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Communication

Challenges

How to coordinate

What to communicate

How to communicate

When to communicate
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Sensor and Surveillance networks

Fusion Center

Limited resources
Noisy observations
Communication

Challenges

Real-time communication

Scheduling measurements and communication

Detect node failures
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Networked control systems

Challenges

Control and communication over networks
(internet ⇒ delay, wireless ⟹ losses)

Distributed estimation

Distributed learning
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Salient Features

Multiple agents

Decision making by multiple agents in stochastic dynamic environment

Coordination issues

All agents must coordinate to achieve a system-wide objective

Communication constraints

Data must be communicated within fixed finite delay

Robustness

System model may not be known completely

Exploiting domain knowledge

Application specific modeling assumptions
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Research Directions

Real-time communication

Communication constraint

Optimal control over noisy channels

Coordination

Delayed sharing patterns

Coordination

Communication over unknown channels

Robust communication

Calibration and validation of remote sensing observations

Exploiting domain knowledge
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Real-time communication

Simplest setup: A node observes a
stream of data and has to communicate
it to another node (over possibly noisy
channels) within a fixed finite delay

Integral component of many
applications

Sensor and surveillance networks
Transportation networks
Fault diagnosis in power systems
Networked control systems
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Ͳ ͳͲ.ͳ
Ͳ.ͲͲͳͲ.9 Ͳ.999 Encoder Ͳ.9

ͳͲ.ͳͳ
Ͳ

ͳ
Ͳ

Decoder
�� �ܺ �ܻ �̂�

Markov source Z-channel

Memoryless Causal real-time
Prob of error Ͳ.ͳ͵Ͷ͸ Ͳ.Ͳͷ͸Ͷ 240% better

# of strategies ሺʹʹ × ʹʹ × ʹʹሻʹ ሺʹʹ × ʹͶ × ʹͺሻʹ simple example�ሺͳͲ͵ሻ �ሺͳͲͺሻ
Can we search for optimal real-time strategies efficiently?



Literature Overview

Encoder knows what decoder knows

Source Encoder Receiver

Noiseless channel: Lloyd, 1977; Witsenhausen, 1979;
Neuhoff and Gilbert, 1982; Linder and Lugosi, 2001;

Weissman and Merhav, 2002; Linder and Zamir, 2006.

Source Encoder DecoderChannel

Noisy channel with noiseless feedback:
Walrand and Varaiya, 1982



Literature Overview

Encoder and decoder have different information

Source Encoder DecoderChannel

Finite memory: Gaarder and Slepian, 1982;
Mahajan and Teneketzis, 2006

Noisy channel: Teneketzis, 2006,
Mahajan and Teneketzis, 2009b

Source Encoder Decoder
Forward
Channel

Feedback
Channel

Noisy channel with noisy feedback:
Mahajan and Teneketzis, 2008
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Communication Strategyܧ = ሺ݁ͳ, ݁ʹ, . . . , ݁�ሻ, ܦ = ሺ݀ͳ, ݀ʹ, . . . , ݀�ሻ
Performance �ሺܧ, ሻܦ = lim�→∞� { �∑�=ʹ �ݏͳℙሺ̂−�ߚ ≠ ͳሻ−�ݏ }
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Gaarder and Slepian's approach

Choose a time invariant strategy ܧ = ሺ݁, ݁, . . . , ݁ሻ, ܦ = ሺ݀, ݀, . . . , ݀ሻ.{ܵ�−ͳ, ܵ�, ܻ�−ͳ} forms a Markov chain

Find its steady-state distribution (if it is unique)

Find the steady-state probability of errorlim�→∞� { ℙሺ̂ݏ� ≠ ͳሻ−�ݏ̂ }
Repeat for all time invariant strategies.

[Gaarder and Slepian, 1982]



so we deem it best to publish now the

results we do have; albeit, incomplete and

unsatisfactory as they are. Perhaps others will

pick up the fallen torch and run more deftly!
Gaarder and Slepian, 1982
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Difficulty with
Gaarder and Slepian's approach

Steady-state distribution of a Markov chain is discontinuous in its
transition matrix

For some ሺܧ, ,ሻܦ the Markov chain may not have a unique steady-state
distribution

Multiple recurrence classes ⇒ uncountable steady-state distributions



Determining optimal
encoders and decoders

None of the existing approaches work
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Difficulty with other approaches

Brute force search is computationally challenging

Number of communication strategies: ( |�||�|2|�̂||�|2 )�
Information theory is not appropriate

Based on law of large numbers for long sequences
Long sequences introduce delay and require big memory

Markov decision theory does not apply

Source Encoder DecoderChannel

Orthogonal search (Coordinate descent)

May not converge
Gives only local optima



Global Optimization



Global Optimization



Research Contributions

Sequential decomposition

Sequential search algorithm
Exponentially reduces the search complexity



Research Contributions

Sequential decomposition

Sequential search algorithm
Exponentially reduces the search complexity

Information state

No existing methodology
Provided an axiomatic approach



Research Contributions

Sequential decomposition

Sequential search algorithm
Exponentially reduces the search complexity

Information state

No existing methodology
Provided an axiomatic approach

Common knowledge

What can two agents with different information agree upon?
Key notion in finding information states



Research Contributions

Sequential decomposition

Sequential search algorithm
Exponentially reduces the search complexity

Information state

No existing methodology
Provided an axiomatic approach

Common knowledge

What can two agents with different information agree upon?
Key notion in finding information states

Finite or infinite time-steps

No priori approach for infinite time-steps
Proposed approach works for both
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Sequential decomposition

Divide and Conquer

Algorithm: One step optimization → sequence of nested optimizations

Information state

For each time ,ݐ an information state ��
Compression: All the past relevant to the future

For each info state ��, a value function �ܸሺ��ሻ
Represents: minimum probability of error in the future

Recursion

Express: �ܸሺ��ሻ in terms of ܸ�+ͳሺ��+ͳሻ
Backward Induction

Evaluate: �ܸሺ��ሻ for each �� moving backward in time

Exponential reduction in
the search complexity� ( ሺʹ�ሻ� ) → �ሺܶ ⋅ ܭ ⋅ ʹ�ሻ
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Sequential Decomposition

First example of sequential decomposition for
optimal solution of

general non-linear decentralized systems

How do we choose information state ��
No previous known technique for finding

information states for decentralized systems
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Controlled input-output system

Control inputs:
encoding and decoding functions
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Example with ߚ = Ͳ.9
ሺ݁�, ݀�ሻ = ۉۇ
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Although the system is time homogeneous, time-invariant
strategies need not be optimal

Time homogeneous meta-strategy ሺ݁�, ݀�ሻ = �ሺ��ሻ
Gaarder and Slepian assumed time-invariant strategies

This restriction made their setup
extremely difficult to solve.

Design of decentralized systems requires a paradigm shift
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Information information

Qualitative difference in results

Even for infinite horizon problems,
time-invariant strategies may not be optimal
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Generality of the approach

General model for real-time communication

Full-memory encoder or decoder (Mahajan and Teneketzis, 2009b)

Channels with memory (Mahajan and Teneketzis, 2009b)

Higher order Markov sources (Mahajan and Teneketzis, 2009b)

Presence of noisy feedback (Mahajan and Teneketzis, 2008)

Towards a theory of real-time network communication

Optimal control over noisy channels

Delayed sharing patterns

A 40 year old open problem
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Delayed Sharing Patterns

�૛�−�, �૛�−�

�૚�−�, �૚�−�

Sys

Obs

Obs

Controller 1

Controller 2

�ܺ
ܻͳ�
ܻ�ʹ

ܷͳ�
ܷ�ʹ

ܷ�� = ���ሺܥ�, ሻ��ܮ
where

�ܥ = ۉۈۇ
ۏێێێۍ
ܻͳͳ⋮ܻͳ�−�

,ےۑۑۑې
ۏێێێۍ
ܻͳʹ⋮ܻ�ʹ−�

,ےۑۑۑې
ۏێێێۍ
ܷͳͳ⋮ܷͳ�−�

,ےۑۑۑې
ۏێێێۍ
ܷͳʹ⋮ܷ�ʹ−�

ےۑۑۑې یۋۊ ��ܮ = ۉۈۇ
ۏێێێۍ
ܻͳ�−�+ͳ⋮ܻͳ�

,ےۑۑۑې
ۏێێێۍ
ܷͳ�−�+ͳ⋮ܷͳ�−ͳ

ےۑۑۑې یۋۊ
Common Information Local Information
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Design Difficulty

Common information �ܥ is increasing with time

Conjecture (Witsenhausen, 1971)

Without loss of optimality, each controller
can replace �ܥ by ℙሺܺ�−� | ሻ�ܥ

Varaiya and Walrand (1979)

True for � = ͳ
False for � > ͳ



Open problem for 40 years

Does a information state for �ܥ exist?
How do we find such a information state?
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Importance of the problem

Applications (of one step delay sharing)

Power systems: Altman et. al, 2009
Queueing theory: Kuri and Kumar, 1995
Communication networks: Grizzle et. al, 1982
Stochastic games: Papavassilopoulos, 1982; Chang and Cruz, 1983
Economics: Li and Wu, 1991

Conceptual significance

Understanding the design of networked control systems

Bridge between centralized and decentralized systems

Insights for the design of general decentralized systems
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Solution approach

Common knowledge between all agentsሺܥ�, �ͳͳ:�−ͳ, �ͳʹ:�−ͳሻ
State sufficient for i/o mappingሺ �ܺ, �ͳܮ , ሻʹ�ܮ
Information state

�� = ℙሺstate for i/o mapping | common knowledgeሻ= ℙሺܺ�, �ͳܮ , ʹ�ܮ | ,�ܥ �ͳͳ:�−ͳ, �ͳʹ:�−ͳሻ

[Nayyar, Mahajan, and Teneketzis, 2010]

Structure of optimal control law

Without loss of optimality, each controller can
replace �ܥ by ℙሺ �ܺ, �ͳܮ , ʹ�ܮ | ,�ܥ �ͳͳ:�−ͳ, �ͳʹ:�−ͳሻ
Can also write a sequential decomposition

based on this information state



A systematic approach can easily
resolve long-standing conceptual

difficulties in decentralized systems



Conclusions
Optimal design of decentralized systems



Decentralized system: Salient features

Multiple agents

Decision making by multiple agents in stochastic dynamic environment

Coordination issues

All agents must coordinate to achieve a system-wide objective

Communication constraints

Data must be communicated within fixed finite delay

Robustness

System model may not be known completely

Exploiting domain knowledge

Application specific modeling assumptions



Decentralized systems: Research directions

Real-time communication

Delay sensitive communication

Optimal control over noisy channels

Communication and coordination

Delay sharing pattterns

Coordination

Communication over unknown channels

Robustness

Calibration and validation of remote sensing observations

Exploiting domain knowledge
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Summary

Systematic approach to design decentralized systems

Algorithm to sequentially synthesize optimal controllers

Based on information states

Axiomatic approach to find information states

Find common knowledge

Find state for i/o mappingℙሺstate for i/o mapping | common knowledgeሻ
Delayed sharing pattern

Able to resolve a long standing open conjecture
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Future Directions

Control of power systems

Renewable energy:
unpredictable generation
Energy markets: Game theoretic considerations

Environmental sensor networks

Climate change:
cheap yet reliable monitoring
Calibration validation of remote sensing observations
Time varying sampling

Control and coordination

Transportation networks
Bioscience and medicine
. . .
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network communication

Encoder 1

Encoder 2

MAC Receiver

Encoder Broadcast

Receiver 1

Receiver 2

Multiple access channel (M, 2009a) Broadcast channel (M, 2009b)

Encoder Channel Channel

Relay

Receiver

Encoder 1

Encoder 2

Interefence

Receiver 1

Receiver 2
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A surprisingly related problem



Optimal control over noisy channels

System
Noisy

Channel
Sensor Controller



Optimal control over noisy channels

System
Noisy

Channel
Sensor Controller

Simplest example of optimal control of networked systems
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Optimal control over noisy channels

System
Noisy

Channel
Sensor Controller

Salient features

Noisy channel Performance optimization

Control vs (real-time) communication

Similar design difficulties

non-comparable information

Similar solution approach works

Algorithm to sequentially search for the optimal encoding and control
strategies

[M and Teneketzis, 2009a]

No brute force
No Markov decision theory
No orthogonal search
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Feedback communication
over unknown channels

Source
Unknown
Channel

Encoder Decoder

Trade off between learning and communication

Performance criterion:

Error exponent ܧ = lim�→∞ℙሺ�ሻerror

Training based scheme

Send training sequence

Estimate channel and communicate
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Feedback communication
over unknown channels

Proposed coding scheme

proposedܧ = knownܧߙ

Main insights

Need to send multiple training sequences

Channel estimation for each training sequence should be done
independently

Reference

A. Mahajan and S. Tatikonda, Opportunistic capacity and error exponents
of compound channel with feedback, IEEE Trans of Info Theory, 2010
(submitted)



Calibration and Validation of
Remote sensing observations



Monitoring soil moisture

Measurement need for earth
science

NASA Earth Science focus:
climate, carbon, weather,
water, surface, and atmosphere

Challenges

Complicated variation
Depends on temperature,
vegetation, precipitation, soil
texture, topology, etc.

Remote sensing gives coarse estimates�ሺͳkmሻ to �ሺͳͲkmሻ
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Variation with time Variation with depth



Variation of Soil Moisture

Variation with time Variation with depth

Topology After rainfall
Follows topology

After dry run
Follows vegetation



Radar measurements

Backscattering coefficient

Depends on incidence angle, soil depth, soil type, and vegetation cover



Sensor Scheduling

Limited battery life

Measurement and communication consumes
energy

Sleep scheduling

Does the sensor need to switch on its radio
to determine when to take a measurement?

Sensor placement

Need to cover a large area to match satellite
footprint
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Overview

Physical model

Use a community standard
numerical model developed over
35 years (SWAP)

Measurement model

Forward model for
electromagnetic backscattering

Sensor observation model based on calibration curves

Optimal control formulation

Use physical and measurement model to guide sensor scheduling and
measurement

Obtain a scalable algorithm
for sensor scheduling



Field Testing

Location

Matthaei Botanical Gardens, Ann Arbor, MI

Multiple nodes at 3 depths

http://soilscape.eecs.umich.edu
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