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’ Arcade games
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Recent successes of RL

B> Algorithms based on comprehensive theory

P> The theory is restricted almost exclusively
to systems with perfect state observations
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Recent successes of RL

B> Algorithms based on comprehensive theory

P> The theory is restricted almost exclusively
to systems with perfect state observations

Many real-world applications are

partially observed
B> Healthcare

> Autonomous driving
P> Finance (portfolio management)

P> Retail and marketing
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Recent successes of RL

B> Algorithms based on comprehensive theory

P> The theory is restricted almost exclusively
to systems with perfect state observations

Many real-world applications are

partially observed
B> Healthcare

> Autonomous driving

P> Finance (portfolio management)

P> Retail and marketing

How do we develop a theory for RL for partially observed systems?
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Outline

Background

~

_{“
‘. Agent-state
2

based planning

H—f ﬁ! Agent-state
£

based learning

Agent-state based policies in POMDPs-(Mahajan)

> Review of MDPs and RL
> Review of POMDPs
> Why is RL for POMDPs difficult?

P> Agent state based policies
P> Policy classes
P> Planning for different policy classes

> Agent state based Q-Learning
P> Self-predictive representation learning
> Agent state based actor-critic
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Outline

> Review of MDPs and RL
> Review of POMDPs

> Why is RL for POMDPs difficult?

Background

Agent-state based policies in POMDPs-(Mahajan)
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Review: Markov decision processes (MDPs)

MDP: MARKOV DECISION PROCESS

_ Dynamics: P(S¢+1 | St, Ag)
Environment
State S; € S Observations: S;

Reward Ry = v (S, Ag).

Action: A¢ ~ 11¢(S1:¢, A1:¢—1).-

T = (11 )¢>1 is called a policy.

The objective is to choose a policy T to maximize:

J(rr) = IE"[ i yt‘lRt}

t=1
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Review: Markov decision processes (MDPs)

MDP: MARKOV DECISION PROCESS

_ Dynamics: P(S¢+1 | St, Ag)
Environment

State S; € S Observations: S;

Reward Ry = v (S, Ag).

Action: A¢ ~ 11¢(S1:¢, A1:¢—1).-

T = (11 )¢>1 is called a policy.

The objective is to choose a policy T to maximize:

— TT t—1
Conceptual challenge Jm) = E [Z s Rt]

t=1

P> Brute force search has an exponential complexity in time horizon.

> How to efficiently search an optimal policy?
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Review: Key simplifying ideas

Environment
State S; € S

Principle of

There is no loss of optimality in choosing the
Irrelevant . .
: : action A; as a function of the current state S;
information

Agent

IE Blackwell, “Memoryless strategies in finite-stage dynamic prog.,” Annals Math. Stats, 1964.
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Review: Key simplifying ideas

Environment
State S; € S

Principle of

There is no loss of optimality in choosing the
Irrelevant . .
action A; as a function of the current state S;

information

Agent

IE Blackwell, “Memoryless strategies in finite-stage dynamic prog.,” Annals Math. Stats, 1964

Principle of The optimal control policy is given a DP with state S;:
Optimality V(s) = maX{r(S, a)+y JV(S’)P(ds’ls, a)}

acA

& Bellman, “Dynamic Programming,” 1957.
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Review: Reinforcement Learning (RL)
The (online) RL setting

Environment
State S; € S

> Dynamics and reward functions are unknown. Action

A €A
B> Agent can interact with the environment and
observe states and rewards.

Agent

B> Design algorithm that asymptotically identify an optimal policy.
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Review: Reinforcement Learning (RL)
The (online) RL setting

Environment
State S; € S

> Dynamics and reward functions are unknown. Action

A €A
P> Agent can interact with the environment and

observe states and rewards.

Agent

P> Design algorithm that asymptotically identify an optimal policy.

Value based Es'flmate the Q-fu.nctlon Q (s, a). = 1/.(5, a) + yfv.(s )P(ds_ s, O-L)
using temporal difference learning (i.e., stochastic approximation).
methods . o
[Watkins and Dayan, 1992; Tsitsiklis, 1994]

N

. Use parameterized policies 11g. Estimate VgVg(s) using single trajec-
Policy-based paran el [pelliEs g, =2 oVl )_ g 5ing J
hod tory gradient estimates (i.e., infitesimal perturbation analysis).
methods [Sutton 2000, Marback and Tsitsiklis 2001], [Cao, 1985; Ho, 1987]
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Why is learning difficult in partially

observable environments?




POMDPs: Partially observable Markov decision processe

Environment
State St € S

Action
Ar €A

R/

8
Agent-state based policies in POMDPs-(Mahajan)
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POMDPs: Partially observable Markov decision processe

P(St+1, Ye+11S1:6, Y1:8, A1:t)

— ]P(St+1’ Yt+1|St1 At)
Environment
State Sy € S Reward: Ry = v (S, Ag).

. Policy: @ = (771, T2, ...) Where
Action
ArEA

Ap ~ T (Y16, Ar:e—1)

Performance:

J(7T) =:Eﬁ[§: t=1R, 51N§1]

t=1

Agent-state based policies in POMDPs-(Mahajan)
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POMDPs: Partially observable Markov decision processe

P(St+1, Ye+11S1:6, Y1:8, A1:t)

— ]P)(St+1’ Yt+1|St1 At)
Environment
State Sy € S Reward: Ry = v (S, Ag).

Policy: ™ = (771, TTo, ...) Where
Action Obs. icy: _)(7T1 T2, ...) W
Are A Y; €V Ap ~ T¢(Y1:t, A1:e-1)

Performance:

() = uaﬁ[ t-1g,
t=1

51N§1]

Objective: Find the (history-dependent) policy T that maximizes J(TT)

Agent-state based policies in POMDPs-(Mahajan)
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Review: Belief-state based planning
Key simplifying idea

Define belief state By € A(S) as Bi(s) =P(St =5 | Y1:t, A1:¢-1) -
D> Belief state updates in a state-like manner: Bs+1 = function(B¢, Yi+1, At).
D> Belief state is sufficient to evaluate rewards: E[R¢ | Y1:¢, A1:¢] = 7 (B, Ag) .

Thus, {Bt}t>1 is a perfectly observed controlled Markov process.

IE) Astrom, “Optimal control of Markov processes with incomplete information,” JMAA 1965.
IE Stratonovich, “Conditional Markov Processes,” TVP 1960.
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Review: Belief-state based planning
Key simplifying idea

Define belief state By € A(S) as Bi(s) = P(S¢ =5 | Y1:t, A1:6-1) -

D> Belief state updates in a state-like manner: Bs+1 = function(B¢, Yi+1, At).

D> Belief state is sufficient to evaluate rewards: E[R¢ | Y1:¢, A1:¢] = 7 (B, Ag) .

Thus, {Bt}t>1 is a perfectly observed controlled Markov process. Therefore:

Structure of There is no loss of optimality in choosing the action A; as a function
thima' po“cy of the belief state B;

Dynamic

The optimal control policy is given a DP with belief B; as state.
Program

J
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Implications of the POMDP modeling framework

> Allows the use of the MDP machinery for partially observed sys.
Implications P> Various exact and approximate algorithms to efficiently solve DP.

for planning Exact: incremental pruning, witness algorithm, linear support algo
Approximate: QMDP, point based methods, SARSOP, DESPOT, ...

J
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Implications of the POMDP modeling framework

> The construction of the belief state depends on the system model.

> So, when the system model is unknown, we cannot construct the be-
lief state and therefore cannot use standard RL algorithms.

Implications
for learning




Implications of the POMDP modeling framework

> The construction of the belief state depends on the system model.
> So, when the system model is unknown, we cannot construct the be-
lief state and therefore cannot use standard RL algorithms.

B> On the theoretical side:
P> Propose alternative methods: PSRs (predictive state representa-
Implications tions), bisimulation metrics, ...

for Iearning > Good theoretical guarantees, but difficult to scale.




Implications of the POMDP modeling framework

The construction of the belief state depends on the system model.
So, when the system model is unknown, we cannot construct the be-

lief state and therefore cannot use standard RL algorithms.

On the theoretical side:
P> Propose alternative methods: PSRs (predictive state representa-
Implications tions), bisimulation metrics, ...

for Iearning > Good theoretical guarantees, but difficult to scale.
On the practical side:

B> Simply stack the previous k observations and treat it as a “state”.
P> Instead of a CNN, use an RNN to model policy and action-value fn.

P> Can be made to work but lose theoretical guarantees and insights.




Deep RL learns agent-state based policies

Observations

Actions




Abstract model of agent-state based policies

Agent state: Z; € Z, where
Zi+1 = P(Zg, Yev1, At)

Environment
State S € S Examples:
B Zi = (Yien:t, At—nit—1)

Action P> Finite-state controllers
Ar€ A > Recurrent neural networks
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Environment
State St € S

Action
Ar €A

Agent-state based policies in POMDPs-(Mahajan)

Abstract model of agent-state based policies

Agent state: Z; € Z, where
Zi+1 = P(Zg, Yev1, At)

Examples:

> Zi = (Ye—n:t, Ae—nit—1)

P> Finite-state controllers

> Recurrent neural networks

Notation: Hy = (Y1:¢, A1:¢—1)
and Z; = 0+(H;).
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Abstract model of agent-state based policies

Agent state: Z; € Z, where
Zi+1 = P(Zg, Yev1, At)

Environment

State S € S Examples:

> Zi = (Ye—n:t, Ae—nit—1)
Action P> Finite-state controllers
Ar€ A > Recurrent neural networks

Notation: Hy = (Y1:¢, A1:¢—1)
and Z; = 0+(H;).

|

Fundamental Questions

Q1. When is there no loss of optimality in restricting attention to agent state based policies?

Q2. For given Z and ¢, find optimal agent-state based policy.
Q3. For given Z, find optimal state update rule ¢ and optimal agent-state based policy.

7Ny
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Answer to Q1: Information states

Agent-state based policies in POMDPs-(Mahajan)
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Answer to Q1: Information states

Agent state is an information state if it satisfies:

(P1) Sufficient for performance evaluation d7135. Z X A — R s.t.

Information E[R: | He, At ] = 11s(G(Hy), Ag)

State -
(P2) Sufficient for predicting itself 3P;s: Z X A — A(Z) s.t.

P(Zi41 =+ | He, Ay) = Pis(Zi41 = - | O(He), Ap)

Agent-state based policies in POMDPs-(Mahajan)
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Answer to Q1: Information states

Agent state is an information state if it satisfies:
(P1) Sufficient for performance evaluation d7135. Z X A — R s.t.

Information E[R: | He, At ] = 11s(G(Hy), Ag)

State -
(P2) Sufficient for predicting itself 3P;s: Z X A — A(Z) s.t.

P(Zi41 =+ | He, Ay) = Pis(Zi41 = - | O(He), Ap)

Consider the following DP:

Qfs(z,a) = ns(z,a) + z Pis(Z'|z,a) ViE(z, a)
Info state Zez
based DP Vis(z) = flrlea;‘Q?s(z’“)’ Tis(z) = arggneaﬁQi*s(z,a).

Define Ti1s ¢ (M) = Tr{s(T¢(he)). Then the policy Ts = (TT1s,1, T1s,2, ---)
is optimal, i.e., J (Tf1s) = J np-

J
<\,

Z S

Agent-state based policies in POMDPs-(Mahajan) TS




More on information states

Examples of info states

P Current state in MDPs
D> Belief state By = P(S; = -|H¢, A¢) in POMDPs
> Conditional mean in LQG models

> ...

Agent-state based policies in POMDPs-(Mahajan)
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More on information states

Examples of info states

P Current state in MDPs

D> Belief state By = P(S; = -|H¢, A¢) in POMDPs
> Conditional mean in LQG models

> ...

Agent-state based policies in POMDPs-(Mahajan)

Non-examples of info state

> Last observation in POMDPs
> Window of last obs. (frame stacking)

B> Recurrent neural networks
> ...

17

215s

Y S
TS




More on information states

Examples of info states

P Current state in MDPs
D> Belief state By = P(S; = -|H¢, A¢) in POMDPs
> Conditional mean in LQG models

> ...

Non-examples of info state

> Last observation in POMDPs
> Window of last obs. (frame stacking)
> Recurrent neural networks

> ...

Info states = DP info

What to do if agent state is not an information state?J'i

Agent-state based policies in POMDPs-(Mahajan)
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Dynamic programming decomposition does not work
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Dynamic programming decomposition does not work

General idea of DP

Vi(z¢) = min lE[current reward +  future reward ‘ Zy = Zg A = at]
ateﬂl

= min ]E[current reward + E[future reward | Z;4+1 | ‘ Zy = Zp, A = at]
dte.ﬂ

= min E[ [current reward + Vi 1(Zg41) ‘ Zy =2z, Ap = at]
uteﬂ

Wi,
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Dynamic programming decomposition does not work

General idea of DP

Vi(z¢) = min lE[current reward +  future reward ‘ Zy = Zg A = at]
ate.ﬂl

= min IE[current reward + E[future reward | Z;4+1 | ‘ Zy = Zp, A = at]
ateﬂl

= min E[ [current reward + Vi 1(Zg41) ‘ Zy =2z, Ap = at]
uteﬂl

When agent state is not info-state:

0(Zy, Ar) € 0(Zi41). Thus, cannot use smoothing property of conditional expectation and
IE[[E[future reward | Zt+1]‘ Zy, Ae ]l + [E[cost—to—go Ze, At |

U
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Policy classes for history based policies

IIns: history-dependent Non-stationary Stochastic

[inp: history-dependent Non-stationary Deterministic

17

§152
E S

Agent-state based policies in POMDPs-(Mahajan) LN




Policy classes for history based policies

IIns: history-dependent Non-stationary Stochastic

[inp: history-dependent Non-stationary Deterministic

Agent-state based policies in POMDPs-(Mahajan)

Jns = sup J(TT).

ﬁEﬁNs

Jxo = sup J(T).

ﬁEﬁND
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Policy classes for history based policies

IIns: history-dependent Non-stationary Stochastic TRs = sup J(7F).
ﬁEﬁNs

N history-dependent Non-stationary Deterministic f;D = sup J(7).
ﬁEﬁND

]
There is no loss of optimality in restricting attention to deterministic
policies (follows from Kuhn's theorem in Game Theory)

2% =%
Jnp = JNs
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S5t

Agent-state based policies in POMDPs-(Mahajan) U™




Policy classes for agent state based policies

IIns : agent-state based Non-stationary Stochastic
™= (111, T, ...), . Z > A(A)

§\\\\\\\\\Illl///,/é
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Policy classes for agent state based policies

: agent-state based Non-stationary Stochastic
™= (111, T, ...), . Z > A(A)

. agent-state based Non-stationary Deterministic
m= (1T, T, ...), . Z > A

%\\\\\\lllll//////
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Policy classes for agent state based policies

: agent-state based Non-stationary Stochastic
™= (111, T, ...), . Z > A(A)

. agent-state based Non-stationary Deterministic
m= (1T, T, ...), . Z > A

. agent-state based Stationary Stochastic
mw=(m,m,..),mT.Z2—>AA)
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Policy classes for agent state based policies

: agent-state based Non-stationary Stochastic
™= (111, T, ...), . Z > A(A)

. agent-state based Non-stationary Deterministic
m= (1T, T, ...), . Z > A

. agent-state based Stationary Stochastic
mw=(m,m,..),mT.Z2—>AA)

. agent-state based Stationary Deterministic
= (m,m,...), M. 2> A

%\\\\\\“”//////é
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: agent-state based Non-stationary Stochastic
™= (111, T, ...), . Z > A(A)

. agent-state based Non-stationary Deterministic
m= (1T, T, ...), . Z > A

. agent-state based Stationary Stochastic
mw=(m,m,..),mT.Z2—>AA)

. agent-state based Stationary Deterministic
= (m,m,...), M. 2> A

Agent-state based policies in POMDPs-(Mahajan)

Policy classes for agent state based policies

Jis = sup J(m).

mwEllNs

Jip = sup J(m).

mwEIllnp

J&s = sup J(m).

mwEllss

J¢p = sup J(m).

mwEllsp
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Relationship between different policy classes

*
Jsp

I
Wy,

$17_’—_
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Relationship between different policy classes
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Relationship between different policy classes

Agent-state based policies in POMDPs-(Mahajan)
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Relationship between different policy classes

History based
policies

I
Wy,
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Relationship between different policy classes

Agent-state based History based
policies policies

§\\\\\|ll%
2178

Agent-state based policies in POMDPs-(Mahajan) LN




Relationship between different policy classes

When agent state is an information state (e.g., belief state),
all policy classes have the same performance.

Agent-state based policies in POMDPs-(Mahajan)
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Salient features of agent state-based policies

J2p < J&s < JRp




Non-stationary policies can outperform stationary ones

1|2 10111213 (14|15 |16

> Observation: Odd or Even
> In red states:

P> Action O gives reward 1 and moves to right.
P> Action 1 gives reward -1 and resets state to 1.

> In the non-red states: opposite behavior

7
Sinha, Geist, Mahajan, “Periodic agent-state based Q-learning for POMDPs”, NeurIPS 2024. §\\\\18///’//4
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Non-stationary policies can outperform stationary ones

1|2 10111213 (14|15 |16

> Observation: Odd or Even
> In red states:

P> Action O gives reward 1 and moves to right.
P> Action 1 gives reward -1 and resets state to 1.

> In the non-red states: opposite behavior

> 1
> Jno=1—

1+y-—y>?
DJ;VD: 1{}/3)/

B> Forall y € (0,1), J3 <j;D

7
Sinha, Geist, Mahajan, “Periodic agent-state based Q-learning for POMDPs”, NeurIPS 2024. §\\\\18///’//4
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Stochastic policies can outperform deterministic ones

1 1 0.5 1 0.5

o OO0

0.5 0.5
(a) Dynamics under action 0 (b) Dynamics under action 1

r(-,0)=[-1,0,2] r(-,1) =[-0.5,-0.5,-0.5]

7
Sinha, Geist, Mahajan, “Periodic agent-state based Q-learning for POMDPs”, NeurIPS 2024. §\\\\19///”é
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Stochastic policies can outperform deterministic ones

1

ot G4 B

(a) Dynamics under action 0 (b) Dynamics under action 1

r(-,0)=[-1,0,2] r(-,1) =[-0.5,-0.5,-0.5]

0.00 0.25 0.50 0.75
Sinha, Geist, Mahajan, “Periodic agent-state based Q-learning for POMDPs",Zﬁ\IeurIPS 2024. N 19’%
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Outline

P> Agent state based policies
| . B> Policy classes
based planning P> Planning for different policy classes

Agent-state

U

S20=
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How to find optimal non-stationary
agent-state based policies?




Finding best agent-state based policies

Key observation: Finding the best agent-state
based policy is a decentralized control problem

Wi,

=212
e S
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Finding best agent-state based policies

Key observation: Finding the best agent-state
based policy is a decentralized control problem

Why?

P> Consider each “agent at time t” as separate decision maker.
B> Let 7; denote the information sigma-algebra generated by Z;.
P> Information is non-nested: 7; & 74 41.

P> Thus, the problem is a decentralized control problem.

W,
221§
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Finding best agent-state based policies

Key observation: Finding the best agent-state
based policy is a decentralized control problem

—

So, we can use tools from decentralized control
to find optimal agent-state based policies!

—J

Wi,
=215
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Designer's approach to find optimal policy in IIys

Observations .

Environment

Actions

Witsenhausen, “A standard form for sequential stochastic control,” Math. Systems Theory, 1973/
Mahajan, “Sequential decomposition of sequential teams”, PhD thesis, 2008.

Agent-state based policies in POMDPs-(Mahajan)
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Designer's approach to find optimal policy in IIys

Observations .

Environment

Actions

Designer

Witsenhausen, “A standard form for sequential stochastic control,” Math. Systems Theory, 1973/
Mahajan, “Sequential decomposition of sequential teams”, PhD thesis, 2008.

Agent-state based policies in POMDPs-(Mahajan)
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Designer's approach to find optimal policy in IIys

Designer's problem is a POMDP with:
> Unobserved state: (S¢, Z¢)

Designer > Observations: @

> Action: ¢

_J

Witsenhausen, “A standard form for sequential stochastic control,” Math. Systems Theory, 1973/
Mahajan, “Sequential decomposition of sequential teams”, PhD thesis, 2008.

Agent-state based policies in POMDPs-(Mahajan)
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Designer's approach to find optimal policy in IIys

Mahajan, “Sequential decomposition of sequential teams”, PhD thesis, 2008.
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Designer's approach to find optimal policy in IIys

YT e TSt el Tt il For any ™ € Ilns, define &77(s, z) = P™(S¢ = s, Zy = z). Then:

of env and > &1 = boes(T, EFF).

agent states B> E™[R¢] = vpes(te, EF).

Mahajan, “Sequential decomposition of sequential teams”, PhD thesis, 2008.

Agent-state based policies in POMDPs-(Mahajan)
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Designer's approach to find optimal policy in IIys

YT e TSt el Tt il For any ™ € Ilns, define &77(s, z) = P™(S¢ = s, Zy = z). Then:

of env and B> &1 = ¢dpes(m, &)

agent states  PEiLy-JEERRINEINS 3.5

Consider the following DP:

_ Voes(§) = max  {7pes(1, &) + ¥Vpes(Ppes(1, §)) |
DP using mZ2=>A(A)

desginer's Let Ypes(&) denote any arg max of the RHS. Let & = &; and recur-
sively define

7 = Ypes(&F) and &%y = Ppes(Tr, &)
Then, the policy t* = (mr{", 715, ...) € Ilys is optimal in Ilys.

approach

J

Wi,
Mahajan, “Sequential decomposition of sequential teams”, PhD thesis, 2008. \\\\\\23/”4
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Some comments

Historical review

P> The idea goes back to Witsenhausen's standard form (1973).
P> Used for POMDPs in Sandell (1974) and general finite state Dec-POMDPs in Mahajan (2008).

P> Related to NO MDP approach of Dibangoye et al (2016).

R

S24F
7Ny
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Some comments

Historical review

P> The idea goes back to Witsenhausen's standard form (1973).
P> Used for POMDPs in Sandell (1974) and general finite state Dec-POMDPs in Mahajan (2008).

P> Related to NO MDP approach of Dibangoye et al (2016).

Implications
* * 2%
Jso = Jao ——— Jnp

B> Provides a DP to find best policy in IIyp and Ilys.
D> Using properties of the DP can show that J{s = J{p-

* * =%
Jss ——— Jns —— JNs

Wi,

$24é
E S

N
7Ny
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An example: Reactive hypothesis testing

Yt:O

Yt:1

Agent state: Z; = Y; (last observation)

Agent-state based policies in POMDPs-(Mahajan)

P(H = Hy) = 0.7

L7
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An example: Reactive hypothesis testing

Yt:O
P(H = Hy) = 0.7

Yt:1

Agent state: Z; = Y; (last observation)
Actions

> Stop and declare
> Stop and declare 3

> Continue and take another measurement

§\\\\\|II%
2258
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An example: Reactive hypothesis testing

Yt:O
P(H = Hy) = 0.7

Yt:1

Agent state: Z; = Y; (last observation)
Actions Per-step reward

> Stop and declare H, v(Ho, Ho) =1, v (Ho, H1) = —1,

> Stop and declare 7{; r(Hy, Hy) =2, v(Hy, Ho) = -2,
D> Continue and take another measurement r(- ¢) = —0.01.

Vg,
=258

Agent-state based policies in POMDPs-(Mahajan) TS




An example: Reactive hypothesis testing

Designer's state space

Global state: (Terminated, Hypothesis, Obs).

(0,0,0) (0,0,1)  (1,0,0) (1,0,1)
(0,1,0) (0,1,1)  (1,1,0) (1,1,1)

Designer's state: ]P(

Agent-state based policies in POMDPs-(Mahajan)
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An example: Reactive hypothesis testing

Designer's state space

Global state: (Terminated, Hypothesis, Obs).
1 1 1,0,1
(0,0,0) (0,0,1) 0) (1,0 )EAS

(0,1,0) (0,1,1)

Designer's state: P(

Agent-state based policies in POMDPs-(Mahajan)

§\\\\\\\\“"”////é
=265

2, S
LN




An example: Reactive hypothesis testing

Designer's state space

Global state: (Terminated, Hypothesis, Obs).

(0,0,0) (0,0,1) [(1,0,0) (1,0,1 -
(0,1,0) (0,1,1) )EA

Designer's state: P(

Designer's Action space

Designer's action space: {0,1} - {Ho, Hi,c}. 9 possibilities

Agent-state based policies in POMDPs-(Mahajan)
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An example: Reactive hypothesis testing

Designer's state space

Global state: (Terminated, Hypothesis, Obs).

(0,0,0) (0,0,1) [(1,0,0) (1,0,1 -
(0,1,0) (0,1,1) )EA

Designer's state: P(

Designer's Action space

Designer's action space: {0,1} - {Ho, Hi,c}. 9 possibilities

* * 7
JSD e JND -]ND

T

2% RUTS

NS Fen
Z26=

Agent-state based policies in POMDPs-(Mahajan) TS

P> No need to consider stochastic policies.




An example: Reactive hypothesis testing

Solution of the DP (for y = 0.95)

> J¢p = 0.8093

P> In this case, optimal solution turns out to be periodic! Not a general result.

Wi,
S27E
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An example: Reactive hypothesis testing
Solution of the DP (for y = 0.95)

> J¢p = 0.8093

P> In this case, optimal solution turns out to be periodic! Not a general result.

Key Takeaway

P> Designer's DP provides optimal agent-state based policy.

P> It is solvable for small models ... but still hard to solve for large models. i,

4

£27
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Are there methods which
scale to large models

i JKI(D f:\l(D




Policy evaluation for policies in Ilss

Observations .

Joint env and agent state process Environment é

Actions

> { (St Z¢) }e>1 is a controlled Markov process controlled by {A¢};>1. In particuar,

Perop(s’, Z'ls, z,a) = > P(s,y'Is,a)1{z' = p(z,¥',a)}
y'ey

> We can use standard formulas to evaluate any policy in Ilprop.

Agent-state based policies in POMDPs-(Mahajan)
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Policy evaluation for policies in Ilss

Observations .

Joint env and agent state process Environment é

Actions
> {(St, Z:t) }¢=1 is a controlled Markov process controlled by {A;};>1. In particuar,
Peron(S’, Z'Is,z,a) = > P(s',y'Is,a)1{z' = ¢p(z,',a)}
y'EeyY

> We can use standard formulas to evaluate any policy in Ilprop.

> Any mr € Ilgs also belongs to IIprop (the set of stationary stochastic policies on S X Z). Thus:
J(m) = > &(s,2)Veron(S,2)
(s,z)ESXZ
where
Veron(s,2) = > m(alz) [T(S,Ol) +y > Peron(s’,Z'ls, z,a) Verop (S, Z’)]-

acA s, zZeESXZ

%\\\\\\lllll/,//é
S28%
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Some comments

Historical review

P> The idea of policy evaluation on the product space goes back to Platzman (1977) and has
been rediscovered multiple times: Littman (1996), Hauskrecht (1997), Cassandra (1998),
Hansen (1998),

§\\\\\\\\\llll///,/é
=29
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Some comments

Historical review

P> The idea of policy evaluation on the product space goes back to Platzman (1977) and has
been rediscovered multiple times: Littman (1996), Hauskrecht (1997), Cassandra (1998),
Hansen (1998),

Implications

P> Since we can do policy evaluation, we can do policy search!
...provided we have access to env state.

Agent-state based policies in POMDPs-(Mahajan)
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Back to example: Reactive hypothesis testing
0.7

Brute force search H,

B> Stochastic policy: {0,1} > A({Ho, H;1,c}). 9
1

> Characterized by two PMFs: 1rt(- | 0) and 1r(- | 1).

D> Discretize each PMF to 50 bins (approximately 1.7 X 108 policies)

0.8

P> Evaluate performance of each policy by previous formula to find the best policy.

R
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Back to example: Reactive hypothesis testing

Brute force search 24, 0.7

B> Stochastic policy: {0,1} > A({Ho, H;1,c}).
B> Characterized by two PMFs: 1r(- | 0) and (- | 1).

I 0.8

D> Discretize each PMF to 50 bins (approximately 1.7 X 108 policies)

P> Evaluate performance of each policy by previous formula to find the best policy.

Best (quantized) stochastic policy

> m(-]10)=1[1,0,0]and 1r(- | 1) = [0, 0.72,0.28]
D> J& = 0.6532 (21% worse than the best non-stationary policy)

g,

=30=
Z
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Back to example: Reactive hypothesis testing

Brute force search 24, 0.7

B> Stochastic policy: {0,1} > A({Ho, H;1,c}).
> Characterized by two PMFs: 1rt(- | 0) and 1r(- | 1).
D> Discretize each PMF to 50 bins (approximately 1.7 X 108 policies)

I 0.8

P> Evaluate performance of each policy by previous formula to find the best policy.

Best (quantized) stochastic policy

> m(-]10)=1[1,0,0]and 1r(- | 1) = [0, 0.72,0.28]
D> J& = 0.6532 (21% worse than the best non-stationary policy)

Main takeaway

P> Possible to search for stationary stochastic policies

g,

=30=
Z

Z N
K7\
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Another idea to search for stationary policies

State discretization (for cts state MDPs)

P> Quantize the state space into disjoint cells

P> Associate a grid point with each cell.

B> Construct a model (7, P) for a discrete MDP with grid cells.

> Compute policy 7t for the discrete MDP

Agent-state based policies in POMDPs-(Mahajan)
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Another idea to search for stationary policies

State discretization (for cts state MDPs)

P> Quantize the state space into disjoint cells

P> Associate a grid point with each cell.

B> Construct a model (7, P) for a discrete MDP with grid cells.

> Compute policy 7t for the discrete MDP

Observations

P> The discretized model is a POMDP. But we treat it as an MDP!
> Why does this work? For fine discretization:

P> The constructed discrete MDP model is close enough to the discrete POMDP.
P> The discrete POMDP model is close to the cts MDP model.

U

§31g
E S

Agent-state based policies in POMDPs-(Mahajan) N




Use the same idea for finding good policies in Ilsp

Intuition

> Any made-up model (Pass, a1s) where Pats: Z X A — A(Z) and 7a1s: Z X A — R gives rise
to an feasible policy 1Ta1s € Ilsp.

D> If the model (Pass, 7a1s) is close to the “true” model, then policy 1Tais is approx. optimal.

L/
N,
£32
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Use the same idea for finding good policies in Ilsp

Intuition

> Any made-up model (Pass, a1s) where Pats: Z X A — A(Z) and 7a1s: Z X A — R gives rise
to an feasible policy 1Ta1s € Ilsp.

D> If the model (Pass, 7a1s) is close to the “true” model, then policy 1Tais is approx. optimal.

How to make this precise?

> Need to measure “closeness” of models.
P> Depends on the type of approximation guarantees we want (absolute error vs relative error)

P> Large literature on approximation of MDPs. Need to extend it to POMDPs.

2°°S
LT\
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Quantifying model approximation

I
§\\\\\\\\"”/////%
=338
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Quantifying model approximation

Agent state {Z; };>1 and a model (Pass, 7a1s) is said to be an (&, 5)
approximate information state (AIS) if it is

Approximate (AP1) Approximately sufficient for performance evaluation
info state “E[Rt | He, A ] — vars(0 ¢ (He), At)| < &

(AP2) Approximately sufficient for predicting itself

As(P(Ziy1 = - | Hy, A¢), Pars(Zes1 = - | 0¢(H), Ar)) < O¢

r
Subramanian, Sinha, Seraj, and Mahajan, “Approximate information state for ... partially observed systems”, JMLR 2022. SN
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Quantifying model approximation

Approximate
info state

AIS based
approx DP

Agent state {Z; };>1 and a model (Pass, 7a1s) is said to be an (&, 5)
approximate information state (AIS) if it is
(AP1) Approximately sufficient for performance evaluation

|E[R¢ | Hy, At] — va1s(O'¢(Hy), Ar) | < &

(AP2) Approximately sufficient for predicting itself
As(P(Zts1 =+ | Hy, At), Pars(Zi41 =« | ¢ (He), Ar)) < Oy

Let 1Tars be the optimal policy for model (Pazs, 7a1s). Define TTars =
(TTa1s,1, TTAILS, 2, --.) Where

Tazs,t(Ne) = Tars (0t (he))

- _, 2
Then, Jnp—J(Tazs) =7 y[€+)’505(vﬁs)]

wheree = (1—y) X2y e, and 5= (1 —y) X2yt 16;.

J

Agent-state based policies in POMDPs-(Mahajan)
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Some remarks on AIS

> Two ways to interpret the results:
> Given the information state space Z, find the best compression 0. H;y —> Z

> Given any compression function o;. H; — Z, find the approximation error.

LI/
=34=
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Some remarks on AIS

> Two ways to interpret the results:
> Given the information state space Z, find the best compression 0. H;y —> Z

> Given any compression function o;. H; — Z, find the approximation error.

“ P> Key obs: the second interpretation allows us to develop AIS-based RL algorithms

|

|
SV,
=35%
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Some remarks on AIS

> Two ways to interpret the results:
B> Given the information state space Z, find the best compression 0. Hy —> Z

> Given any compression function o;. H; — Z, find the approximation error.

“ P> Key obs: the second interpretation allows us to develop AIS-based RL algorithms

-

> Results depend on the choice of metric on probability spaces.

> The bounds use what are known as integral probability metrics (IPM), which include
many commonly used metrics:

P> Total variation

> Wasserstein distance

M > Maximum mean discrepancy (MMD)

_

Agent-state based policies in POMDPs-(Mahajan)
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Example 1: Robustness to model mismatch in MDPs

Real-world What is the loss in performance if we
Simulation, A~ choose a policy using the simulation model
(P; 1/) model \P, 7/) and use it in the real world?

model

|
§\\\\\\\\Ill///,/%
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Example 1: Robustness to model mismatch in MDPs

Real-world What is the loss in performance if we
model _ _ : : : :
Simulation, A choose a policy using the simulation model
(P, T) model \P, 7/) and use it in the real world?

Model mismatch as an AIS

B> (Identity, P,7) is an (&, 8)-AIS with € = sup|7(s,a) —#(s,a)| and 05 =supds(P(- Is,a),P(-|s,a)).
s,a s,a

g,

=38=
Z

S
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Example 1: Robustness to model mismatch in MDPs

Miller, “How does the value function of a Markov deci-

Real-world sion process depend on the transition probabilities?” MOR

model _ :
Simulation, - 1997.

(P,?") model \P,?")

Model mismatch as an AIS

D> (Identity,P,7) is an (&,5)-AIS with € = sup|7 (s,a) — 7 (s,a)| and 65 = supds(P(- |s,a),P(- |s,a)).
s,a s,a

ds is total variation

om 2¢ yo span(r)
V(s) V(S)Sl_y-i- 1—y)

Recover bounds of Miller (1997).

U
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Example 1: Robustness to model mismatch in MDPs

Miller, “How does the value function of a Markov deci-

Real-world sion process depend on the transition probabilities?” MOR

model _ :
Simulation, - 1997.

(P, 4 ) model [, YV ) Asadi, Misra, Littman, “Lipscitz continuity in model-based
reinfocement learning,” ICML 2018.

Model mismatch as an AIS

D> (Identity,P,7) is an (&,5)-AIS with € = sup|7 (s,a) — 7 (s,a)| and 65 = supds(P(- |s,a),P(- |s,a)).
s,a s,a

ds is total variation ds is Wasserstein distance

o 26 | yospan(r) _ym 2¢
V)=V S 75+ ST V) =VIS) <7 5+ Ty d —vLp)

Recover bounds of Miiller (1997). Recover bounds of Asadi, Misra, Littman (2018).

§\%\\\\\u”//,,/
=408
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Example 2: Feature abstraction in MDPs

What is the loss in performance if we
choose a policy using the abstract model
and use it in the original model?

(P, #) is determined from (P, r) using @

Agent-state based policies in POMDPs-(Mahajan)




Example 2: Feature abstraction in MDPs

(p What is the loss in performance if we
choose a policy using the abstract model
S and use it in the original model?

(P, #) is determined from (P, r) using @
Feature abstraction as AIS

> (@, P,7)is an (&, §)-AIS with € = sup|r(s,a) — 7 (@(s),a)|
s,a

and 55 = supdg(P(@~1(+)Is,a),P(- |p(s),a).

L7
SR

S42%
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Example 2: Feature abstraction in MDPs

(p Abel, Hershkowitz, Littman, “Near optimal behavior via ap-
proximate state abstraction,” ICML 2016.

S

(P, #) is determined from (P, r) using @
Feature abstraction as AIS

> (@, P, 7)is an (&, §)-AIS with € = sup|r(s,a) — #(@(s),a)]
s,a

and 55 = supdg(P(@p~1(-)Is,a), P(- |p(s),a).

ds is total variation

om 2¢ |, yOsspan(r)
V(s) V(S)Sl_y-i- 1—y)

Improve bounds of Abel et al. (2016)

§\\\\\\\\m///,,/
£43E
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Example 2: Feature abstraction in MDPs

(p Abel, Hershkowitz, Littman, “Near optimal behavior via ap-
proximate state abstraction,” ICML 2016.

S Gelada, Kumar, Buckman, Nachum, Bellemare, “DeepMDP:
Learning continuous latent space models for representa-
tion learning,” ICML 2019.

(P, #) is determined from (P, r) using @
Feature abstraction as AIS

> (@, P, 7)is an (&, §)-AIS with € = sup|r(s,a) — #(@(s),a)]
s,a

and 55 = supdg(P(@p~1(-)Is,a), P(- |p(s),a).

ds is total variation ds is Wasserstein distance

2¢ | yOsspan(r) 2¢  2y8sllVIL
V(s)—VT(s) < + — YT =
(s) (s) T (1—-y)? V(s) V(s)sl_y+ 1—7)?

Improve bounds of Abel et al. (2016) Recover bounds of Gelada et al. (2019).
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Example 3: Belief approximation in POMDPs

What is the loss in performance if we
choose a policy using the approximate be-
liefs and use it in the original model?

Belief space Quantized beliefs

Agent-state based policies in POMDPs-(Mahajan)




Example 3: Belief approximation in POMDPs

What is the loss in performance if we
choose a policy using the approximate be-
liefs and use it in the original model?

Belief space Quantized beliefs
Belief approximation in POMDPs

P> Quantized cells of radius € (in terms of total variation) are (&|/7 ||, 3&)-AIS.

Vg,
246
TS

=
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Example 3: Belief approximation in POMDPs

Francois-Lavet, Rabusseau, Pineau, Ernst, Fonteneau, “On
overfitting and asymptotic bias in batch reinforcement learn-
ing with partial observability,” JAIR 2019.

Belief space Quantized beliefs
Belief approximation in POMDPs

P> Quantized cells of radius € (in terms of total variation) are (&|/7 ||, 3&)-AIS.

2e][7 oo , 6YElT oo
-y  (1-y)?
Improve bounds of Francois Lavet et al. (2019) by a factor of 1/(1 — y).

V(s)—VT(s) <

§\\\\\\\\\lllll////é
£47%
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Outline

based Iearnmg P> Agent state based actor-critic

"?#;ﬁ Agent-state P> Agent sta}te' based Q-Learn'mg |
l A B> Self-predictive representation learning
£

SV,
£48<=
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Agent-state based Q-learning (ASQL)

Qis1(z,a) = Qu(z, a) + (2, a) [Rt +ymax Q(Zes1, @) — Qe(z, @)

a' eA

Agent-state based policies in POMDPs-(Mahajan)
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Agent-state based Q-learning (ASQL)

Qis1(z,a) = Qu(z, a) + (2, a) [Rt +ymax Q(Zes1, @) — Qe(z, @)

aEeA
Key Questions

P> Does this converge?
> To what?

Agent-state based policies in POMDPs-(Mahajan)
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Agent-state based Q-learning (ASQL)

Qis1(z,a) = Qu(z, a) + (2, a) [Rt +y max Q(Zesr, @) — Q2 a)]

a' eA

Key Questions Challenges

P> Does this converge? B> {Z:}+>1 is not a controlled Markov process.

P> To what? > No DP to find optimal policy in Ilsp

§\\\\\\\\“”//////
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Agent-state based Q-learning (ASQL)

Qis1(z,a) = Qu(z, a) + (2, a) [Rt +ymax Q(Zes1, @) — Qe(z, @)

a' eA

Key Questions Challenges

|

P> Does this converge? B> {Z:}+>1 is not a controlled Markov process.

P> To what? > No DP to find optimal policy in Ilsp

Main result: Converges, under mild conditions, but not to optimal.
Characterize degree of sub-optimality and use it to improve algorithm.

Agent-state based policies in POMDPs-(Mahajan)
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Characterization of convergence

7

Sinha, Geist, Mahajan, “Periodic agent-state based Q-learning for POMDPs”, Neurips 2024. fcop2
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Characterization of convergence

(A1) The behavior policy u such that the MC { (S, Y, Zt, At) }¢>1 iS
irreducible and aperiodic with stationary distribution C*.

Moreover, each (z, a) is visited infinitely often.

Assumptions _ o
(A2) The learning rate satisfies: «:(z,a) = 0 when (z,a) # (Zs, A¢)

and for all (z,a):

> ar(z,a) =00 and D> od(z,a) <
£>1 £>1

S\,

=50=
= =
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Sinha, Geist, Mahajan, “Periodic agent-state based Q-learning for POMDPs”, Neurips 2024.
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Characterization of convergence

(A1) The behavior policy u such that the MC { (S, Y, Zt, At) }¢>1 iS
irreducible and aperiodic with stationary distribution C*.

Moreover, each (z, a) is visited infinitely often.

Assumptions _ o
(A2) The learning rate satisfies: xt(z,a) = 0 when (z,a) + (Zs, At)

and for all (z,a):

> ar(z,a) =00 and D> od(z,a) < ©
£>1 £>1

Under (A1) and (A2), ASQL converges almost surely to QASQL where

asqL IS the Q-function for the model (Pqq,, Tasq. ) 9iven by
Convergence

guarantee 'y ESXY

TKSQL(Z’OL) = Z g”(S|Z,a)T(S,a)
seS

Pisq(Z'1z,a) = > 1z =¢(z,¥,a)}P(Y'|s,a)CH(slz,a

N

J

Sinha, Geist, Mahajan, “Periodic agent-state based Q-learning for POMDPs”, Neurips 2024.
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But how good is the converged policy?

Salient features

> WKSQL € IIsp. So, doesn't converge to best agent-state based policy since JS*D =< f:]D.
> May not even converge to the optimal within Ilsp.

B> In fact, the converged policy TFKSQL depends on the exploration policy!

§\\\\\\\“”////
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But how good is the converged policy?

Salient features

> WKSQL € Ilsp. So, doesn't converge to best agent-state based policy since J¢p < f:]D.

> May not even converge to the optimal within Ilsp.

B> In fact, the converged policy ¥, depends on the exploration policy!
ASQL

Convergence guarantees

> 1t

asqL 1S optimal policy of model (Prsq,, Tasqr )-

P> So, we can use AIS approximation bounds to get sub-optimality bounds.

> But give bounds between Jxp — J (Tthsqu) rather than Jep — J(Tthsq)-

Agent-state based policies in POMDPs-(Mahajan)
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Can we do better?

Q-learning will always learn policies
in Ilgp. But that is the worst policy class!

Sy,

£2°2¢§
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Can we do better?

Q-learning will always learn policies
in Ilgp. But that is the worst policy class!

Periodic policies

mw= (Y, 7@, . 7D g @ @
Periodic policies are a class of finitely parameterized non-stationary policies.

Agent-state based policies in POMDPs-(Mahajan)
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Periodic ASQL

Qfi1(z,a) = Qf(z,a) + &f(z, a)[

R: + y max QMJF”] (Zg+1,a’

a' eAa

Sinha, Geist, Mahajan, “Periodic agent-state based Q-learning for POMDPs”, Neurips 2024.
Agent-state based policies in POMDPs-(Mahajan)

——(2f(z,a)]
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Periodic ASQL

Qt.1(z,a) =Qi(z,a) + &¢(z,a) [Rt+yma§1Q”+” Zir1,a) —Qf(z,a)]
a e

Similar guarantees as before

B> Periodic ASQL converges almost surely to the solution of a periodic MDP.

P> The converged periodic policy depends on the exploration policy.

> We can use AIS approxiation bounds to get sub-optimality bounds for the converged policy.

§\\\\\\\“”////

Sinha, Geist, Mahajan, “Periodic agent-state based Q-learning for POMDPs”, Neurips 2024. S fc32
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PAQSL may outperform ASQL

Agent-state based policies in POMDPs-(Mahajan)

Sy,

%
,54

4
N




PAQSL may outperform ASQL

Search over stationary policies

Consider three exploration policies
>y =1[0.2;0.8]
> px =[0.5;0.5]
> u=10.8;0.2]

S\,

S ,2
&
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PAQSL may outperform ASQL

Search over stationary policies

Consider three exploration policies
>y, =1[0.2;0.8] J™ =0.0

> u, =1[0.5;0.5] J™2=1.064

> u=1[0.8;0.2] J™ =2.633
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PAQSL may outperform ASQL

Agent-state based policies in POMDPs-(Mahajan)

Search over stationary policies

Consider three exploration policies
> up =10.2;0.8] J™ =0.0

> up =10.5;0.5] J™2=1.064
B> u=1[038;0.2] J™s =2.633

Search over period L = 2 policies

Consider three exploration policies
> up =10.2,0.8;0.8,0.2]
> u, =[0.5,0.5;0.5,0.5]
> uz3 =10.8,0.2;0.2,0.8]
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PAQSL may outperform ASQL

Agent-state based policies in POMDPs-(Mahajan)

Search over stationary policies

Consider three exploration policies
> up =10.2;0.8] J™ =0.0

> up =10.5;0.5] J™2=1.064
B> u=1[038;0.2] J™s =2.633

Search over period L = 2 policies

Consider three exploration policies

> up =10.2,0.8;0.8,0.2] J™ = 6.793
> u =[0.5,0.5;0.5,0.5] J™=2=1.064
> u3 =1[0.8,0.2;0.2,0.8] J™s = 0.532
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Agent-state based actor-critic (ASAC)

Faster timescale:

QT 1(z,a) = QF (2, a) + x(z, a) [Rt FYQF (Zes, A1) — Qu(2, a)]

Slower timescale: Use policy gradient to update 71

Subramanian, Sinha, Seraj, and Mahajan, “Approximate information state for ... partially observed systems”, JMLR 2022.
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Agent-state based actor-critic (ASAC)

Faster timescale:

QT 1(z,a) = QF (2, a) + x(z, a) [Rt FYQF (Zes, A1) — Qu(2, a)]

Slower timescale: Use policy gradient to update 71

Some comments

B> Similar to ASQL, can show that {Q{ };>1 converges to some Qxsac almost surely.

P> Different ways to compute the policy gradient. Either converges to something related to
QRxsac or leads to biased gradients. Difficult to characterize convergence.

U

Subramanian, Sinha, Seraj, and Mahajan, “Approximate information state for ... partially observed systems”, JMLR 2022. fco2

S
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All this theory is good, but

what does it mean in practice?




Adding representation learning losses help
ASQL

Qi+1(z,a) = Qi(z,a) + xe(z,a) [Rt +ymax Q¢(Zi4+1,a’) — Qy(z, a)]

a' eAa

Sub-optimality bound: f’,:D — J(T_fXSQL) < function(e, 6) where

& = SUp|E[R¢lhy, acl — 145, (Tt(ht), ar) |
he,ae

6t = sup ds(P(Zp+1lhe, ar), Pagq (Ze+110¢(he), ar))

h¢,ae
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Adding representation learning losses help
ASQL

Qi+1(z,a) = Qi(z,a) + xe(z,a) [

he, as

Ri + y max Q¢(Zi+1,a’) — Qe(2, Ol)]
aecAa
Sub-optimality bound: f;D — J(TfﬁSQL) < function(e, 6) where
& = SUp|E[R¢lhy, acl — 145, (Tt(ht), ar) |
he,at

6t = sup ds(P(Zp+1lhe, ar), Pagq (Ze+110¢(he), ar))

i Main idea: Minimizing € and ¢ will lead to better learning.
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Adding AIS losses

|
—r—» Estimated reward func.
I

—:—» Estimated obs. distr.

AIS
predictor

AIS Block

Q function

l—b Q function

From
replay buffer

e-greedy

Q-learning block

SeyedSalehi, Akbarzadeh, Sinha, Mahajan, “Approximate information state based convergence analysis of recurrent Q-learning”, EWRL 2023.
Subramanian, Sinha, Seraj, and Mahajan, “Approximate information state for ... partially observed systems”, JMLR 2022.

7
Ni, et al, “Briding State and History Representations: Understanding self-predictive RL”, ICLR 2024. -

£57%
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Adding AIS losses

|
—r—» Estimated reward func.
I

—:—» Estimated obs. distr.

AIS
predictor

AIS Block

Q function

l—b Q function

From
replay buffer

e-greedy

Q-learning block

Same idea in actor-critic algorithms

SeyedSalehi, Akbarzadeh, Sinha, Mahajan, “Approximate information state based convergence analysis of recurrent Q-learning”, EWRL 2023.
Subramanian, Sinha, Seraj, and Mahajan, “Approximate information state for ... partially observed systems”, JMLR 2022.

7
Ni, et al, “Briding State and History Representations: Understanding self-predictive RL”, ICLR 2024. N

£57%
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Minigrid test bench

Lava Crossing Door Key

P> Partially observable gridworlds with increasing complexity

B> Compare several variations of QL+AIS with R2D?2

Agent-state based policies in POMDPs-(Mahajan)
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Experimental results

matrix rank

matrix rank

MiniGrid-SimpleCrossingSIN1-v0
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MiniGrid-SimpleCrossingSIN2-v(
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R2D2
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7P (EMA)

P (Online)

1 2 3 4
environment steps ~ x10°

MiniGrid-LavaCrossingSIN3-v0
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=110

opP
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7P (EMA)
P (Online)
1 2 3 4
environment steps X 10°

MiniGrid-LavaCrossingS11N5-v0

MiniGrid-SimpleCrossingSIN3-v0

MiniGrid-SimpleCrossingS11N5-v0

MiniGrid-LavaCrossingS9N1-v0

op
R2D2
P (Detached)
7P (EMA)
P (Online)
1 2 3 4
environment steps X 10°

MiniGrid-Unlock-v0

OoP
R2D2
ZP (Detached)
7P (EMA)
P (Online)
1 2 3 4
environment steps X 10°

MiniGrid-UnlockPickup-v0

oP
R2D2

7P (Detached)

P (EMA)
ZP (Online)

2 3

environment steps x10%

MiniGrid-DoorKey-8x8-v0

matrix rank

— op
\— R2D2

+— 7P (Detached)
—— 7P (EMA)

3 4
environment steps ~ x10°

MiniGrid-KeyCorridorS3R1-v0

(034
R2D2
P_(Detached).

P (EMA)
ZP (Online)

2 3

environment steps x10°

matrix rank

matrix rank
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7P (EMA)
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1 2 3 4
environment steps x106

MiniGrid-KeyCorridorS3R2-v0

—— R2D2
—— 7P (Detached)
—— 7P (EMA)
—— 7P (Online)

2 3 4
environment steps x106

MiniGrid-KeyCorridorS3R3-v0

— op
R2D2
P (Detached)
7P (EMA)
P (Online)

1 2 3 4
environment steps x106

matrix rank

op
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Ni, et al, “Briding State and History Representations: Understanding self-predictive RL”, ICLR 2024.
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Conclusion

Partial characterization of
(approxmately) optimal agent-state
based policies in different policy classes.

_J

Jés — J

A general framework for analyzing and
improving RL algorithms for POMDPs.
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Conclusion

Partial characterization of
(approxmately) optimal agent-state
based policies in different policy classes.

J*

——

A general framework for analyzing and
improving RL algorithms for POMDPs.

tﬂ Jss ——

Theory is still in its infancy. There are lots
of interesting question to be answered.
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: aditya.mahajan@mcgill.ca
- https://adityam.github.i0

Thank you

: Agent-state based policies on POMDPs
- https://arxiv.org/abs/2409.15703




