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Decentralized systems

are everywhere . . .



Communication Systems

Wireless networks

Cognitive radios

Multimedia communication

Scheduling and routing in Internet

Social networks

Surveillance and Sensor Nets

Disaster monitoring

Calibration and validation of remote

sensing observations

Fleet of unmanned aerial vehicles

Intruder detection in networks

Networked control sys

Manufacturing plants

Transportation networks

Real-time route scheduling

Aerospace applications

And many more . . .

Coordination in robotics

On-time diagnosis in nuclear power plants

Fault monitoring in power grids

Task scheduling in multi-core CPUs

Examples of decentralized systems



Real-time communication

Source ChannelEncoder Decoder

M-Teneketzis, TIT 09



Broadcast with feedback

Source Encoder
Inner

Channel

Outer

Channel

Inner

Decoder

Outer

Decoder

Ut

Vt

Xt Yt ≤t

Yt−1 ≤t−1

Ût V̂t

M, Allerton 09



MAC with feedback

Encoder 1

Encoder 2

MAC Receiver

M, ITA 10



Control over noisy channels

System ChannelSensor Controller

M-Teneketzis, SICON 09



Calibration and validation of remote sensing

Sensor 1 Sensor 2 Sensor n

Fusion

center

Shuman-Nayyar-M-et al. Proc IEEE, 10, JSTARS 10



On-time diagnosis with communication

Sys

Obs

Obs

Diagnoser 1

Diagnoser 2
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Basic research premise

The various applications where decentralized systems arise are

independent areas of research with dedicated communities.

Nonetheless, these applications share common features and

common design principles.

Develop a systematic methodology

that addresses these commonalities.

Such a methodology will provide design guidelines for all

applications.
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Structure of optimal policies
The data at the controllers increases

with time, leading to a doubly exponential

increase in the number of policies.

When can an agent, or a group of

agents,

shed available information

compress available information

without loss of optimality?

Search of optimal policies

Brute force search of an optimal policy

has doubly exponential complexity with

time-horizon.

How can we search for an optimal policy

efficiently?

How can we implement an optimal policy

efficiently?

Design principles

Can we check if the optimal design

of a decentralized system is tractable,

without actually designing the system?

Canwe provide additional information

to agents to make the design tractable?

If so, can we find the smallest such

information?

Systematic design of decentralized systems



Outline

1. Why are decentralized systems difficult: an example

2. Overview of decentralized systems

Classification

Literature overview

3. Overview of centralized stochastic control

4. Systematic derivation of structural properties

Shed irrelevant information

Compress common information

5. Automated derivation using graphical models

6. Conclusion
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MAB Channel

Single user transmits ⇒
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Transmitters

Packet arrival is independent Bernoulli

process

Queues with buffer of size 1

Packet held in queue until successful

transmission

Channel feedback

A user knowswhether its transmission

was successful or not.
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MAB Channel

Single user transmits ⇒
both users transmit ⇒

Transmitters

Packet arrival is independent Bernoulli

process

Queues with buffer of size 1

Packet held in queue until successful

transmission

Channel feedback

A user knowswhether its transmission

was successful or not.

Policy of transmitter

Uit = gi,t(Xi1:t, Ui1:t−1, ≤1:t−1)

Objective
Maximize throughput or minimize delay

Avoid collisions

Avoid idle

Multiaccess broadcast
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Hluchyj and Gallager, NTC 81

Considered symmetric arrival rates

Restricted attention to “window protocols”

Ooi and Wornell, CDC 96

Considered a relaxation of the problem

Numerically find optimal policy of the

relaxed problem

Hluchyj and Gallager's scheme meets

this upper bound

Recent AI literature

One of the benchmark problems for decentralized systems

Consider the case of asymmetric arrival rates

Approximate heuristic solutions for small horizons

History of multiaccess broadcast
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Design Questions

Difficulty: Data at the controllers increases with time.

Number of control policies increases doubly exponentially

with time, making search for optimal policy difficult.

Difficult to implement control functions with time increasing

domain

Hluchyj and Gallager circumvented the difficulty by restricting

attention to “window protocols”.

Is such a restriction optimal?

Ooi and Wornell consider a relaxed problem whose

optimal solution (found numerically!) happens to be

identical to the strategy of Hluchyj and Gallager.

Even simple problems remain unresolved for decades
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We are interested in

Sequential dynamic teams

⋯

⋯

⋯

A1

A2
A3

A4
An

with non-classical information structures

�1 �2 �3 �n⋯
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Literature Review : Negative results

H.S. Witsenhausen, counterexample in stochastic control, SICON

1968

Linear policies are not optimal for linear

quadratic Gaussian systems under

non-classical information structure

D.S. Bernstein, S. Zilberstein, and N. Immerman, 2000

In general, the problem is NEXP-complete:

no polynomial time solution can exist.



Literature Review : Few general results

Standard form: Witsenhausen 1973

Non-classical LQG problems: Sandell and Athans, 1974

Multi-criteria problems: Basar, 1978

Equivalence of static and dynamic teams: Witsenhausen 1988

Non-sequential systems: Andersland and Teneketzis, 1992 and

1994.

Two agent teams: M, 2008.



Literature Review: Specific info structures

Partially nested info structures, Ho and Chu, 1972, Ho, Kastner,

and Wong, 1978, Ho, 1980

Delayed sharing info structures, Witsenhausen 1971, Varaiya and

Walrand, 1978, Mahajan, Nayyar, and Teneketzis 2010.

Common past, Aicardi et al 1987

Partially observed and partially nested, Casalino et al 1984

Periodic sharing info structure, Ooi et al 1997

Tower info structures, Swigart and Lall 2008

Stochastic nested and belief sharing, Yüksel 2009

P-classical and P-quasiclassical, Mahajan and Yüksel, 2010



Current state of affairs

Decentralized systems with non-classical information structures

are studied on a case-by-case basis.

Results are hard to generalize for even a slightly different setup



Develop a systematic

methodology to

derive structure of

optimal decentralized

control policies



Overview of centralized
stochastic control



Centralized stochastic control

Single decision maker

⋯
A1 A2 An

with classical information structures

�1 �2 �3 �n⋯



Sys Agent
Xt

Ut

MDP: Structural properties



Sys Agent
Xt

Ut

Structure of optimal policy

Choose current

action based on

current state ƣ�

MDP: Structural properties



Sys Agent
Xt

Ut X1 X2 X3U1 U2 U3

g1 g2 g3

c1 c2 c3f0 f1 f2

R1 R2 R3

Structure of optimal policy

Choose current

action based on

current state ƣ�

MDP: Structural properties



Sys Agent
Xt

Ut X1 X2 X3U1 U2 U3

g1 g2 g3

c1 c2 c3f0 f1 f2

R1 R2 R3

Structure of optimal policy

Choose current

action based on

current state ƣ� X1 X2 X3U1 U2 U3
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Sys Obs Agent
Xt Yt

Ut
x1 x2 x3u1 u2 u3

g1 g2 g3

c1 c2 c3f0 f1 f2

r1 r2 r3

y1 y2 y3

Structure of optimal policies

Choose current action

based on current info state

Pr(state of system | all data at agent)

x1 x2 x3u1 u2 u3

g1 g2 g3

c1 c2 c3f0 f1 f2

r1 r2 r3

y1 y2 y3

π1 π2 π3

POMDP: Structural properties
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Structural policies in stochastic control

Structure of optimal policies

Shed irrelevant information

Compress relevant information to a compact statistic

Hopefully, the data at the agent is not increasing with time

Implication of the results

Simplify the functional form of the decision rules

Simplify search for optimal decision rules

A prerequisite for deriving dynamic programming

decomposition.



Extending ideas to decentralized control

⋯
A1 A2 An �1 �2 �3 �n⋯

↓
⋯

⋯
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Outline

1. Why are decentralized systems difficult: an example

2. Overview of decentralized systems

Classification

Literature overview

3. Overview of Markov decision theory

4. Systematic derivation of structural properties

Shed irrelevant information

Compress common information

5. Automated derivation using graphical models

6. Conclusion



Shedding irrelevant

information



Can we generalize the reasoning
of MDPs to decentralized systems

X1 X2 X3U1 U2 U3

g1 g2 g3

c1 c2 c3f0 f1 f2

R1 R2 R3

↓

X1 X2 X3U1 U2 U3

g1 g2 g3

c1 c2 c3f0 f1 f2

R1 R2 R3
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The textbook proof

Define: Vt(x1, …, xt) = min
all policies

Eg {
T
∑
s=t
c(Xs, Us) | xt }

Define: Wt(xt) = min
policies with req. structure

Eg {
T
∑
s=t
c(Xs, Us) | xt }

By definition: Wt(xt) ĺ Vt(x1, …, xt) for any x1, …, xt.

Recursively prove: Wt(xt) Ĺ Vt(xt, …, xt) for any x1, …, xt.

Wt(xt) = Vt(x1, …, xt) for all x1, …, xt

Proof tied to

centralized system . . .
⋯

A1 A2 An
�1 �2 �3 �n⋯



Is there a proof that

can be extended to

decentralized systems?
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The main idea

Suppose we have to minimize cost from the p.o.v. of one agent and

E≥cost | all data ] = F(relevant data, control action)

Without loss of optimality, choose

control action = g(relevant data).

Rest is just a matter of detail.
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The main idea

Step 1. Pick an agent

Step 2. If the agent observes any irrelevant data, ignore those

observations

Step 3. Repeat

⋯

⋯

⋯

A1

A2
A3

A4
An

�1 �2 �3 �n⋯

Is easy to extend to decentralized systems . . .
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Xt = state of queue

Ut = Tx or not

≤t = Channel feedback

Remove irrelevant data
Conditioned on (Xit, Uit, ≤1:t−1), the
future reward Rt+1:T is independent

of past (Xi1:t−1, Ui1:t−1).

Uit = gi,t(Xit, ≤1:t−1)

Multiaccess broadcast



Compressing

relevant information



Can we generalize the reasoning of
POMDPs to decentralized systems

x1 x2 x3u1 u2 u3

g1 g2 g3

c1 c2 c3f0 f1 f2

r1 r2 r3

y1 y2 y3

↓

x1 x2 x3u1 u2 u3

g1 g2 g3

c1 c2 c3f0 f1 f2

r1 r2 r3

y1 y2 y3

π1 π2 π3
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Find sufficient statistic for performance analysis

πt = Pr( state | all data )

This sufficient statistic can be updated recursively!

πt+1 = F(πt, Ut, Yt)

Proof tied to
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⋯

A1 A2 An
�1 �2 �3 �n⋯



Solution Approach

Given a group of agents, their coordinator observes data that is

commonly available at all agents and tells each agent what to do

with its private data.



Solution Approach

Given a group of agents, their coordinator observes data that is

commonly available at all agents and tells each agent what to do

with its private data.

Optimal design of the coordinator is equivalent to the optimal

design of all agents in the group.



Solution Approach

Given a group of agents, their coordinator observes data that is

commonly available at all agents and tells each agent what to do

with its private data.

Optimal design of the coordinator is equivalent to the optimal

design of all agents in the group.

If the data at each agent in the group is increasing with time, the

problem at the coordinator is centralized.



Solution Approach

Given a group of agents, their coordinator observes data that is

commonly available at all agents and tells each agent what to do

with its private data.

Optimal design of the coordinator is equivalent to the optimal

design of all agents in the group.

If the data at each agent in the group is increasing with time, the

problem at the coordinator is centralized.

Use results from POMDP to compress the data at the controller

to a sufficient statistic. That is also a sufficient statistic for the

commonly observed data for each agent in the group.
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Coordinator of a system

U1t = g1,t(X1t , ≤1:t−1 )
U2t = g2,t(X2t , ≤1:t−1 )

Chooses partial functions

(γ1t , γ2t) = ψ(≤1:t−1), γit : �i → �
The agents simply use the partial function

U1t = γ1t(X1t) U2t = γ2t(X2t)
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The coordinator's problem is centralized

⋯
A1 A2 An

�1 �2 �3 �n⋯

Structure of coordinator's policy

(γ1t , γ2) = ψt(πt), πt = Pr(X1t , X2t | ≤1:t−1)
Structure of transmitter's policy

Uit = gi,t(Xit, πt)
Can be used to obtain a dynamic programming decomposition.
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Optimal solution

For symmetric arrival rates p
If p > τ, follow TDMA

If p < τ,
S1. If you have a packet, transmit it. If collision, one user

moves to S2.

S2. Idle, then move to S1

Same as the strategy proposed by Hluchyj and Gallager.

We can prove optimality. All previous

attempts provide approximate solutions!



Application to

other problems
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Witsenhausen, 1971 proposed the n-DSIS

and asserted a structure of optimal

control policies

Varaiya and Walrand, 1979 proved

that Witsenhausen's assertion is true

for � = ʅ but false of � > ʅ

Delayed sharing info structure (DSIS)

Open problem for 39 years
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Sys

Obs

Obs

Agent 1

Agent 2

Coordinator
(Y1,2t−n, U1,2t−n)

γ1t

γ2t

St

Λ1t

Λ2t

U1t

U2t

(γ1t , γ2t) = ψt(common info)
U1t = γ1t(private info)
U2t = γ2t(private info)

Structural properties
The coordinator's problem is centralized.

Can derive structure of optimal

control policies.

Nayyar-M-Teneketzis, TAC 10

Delayed sharing info structure (DSIS)



Real-time communication

Source ChannelEncoder Decoder

M-Teneketzis, TIT 09

Control over noisy channels

System ChannelSensor Controller

M-Teneketzis, SICON 09

Broadcast with feedback

Source Encoder
Inner

Channel

Outer

Channel

Inner

Decoder

Outer

Decoder

Ut

Vt

Xt Yt ≤t

Yt−1 ≤t−1

Ût V̂t

M, Allerton 09

Sensor scheduling

Sensor 1 Sensor 2 Sensor n

Fusion

center

Shuman-Nayyar-M-et al. Proc IEEE, 10, JSTARS 10

Other examples



Summary of

proposed method
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X1 X2 X3U1 U2 U3

g1 g2 g3

c1 c2 c3f0 f1 f2

R1 R2 R3

↓

X1 X2 X3U1 U2 U3

g1 g2 g3
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applied to

�1 �2 �3 �n⋯

Iterative procedure

Shed irrelevant data at an agent (at a

particular time)

Iterate over all agents until a fixed

point

Repeat for all coordinators of groups

of agents
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⋯
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Iterative procedure

Find common information between a group

of agents

Look at the problem from the p.o.v. of a

coordinator that observes this common info,

and chooses partial functions.

Repeat for all groups of agents
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Automating the procedure

Irrelevant data, dependent rewards, conditional independence

Directed acyclic graphs and graphical models

Common information, state for input-output mapping

Information lattice and cuts of a lattice



Source Encoder Receiver
St Yt Ŝt

Mt−1

Markov source St+1 = ft(St,Wt)
Causal encoder Yt= ct(S1:t, Y1:t−1)
Finite memory decoder Ŝt = gt(Yt,Mt−1)
memory update Mt = lt(Yt,Mt−1)
Minimize distortion min�{

T
∑
t=1
ρt(St, Ŝt) }

Hans S. Witsenhausen, On the

structure of real-time source

coders, BSJT-79.

⋯
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St Yt Ŝt

Mt−1

Markov source St+1 = ft(St,Wt)
Causal encoder Yt= ct(S1:t, Y1:t−1)
Finite memory decoder Ŝt = gt(Yt,Mt−1)
memory update Mt = lt(Yt,Mt−1)
Minimize distortion min�{

T
∑
t=1
ρt(St, Ŝt) }

Hans S. Witsenhausen, On the

structure of real-time source

coders, BSJT-79.

⋯
A1 A2 An

�1 �2 �3 �n⋯

An example: Real-time communication

Automatic derivation of structural results using

graphical models M-Tatikonda, ConCom 2009, Allerton 2009

http://pantheon.yale.edu/ am894/code/teams/



Description of the problem

s = mkNonReward "s" ; ŝ = mkNonReward "ŝ"
y = mkNonReward "y" ; m = mkNonReward "m"
r = mkReward "r"

f = mkStochastic "f" ; c = mkControl "c"
g = mkControl "g" ; l = mkControl "l"
d = mkStochastic "d"

dynamics t | t == 1 = f(1).$.(s(1) .|. [])
++ c(1).$.(y(1) .|. [s(1)])
++ g(1).$.(ŝ(1) .|. [y(1)])
++ l(1).$.(m(1) .|. [y(1)])
++ d(1).$.(r(1) .|. [s(1), ŝ(1)])

| otherwise = f(t).$.(s(t) .|. [s(t-1)])
++ c(t).$.(y(t) .|. map s[1..t] ++ map y[1..t-1])
++ g(t).$.(ŝ(t) .|. [y(t), m(t-1)])
++ l(t).$.(m(t) .|. [y(t), m(t-1)])
++ d(t).$.(r(t) .|. [s(t), ŝ(t)])

rt = mkTeamTime dynamics 3



Verifying the model

*Data.Teams.Examples.Wit79> printTeam rt
Stochastic:
===========
f1.$.([s1].|.[])
d1.$.([r1].|.[s1, ŝ1])
f2.$.([s2].|.[s1])
d2.$.([r2].|.[s2, ŝ2])
f3.$.([s3].|.[s2])
d3.$.([r3].|.[ŝ3, s3])

Control :
=========
y1 = c1([s1])
ŝ1 = g1([y1])
m1 = l1([y1])
y2 = c2([y1, s2, s1])
ŝ2 = g2([y2, m1])
m2 = l2([y2, m1])
y3 = c3([s3, y2, y1, s2, s1])
ŝ3 = g3([m2, y3])
m3 = l3([m2, y3])



Simplifying the model

*Data.Teams.Examples.Wit79> printTeam (simplify rt)
Stochastic:
===========
f1.$.([s1].|.[])
d1.$.([r1].|.[s1, ŝ1])
f2.$.([s2].|.[s1])
d2.$.([r2].|.[s2, ŝ2])
f3.$.([s3].|.[s2])
d3.$.([r3].|.[ŝ3, s3])

Control :
=========
y1 = c1([s1])
ŝ1 = g1([y1])
m1 = l1([y1])
y2 = c2([m1, s2])
ŝ2 = g2([m1, y2])
m2 = l2([m1, y2])
y3 = c3([m2, s3])
ŝ3 = g3([m2, y3])
m3 = l3([])



Structure of optimal policies
The data at the controllers increases

with time, leading to a doubly exponential

increase in the number of policies.

When can an agent, or a group of

agents,

shed available information

compress available information

without loss of optimality?

Search of optimal policies

Brute force search of an optimal policy

has doubly exponential complexity with

time-horizon.

How can we search for an optimal policy

efficiently?

How can we implement an optimal policy

efficiently?

Design principles

Can we check if the optimal design

of a decentralized system is tractable,

without actually designing the system?

Canwe provide additional information

to agents to make the design tractable?

If so, can we find the smallest such

information?

Systematic design of decentralized systems
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Reflections

Non-sequential information structures

Conceptual difficulties

Computational difficulties

Provides high-level design guidelines

The optimal solution needs to computed numerically

Provides some design insights: structural properties, which

modeling assumption makes the problem easier, etc.

Actual solution requires simplification and
approximation based on “domain knowledge”



Thank you




