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Organization

Model—what are sequential teams?

Solution concept—team forms and their simplification

First main idea—ignoring irrelevant data

Implementing the main idea—directed graphs and graph reductions
Second main idea—Coordinator for a collection of agents

Examples along the way—real-time communication, decentralized control



Multi-agent decentralized systems

B Applications

telecommunication networks
sensor networks
surveillance networks
transportation networks
control systems

v v v v V

B Salient features

> System has different components

v

monitoring and diagnostic
systems

multi-robot systems
multi-core CPUs

> These components know different information
> The components need to cooperate and coordinate
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Classification

Multi-agent
systems
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| to the agents |
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systems

Orderlof
2 agents’ actions
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Classification

Multi-agent
systems
Information available | Objective
| to the agents |
Y Y Y Y
. Dynamic
Static systems Teams Games
systems
Orderlof
2 agents’ actions
Sequential Non-seq
Informationlstructures . . o
Nz v Sequential multi-stage teams with
Classical Ver-dbesel non-classical information structures
info. struct. info. struct.
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Model



Notation

For a set M

B Random Variables: Xy = (X,,, : m € M).

B Spaces: Xy = nxm

meM

B o-algebras: &y = ® Sm

meM



Model for a sequential team
B A collection of n system variables, (X, k € N) where N = {1,...,n}
B A collection {(X, &x) ey of measurable spaces.

B Aset Ac N of controllers/agents.
Controller &« € A chooses X,. Nature chooses X, k € N \ A.

B A collection {I; },ey of information sets such that [, € {1,...,k — 1}.

B The variables X\ 4 are chosen by nature according to stochastic kernels
{Pr}kenma Where py is a stochastic kernel from (X}, &) to (X, &i)-

B Aset R c N of rewards.

Ml



Objective

B Choose a strategy {gx}rea such that the control law g, is a measurable
function from (X}, &) to (X, &i)-

B joint measure induced by strategy {gx }ken
P(dXy) = (X) Pe(@XilX;) (X) 85,01, (@X0)
kEN\A kEA
B Choose a strategy to maximize
E94 { z X, }
i€R

This maximum reward is called the value of the team



Information Sets and Information Structures

Information sets are related to information structures.

As a first order approximation, if

for agents k, [ such that k <[, we have I} C [

system has classical information structures; otherwise it has non-classical
information structure.

Ml



Generality of the model
This model is a generalization of the model presented in

‘j Hans S. Witsenhausen, Equivalent stochastic control problems,
Math. Cont. Sig. Sys.-88

which in turn in equivalent to the intrinsic model (specialized to sequential
teams) presented in

‘j Hans S. Witsenhausen, On information structures, feedback and causality,
SICON-71

which is as general as it gets.
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Solution concept

W Structural results
Can we restrict attention to a subset of control laws without loosing in
optimality?
Examples: Markov policies in MDPs, linear policies in LQG systems, threshold
policies in detection, etc.

B Sequential decomposition
Can we pick the control laws one by one, instead of choosing them all at

once.
Example: Dynamic programming

M |



The foundation of centralized systems:
MDP (Markov decision process)

Q¢
\ 4

X U
Plant j : ){ Controller ]—t

ftT It

Plantl Xt+1 = ft(XtJ Utl Qt)

Controller: U, = g,(Xt, U 1)

Minimize: E9{ ¥ c¢(X;, U,) }
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The foundation of centralized systems:
MDP (Markov decision process)

Q¢
\ 4

Plant

it

Ut
Controller

Yt

Plant: Xt+1 == ﬁ(Xt; Utl Qt)

Controller: U, = g,(Xt, U™

Minimize: E9{ Y, c(X;, U,) }

M 1

Without loss of optimality, we can
restrict attention to

Markov policy: U; = g:(X;)




Can we obtain
similar results
for decentralized
systems?
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Team form

A (sequential) team form is the team problem where the measurable spaces
{(Xk, k) }ken and the stochastic kernels {py}ren\a are not pre-specified.

T = (N,A,R,{I;}xen): system variables, control variables, reward variables, and
the information sets are specified.

W1 It it



Equivalence of team forms

Two team forms T = (N, A, R, {I;}xen) and T = (N',A',R', {I,;}kENI) are
equivalent if the following conditions hold:

1. N=N,A=A4,andR=R};
2. forall k € N\ A, we have [}, = I,;;

3. for any choice of measurable spaces {(X, &x)}key and stochastic kernels
{Pr}ken\a, the values of the teams corresponding to 7" and T are the same.

The first two conditions can be verified trivially. There is no easy way to check
the last condition.

M IHT T



Simplification of team forms

A team form 7' = (N, A R, {I,;}keNr) is a simplification of a team form
T = (N,AR, {Ii}ken) if

T is equivalent to T

and Z"’;|<Z”’<"

keA keA

T is a strict simplification of T if T is equivalent to T, Ik| < |I;| fork € N,

and at least one of these inequalities is strict.

T T



Given a team form,
can we simplify it?

W IHT I



Can we extend the reasoning of MDPs to decentralized
systems

For MDPs, if an agent knows the current state it can ignore other data. But, what
is the right notion of state in a decentralized system?

B State from whose perspective? In a centralized system, all agents view the
world consistently. In a decentralized system, different agents see the world
differently.

B State for what? (input-output mapping, choosing control actions,

optimization). In an MDP, all these notions of the state coincide. In a
general decentralized system, they are different.

T IHT T 1T



Maybe the proof
of MDP gives
some Intuition

T T T T



The textbooR proof
T

Define: Vi(xy,...,x) = min E9{ Y c(X,, Us) | x*}
s=t

all policies

T
Define: Wy(x,) = min_ E9{ ¥ c(X,,U) | x; }
s=t

Markov policies

By definition: W, (x;) = Vi(xq,...,x;) forany xq,..., x;.

Recursively prove: Wi(x;) < Vi(x,...,x;) forany xq,..., x;.

W, (x;) = Vi(xq,...,x;) forall xq,...,x;

IHT T IHT T |



The textbooR proof with no intuition
T

Define: Vi(xy,...,x) = min E9{ Y c(X,, Us) | x*}
s=t

all policies

T
Define: Wy(x,) = min_ E9{ ¥ c(X,,U) | x; }
s=t

Markov policies

By definition: W, (x;) = Vi(xq,...,x;) forany xq,..., x;.

Recursively prove: Wi(x;) < Vi(x,...,x;) forany xq,..., x;.

W, (x;) = Vi(xq,...,x;) forall xq,...,x;

WMTIHT T I ]



IS there a cleaner
proof which gives
some intuition?

T T IHT T I



An appendix in an obscure paper with the intuition
‘j Hans S. Witsenhausen, On the structure of real-time source coders, BST)-79

Suppose we have to minimize cost from the p.o.v. of one agent

E{cost | relevant data, irrelevant data, control action}
Y Z U=g(Y,Z)

= [E{cost | relevant data, control action}
Y U=g(Y,Z)

=F¥,9(Y,2))

For any g, there exists a g such that for all y and z, F(y,g(y)) < F(y,9(y,2))

Without loss of optimality, choose U = g(Y).
Rest is just a matter of detail. Find irrelevant data, repeat for all time steps.

b ababau



The proof with the intuition

R @ R, @ R: @

O fo HEY O 1 ) O 1 [c3

XTO U0 X0 wLWoO X0 wo
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The proof with the intuition

1

R
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The proof with the intuition: agent at time 3

T AT T T T 1]



The proof with the intuition: control action

T IHT T T T 11



The proof with the intuition: observations

T IHT T IHT T 1]



The proof with the intuition: dependent reward

T IHT IHT IHT T T



The proof with the intuition: irrelevant observations

R @ R3 .
I'L fz/[g C3
/%. U @ Us |

T IHT IHT T JHT T |
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The proof with the intuition: remove edges

R @ R, @ R3

IL A
Ci i C2

f2 ] C3

71 - |
AN
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The proof with the intuition: repeat

T LHT T T JHT T (1]



The proof with the intuition: agent at time 2

JHT T IHT LHT T T 11



The proof with the intuition: control action

T JHT HT I JHT T IHT



The proof with the intuition: observations

T JHT IHT T T IHT AT |



The proof with the intuition: dependent rewards

T IHT JHT HT AT T I



The proof with the intuition: irrelevant observations

R @ Rz R3

Xlifo U @ /Uz%T J)

T IHT JHT T IMT T T 1]



The proof with the intuition: remove edges

Ri @ Ra R3
T fo L) C3
X1 ./UlV Us J)
T ........ T
\I g1 H g3

T LHT IHT JHT T JHT T 1111



The proof with the intuition: we are done

T IHT T THT JHT IHT T T



The main idea

Step 1: Pick an agent
Step 2: If the agent observes any irrelevant data, ignore those observations

Step 3: Repeat

JHT LHT JHT LHT JHT JHT T AT |



The main idea

Step 1: Pick an agent
Step 2: If the agent observes any irrelevant data, ignore those observations

Step 3: Repeat

This idea is easy to extend to decentralized
systems. We only need to work out the details.

T IHT T T IHT T T T



Extending the idea to decentralized systems

To follow the above process in decentralized systems, we have to do two things:

B What is the order in which the agents act?

B What is right notion of irrelevant data? How do find irrelevant observations of
an agent

T IHT JHT HHT T T T I 1



Both questions can
be answered using
graphical models

JHTIHT IHT JHT JHT JHT T AT 11T



Some Preliminaries

W LHT THT AT JHT LHT THT IHT T



Partial Orders

A strict partial order < on a set S is a binary relation that is transitive,
irreflexive, and asymmetric. i.e., for a, b, c in S, we have

1. ifa< b and b < ¢, then a < ¢ (transitive)

2. a < a (irreflexive)
3. if a < b then b < a (asymmetric)

The reflexive closure < of a partial order < is given by

as<bifandonlyifa<bora=»b

T IHT IHT AT JHT JHT IHT T IHT |



Partial Order

Let A be a s(u_bset of a partially ordered set (S, <). Then, the lower set of 4,
denoted by A is defined as

A:={beS:b<aforsomeac Al

By duality, the upper set of A, denoted by Z is defined as

Z:={bES:a<bforsomeaEA}.

T IHT JHT LHT JHT IHT AT T UM 1T



Sequential teams and partial orders

‘j Hans S. Witsenhausen, On information structures, feedback and causality,
SICON-71

‘j Hans S. Witsenhausen, The intrinsic model for discrete stochastic control:
Some open problems, LNEMS-75

A team problem is sequential if and only
if there is a partial order between the agents

JHT THT IHT JHT JHT JHT T T I 1]



Partial orders can
be represented by
directed graphs
So, sequential teams can be
represented as directed graphs

JHT JHT LHT JHT THT IHT T IHT IHT 11T



Representing teams using directed graphs

‘j Hans S. Witsenhausen, Separation of estimation and control for discrete time
systems, Proc. IEEE-71.
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Fig. 1.
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Representing teams using directed graphs

‘j Yu-Chi Ho and K’ai-Ching Chu, Team Decision Theory and Information
Structures in Optimal Control Problems—Part |, TAC-72.

1 2
3
4 T
5 8
6
GROUP 1 GROUP IT
Fig. 3.

WHT JHT T JHT IHT JHT JHT T AT IHT |



Representing teams using directed graphs

‘j Tseneo Yoshikawa, Decomposition of Dynamic Team Decision Problems,
TAC-78.

Y

Fig. 1. Precedence diagram.

JHT JHT JHT IHT LHT LHT JAT JHT JHT AT 1T



Representing teams using directed graphs

ﬂ Steffen L. Lauritzen and Dennis Nilsson, Representing and Solving Decision
Problems with Limited Information, Management Science-2001.

hl h2 hg h4 Uy
t t ts
dy do ds

WHT JHT JHT LT JHT LHT IHT JHT T AT ]



None of these fit our
requirements perfectly. So,
we use DAFG (Directed
Acyclic Factor Graphs)

IHT T IHT T IHT AT THT JHT AT AT 11



A graphical model for sequential team forms

T IHT LT IHT JHT JHT LHT THT JHT T T



A graphical model for sequential team forms

Directed Acyclic Factor Graph G = (V,F,E) for T = (N, A, R, {I;; }ren)
V=Nx{0}, F=NXx{1}

E={kLEY : ke MY u{(i%k):keN,i€el}
W Vertices

> Variable Node k° = system variable X,
> Factor node k! = stochastic kernel p, or control law gj.

B Edges

> (k1 k%) foreach k € N
> (i% k') foreachk € N and i€ I,

T T JHT T T LT JHT T T T T |



An Example: Real-time communication

‘j Hans S. Witsenhausen, On the structure of real-time source coders, BST)-79

[ Source ]—)[ Encoder ]—)[ Receiver ]—5

First order Markov source {S;,t = 1,.

Real-Time Encoder: Y, = c,(St, Yt‘l)
Real-Time Finite Memory Decoder: |S, = g,(Y;, M;_1)

i M, = 1,(Y;, M¢_1)
Instantaneous distortion p(S;, S;)

Objective: minimize E { Z p(Se, St) }

JHT T JHT JHT LT JHT JHT JHT JHT JHT I 1



An Example: Real-time communication
D, @ D, @ D;: @
P OPer OPH [OPpe. OPfs [ Poes
$$O 50 $0O 50 $0O 50
HCG H9 HCG Hg2 HECSG HEJ3
YVTOMO 2O MO 30

H HL

T JHT JHT T T T T T T IHT T L1



An Example: Real-time communication

D, @ D, @ D; @

|_|__|pf1 |__|_|ppl |_|__|Pf2 ippz |_|__|pf3 |__|_|pp3
SSO §0 SO S0 S$sO 50
H C gr W C2 g2 M C3 l g3

YTO MO Y20 MO
i

Y O

|

T IHT T JHT JHT THT JHT LT I JHT T 11T
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An Example: Real-time communication

Dl. Dz‘ D3’

IHT JHT JHT JHT JHT IHT JHT JHT LHT THT T IHT



ChecRing conditional independence

Dan Geiger, Thomas Verma, and Judea Pearl, Identifying independence in
Bayesian networks, Networks-90.

Conditional independence can be efficiently checked on a directed graph.

Given aDAFGG = (V,F,E,D) and sets A,B,C c V, X, is irrelevant to Xp
given X, if X4 is independent to Xp given X, for all joint measures P(dXy) that
recursively factorize according to G.

Data irrelevant to X, given X is

Rg (XalXc) = {k € C: X} is irrelevant to X, given X¢ \ {X}}}

AT LHT T IHT LT T JHT JHT JHT T JHT T |



Back to simplification
of team forms

JHT THT LHT LHT JHT JHT THT THT JHT JHT T KT ]



Completion of a team

A team form T = (N, A, R, {I; }ren) is complete if for k,l € A, k # [, such that
I, < I; we have X;, € I;. (If | knows the data available to k, then [ also knows
the action taken by k).

If a team is not complete, it can be completed by sequentially adding “missing
links”

Depending on the order in which we proceed, we can end up with different
completions. However,

all completions of a team form are equivalent.

AT JHT JHT AT JHT LHT JHT IHT IHT LT IHT AT 1]



Completion of a team form

D1’ D, @ D3’

WHTJHT JHT T T T LT JHT JHT IHT LHT AT 111



Completion of a team

T T JHT JHT JHT JHT JAT JHT W JHT IHT JHT T



Simplification of team forms

Step 1: Complete the team form.

(Note: All completions of a team form are equivalent to the original)

AT LT IHT IHT T JHT IHT JHT IHT T T T T |



Removing irrelevant nodes

Recall Given a DAFG G = (V,F,E,D) and sets A,B,C c V, X, is irrelevant to Xp
given X, if X, is independent to Xp given X, for all joint measures P(dXy) that
recursively factorize according to G and

R (Xa|Xc) = {k € C: X, is irrelevant to X4 given X \ {X}}

For any k € A in a team form 7" = (N, 4, R, {I }xen). replacing X; by
X, \ (R; (Xg 0 X, | X1, X1) \ X)) does not change the value of the team.

IHT IHT IHT T IHT JHT JHT T IHT IHT AT JHT IHT 1]



Remove irrelevant nodes

ne e  De

‘:IP},EI P [1Pe Dy] Pos
@ O %0

[1Pf
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Remove irrelevant nodes

JHT LHT JHT AT JHT LT JHT THT LHT JHT T T IHT 1



Remove irrelevant nodes

D@ D@ D
DV:IP},D Pt [;IP},DPY] Pos
&Q{O sm%c SO 80
.'CI\\‘
Y1
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Remove irrelevant nodes

ne e  De
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D%Q S § 0

Ml HL

JHT JHT IHT JHT T T LHT JHT JHT JHT JHT JHT T M |



Remove irrelevant nodes

Dl ‘. D2 k D3 ‘
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Remove irrelevant nodes

Dl ‘. D2 k D3 ‘
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Remove irrelevant nodes
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Remove irrelevant nodes

D @
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[1Pf, [1Pp:

S (778, C %

) S C

S
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Remove irrelevant nodes

D @
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Remove irrelevant nodes
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Remove irrelevant nodes
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Remove irrelevant nodes
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Remove irrelevant nodes
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Removing irrelevant nodes
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Simplification of team forms

Step 1: Complete the team form.

(Note: All completions of a team form are equivalent to the original)

Step 2: At control factor node k, remove incoming edges from nodes irrelevant
_)
to Xp N X, given (X, Xj)

(Note: The resultant team form is equivalent to the original)

JHT THT JHT JHT THT JHT JHT JHT ST IHT IHT T T T T T 1]



Coordinator for a
subset of agents

JHT T THT LT JHT JHT LT T JHT LT LT It JHT LT JHT M ]



Another Example: Shared randomness

l
(-

—)[Controller 1]J1
A
1 =

( Shared ]
S

LRandomnes

T

AZ
—)[Controller 2]—|t

Plant: S,11 = f:(S;, AL A2, W,)

Shared Randomness: {Z;,t =1,...,T} indep. of rest of system

Control Station 1: A} = g} (St A1, 79

Control Station 2: A? = gZ(S¢, A%, 7Y

Instantaneous cost: p,(S;, A}, A?)

JHT THT JHT JHT IHT JHT LT LHT AT LT LT T LT T T T 1]



Another Example: Shared randomness

JHT HHT LT T T JHT JHT JHT T LT T T JHT JHT JHT IHT T



Another Example: Shared randomness (Step 1)

T T IHT LT T JHT T T JHT LHT LHT JHT JHT LT JHT T T |



Another Example: Shared randomness (Step 2)

T IHT IHT T LT T IHT LT T T JHT LHT T T I AT T ]



Another Example: Cannot remove useless sharing

W THT LHT LHT JHT JHT IHT JHT LT JHT JHT LT T T T T T 1



Each agent thinks
that the other
might use it

WT LT JHT IHT LT JHT JHT T T JHT JHT T T T T T T 11



Coordinator for a subset of agents

For a,b € A, consider a coordinator that observes shared information X, :=
X;, N X;, and chooses partial functions g, : X; \¢ = X, and g, : Xj,\¢c = Xp.
Agent a and b simply carry out the computations prescribed by g, and g,
Remove irrelevant incoming edges at the coordinator!

Equivalently, at agents a and b, remove edges from nodes that are irrelevant to

ﬁ . A A
Xr N Xqapy given (X¢, Jar Gb)-

JHT JHT JHT T T LHT JHT IHT T THT JHT JHT LHT LT T T T T



Coordinator for a subset of agents

Forany B € Ain ateam form T = (N, A, R, {I; }ken)
and any b € B, let X, = N X,,.
beB
. —_— q A A
Then, replacing X;, by X;, \ (R; (Xg N X5 | X¢, d8) \ 95 )
does not change the value of the team

T IHT T LT AT JHT JHT LT IHT T LHT JHT LHT T T T LT T |



Simplification of team forms

Step 1: Complete the team form.

(Note: All completions of a team form are equivalent to the original)

Step 2: At control factor node k, remove incoming edges from nodes irrelevant
_)
to Xp N X, given (X, Xj)

(Note: The resultant team form is equivalent to the original)

Step 3: At all nodes of any subset B of A, remove incoming edges from nodes
-
irrelevant to Xp N X given X, Jp).
R B8 (bQB I, bLEJB Jb)

(Note: The resultant team form is equivalent to the original.)

W IHT JHT IHT JHT JHT JHT JHT LHT JHT JHT T LHT T T T T 1 1



Removing shared randomness: Coordinator

JHT HT T T JHT AT T LHT IHT THT LHT JHT AT T LT T T T ]



Removing shared randomness: Coordinator’s observation

JHT JHT LHT LHT JHT JHT JHT LHT JHT JHT LHT JHT T T T T T LT 11



Removing shared randomness: Coordinator

WHT IHT JHT THT JHT LT LHT AT AT T JHT LT JHT JHT JHT JHT T T T



Removing shared randomness: Coordinator

T THT JHT LHT JHT LHT JHT JHT JHT JHT JHT JHT LT IHT IHT T T IHT IHT |



Removing shared randomness: Edges removed

JHT JHT JHT LT T T JHT JHT JHT IHT JHT T T T JHT JHT JHT T IHT I



Removing shared randomness: New coordinator

IHT JHT IHT JHT AT AT T JHT AT T T T LHT T IHT T IHT I T



Removing shared randomness: Shared Observation

HATJHT HT LHT JHT T T T JHT THT LT JHT JHT JHT AT AT JHT T T 1]



Removing shared randomness: Coordinator

JHT LHT JHT JHT LT JHT T JHT JHT IHT JHT LHT LT JHT LHT IHT T T T M1



Removing shared randomness: Coordinator

T IHT T T IHT JHT THT THT LHT T LHT T T JHT T IHT T T T KT |



Shared randomness: final result

A% = gtl(St)
A7 = g¢ (S, AD)
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Summary
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Simplification of team forms

Step 1: Complete the team form.

(Note: All completions of a team form are equivalent to the original)

Step 2: At control factor node k, remove incoming edges from nodes irrelevant
_)
to Xp N X, given (X, Xj)

(Note: The resultant team form is equivalent to the original)

Step 3: At all nodes of any subset B of A, remove incoming edges from nodes
-
irrelevant to Xp N X given X, Jp).
R B8 (bQB I, bLEJB Jb)

(Note: The resultant team form is equivalent to the original.)

T IHTIHT JHT HHT JHT T T JHT JHT LHT JHT T LHT T JHT T T IHT T 1]



Main ideas

B Observed data that is irrelevant for dependent rewards can be ignored
Irrelevant data can be identified using standard graphical models
algorithms

B A coordinator for a collection of agents

Shared information between collection of agents can be efficiently
represented as a lattice
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More examples
Works for all examples of (MDP-like) structural results in the literature.

B Real-time communication (point-to-point with and without feedback,
multi-terminal communication with feedback)

Bl Networked control systems

B specific forms of information structures (delayed state sharing, stochastically
nested, etc.)
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Conclusion

B Presented team forms for decentralized systems, and the notions of
equivalence and simplification of team forms.

B A team form can be naturally represented as a DAFG

B The DAFG of a team form can be simplified axiomatically.

> The process in intuitive

> The algorithm is efficient and can be automated easily.
(see http://pantheon.yale.edu/~am894 /code/teams/ for software
implementation)
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Future Directions

B What about other types of structural results? Adding belief variables in
POMDPs? Adding beliefs on beliefs in decentralized teams.
Is equivalent to adding nodes representing conditional independence
on a graphical model. Need to develop conditional independence
properties of such a graphical model.
Is related to notions of state in systems of interacting probabilistic
automata and interacting particle systems.

B What about other models? Graphical model is not the only way to check
condition independence
Conditional independence can also be checked on a relationship
lattice. Lattices naturally capture important notions of decentralized
systems like shared information, partial orders, and state with respect
to a cut, etc.
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Future Directions

B What about sequential decomposition? Can we write optimality equations of
a general decentralized system axiomatically?

Has already been done—Witsenhausen’s standard form. However, it is
not the most efficient solution. The model presented in this talk can
be used to identify optimality equations what have a smaller state
space.
Many engineering systems have more structure. Can we exploit that
structure to say something about infinite horizon systems?

B What about non-sequential systems? Everything here is based on partial
orders. Non-sequential systems do not have a partial order between agents.
Non-sequential systems form a pre-order. Not sure about the right
notion for irrelevant variables. There are some relations between
pre-orders and finite topological spaces.
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Thank you
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