II/,’
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rConclusion

Analyze fundamental limits of estimation
under communication constraints

Possible generalizations to more realistic models

> Packet drops
> Rate constraints (effect of quantization)

& Network delays
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rConclusion

Analyze fundamental limits of estimation
under communication constraints

Possible generalizations to more realistic models

> Packet drops
> Rate constraints (effect of quantization)

& Network delays

A simple non-trivial “toy-problem” for decentralized control
& Decentralized control is full of difficult problems and negative results.

& It is important to identify “easy” problems and positive results.
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rConclusion

Analyze fundamental limits of estimation
under communication constraints

Possible generalizations to more realistic models

> Packet drops
> Rate constraints (effect of quantization)

& Network delays

A simple non-trivial “toy-problem” for decentralized control
& Decentralized control is full of difficult problems and negative results.

& It is important to identify “easy” problems and positive results.

Full version available at arXiv:1505.04829.
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" A bandit variation

Transmitter

Uy

Y

Markov |X]
Process
Markov |X?
Process
Markov |X}
Process

Yi

Receiver
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The system model

X, FUe=1
g, iFU =0 Distortion
d(Xy —Xy)
Markoy \4 - o
Receiver s
Process
Us = i Xty Ur1) Ri=gu(Yi)

-

Discounted setup, B € (0,1)

Dy(f,g)= (1~ B B [ 5 prax,~R0):  Np(fo) =
=

N

Average cost setup, B =1

i\l]:
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i) =)
D, (f,9) = imsup 1ng,’~“ [ acx- Ni(fg) = imsup lrlE“,""\ [Xu]
oo = —eo b=

Tnformation states and dynamic program

Information states Pre-transmission belief

Post-transmission belief

Te(x.
Zelx:

P(Xe =x| Y11
—P(X; =x| V14).

R

Structural results There is no loss of optimality in using

U =fi(X, M) and Xy = gu(Z0).

Dynamic Program Wra(m) =0
andfort=T,...,0
Vil&) = mlﬂ E[d(Xe —R) + Weia () | Ze = &),

Walm) = \mgr}” ER@(Xy) + Ve(Z0) | The = @1

| Estimation under communication constraints-(Mahajan and Chakravorty)

"B Performance of threshold strategies

Consider a threshold-based strategy Let t'¥) denote the stopping time of
first transmission (starting at Eq = 0).

1 iflef =k
09 (e) =
©=10 otherwise

L |
Define L‘;,“(c\:(wﬁ]m[ Yy B‘d[E,)‘Eg:e].
=
g
MPe=-BE[ ¥ plEa—¢|
=
Proposition {E1}32, is a regenerative process. By renewal theory,
L0 .
DY = Dy (109, ) = B and N N (9, g7) — —(—p).
(N, g%) = MF) B p(f,g%) viam) B)

e [5 s

w].

Yoptimization problems

Costly communication

ForA€R-o, Ch(A) =Cplf,g%A) = :nF‘{DB (f,9) +ANg(f,g)}
¢
Constrained communication
Forae(0,1), Djla)= yl'nFy {Dp(f,g) : Np(f,g) < a}
9

Y'The common information

approach

& The coordinated system is equivalent to the original system
el yneat) = hi(yr) (x).

A

Cj is cts, inc, and concave
e
J&Sumatmn under communication constraints-(Mahajan and Chakravorty)

1r§|mpl|fy|ng modeling assumptions

). Markov process Xes1 = aXy + Wy

Markov chain setup Guass-Markov setup

State spaces Xe,a, Wy e Z Xi, a, W € R
Noise distribution Unimodal and symmetric Zero-mean Gaussian
Pe =P-e = Pes1 o)

Distortion Even and increasing

=d(—e) < dle+1)

Mean-squared
d(e) = e

ESen and

4 |

lugsﬂmaﬂcﬂ under communication constraints-(Mahajan and Chakravorty)

"VIEZXE optimal costly communication: Markov chain

Dff

Djf

Dff

T A
AN

/}\Q‘J] )

cPag) =

IR e I

y,

i
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‘m\u Eumatmn under communication constraints-(Mahajan and Chakravorty)

D}, is cts, dec, and convex

& The coordinated system is centralized. ~ Belief state P(X. | Y1.¢—1).

> Nayyar, Mahajan and Teneketzis,
approach,” IEEE TAC 2013,
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control with partial A commn information

2
Step Structure of optimal strategies (finite horizon) B

o

X
aZy

iFU =1(orYe #£¢)
iFU =0 (or Y, =€)

Oblivious estimation
process

Error process

Optimal estimator

Optimal transmitter There exists thresholds {k,);~ , such that
1 PR = ke
U = fi(E) =
b= {o IFE < ke

3,
VB vistortion-transmission trade-off: Markov chain |

Suffi
Astr

(
(

m,
%
138 N 0
S | Estimation under communication constraints-(Mahajan and Chakravorty)

ent conditions for ¢ i i

Imif

_— N D) )

(N, D)

Randomized strategy (0%, (%), f**1) is optimal where

O NG+ (1— 0N =

«

B

,
e
‘vmu Esllmatmn under communication constraints-(Mahajan and Chakravorty)




