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Alpha Go
Arcade games
Robotic grasping

Recent successes of RL

Algorithms based on comprehensive theory

The theory is restricted almost exclusively
to systems with perfect state observations

Many real-world applications are
partially observed

Healthcare

Autonomous driving

Finance (portfolio management)

Retail and marketing

How do we develop a theory for RL for partially observed systems?



Agent-state based policies in POMDPs–(Mahajan)
3

Background
Review of MDPs and RL
Review of POMDPs
Why is RL for POMDPs difficult?

Agent-state
based planning

Agent state based policies
Policy classes
Planning for different policy classes

Agent-state
based learning

Agent state based Q-Learning
Self-predictive representation learning
Agent state based actor-critic

Outline



Agent-state based policies in POMDPs–(Mahajan)
4

Background
Review of MDPs and RL
Review of POMDPs
Why is RL for POMDPs difficult?

Agent-state
based planning

Agent state based policies
Policy classes
Planning for different policy classes

Agent-state
based learning

Agent state based Q-Learning
Self-predictive representation learning
Agent state based actor-critic

Outline



Agent-state based policies in POMDPs–(Mahajan)
5

MDP: MARKOV DECISION PROCESS

Dynamics: ℙ(𝑆𝑡+1 ∣ 𝑆𝑡, 𝐴𝑡)

Observations: 𝑆𝑡
Reward 𝑅𝑡 = 𝑟(𝑆𝑡, 𝐴𝑡).

Action: 𝐴𝑡 ∼ 𝜋𝑡(𝑆1:𝑡, 𝐴1:𝑡−1).

𝜋 = (𝜋𝑡)𝑡≥1 is called a policy.

The objective is to choose a policy 𝜋 to maximize:

𝐽(𝜋) ≔ 𝔼𝜋[
∞

∑
𝑡=1

𝛾𝑡−1𝑅𝑡]

Review: Markov decision processes (MDPs)

Agent

Environment
State 𝑆𝑡 ∈ 𝒮

Obs.
𝑆𝑡

Action
𝐴𝑡 ∈ 𝒜
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Reward 𝑅𝑡 = 𝑟(𝑆𝑡, 𝐴𝑡).

Action: 𝐴𝑡 ∼ 𝜋𝑡(𝑆1:𝑡, 𝐴1:𝑡−1).

𝜋 = (𝜋𝑡)𝑡≥1 is called a policy.

The objective is to choose a policy 𝜋 to maximize:

𝐽(𝜋) ≔ 𝔼𝜋[
∞

∑
𝑡=1

𝛾𝑡−1𝑅𝑡]Conceptual challenge

Brute force search has an exponential complexity in time horizon.

How to efficiently search an optimal policy?

Review: Markov decision processes (MDPs)

Agent

Environment
State 𝑆𝑡 ∈ 𝒮

Obs.
𝑆𝑡

Action
𝐴𝑡 ∈ 𝒜
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State 𝑆𝑡 ∈ 𝒮
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𝑆𝑡

Action
𝐴𝑡 ∈ 𝒜Principle of

Irrelevant
information

There is no loss of optimality in choosing the
action 𝐴𝑡 as a function of the current state 𝑆𝑡

📰 Blackwell, “Memoryless strategies in finite-stage dynamic prog.,” Annals Math. Stats, 1964.

Review: Key simplifying ideas
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Agent

Environment
State 𝑆𝑡 ∈ 𝒮

Obs.
𝑆𝑡

Action
𝐴𝑡 ∈ 𝒜Principle of

Irrelevant
information

There is no loss of optimality in choosing the
action 𝐴𝑡 as a function of the current state 𝑆𝑡

📰 Blackwell, “Memoryless strategies in finite-stage dynamic prog.,” Annals Math. Stats, 1964.

Principle of
Optimality

The optimal control policy is given a DP with state 𝑆𝑡:

𝑉(𝑠) = max
𝑎∈𝒜

{𝑟(𝑠, 𝑎) + 𝛾∫𝑉(𝑠′)𝑃(𝑑𝑠′|𝑠, 𝑎)}

📰 Bellman, “Dynamic Programming,” 1957.

Review: Key simplifying ideas
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Agent

Environment
State 𝑆𝑡 ∈ 𝒮

Obs.
𝑆𝑡

Action
𝐴𝑡 ∈ 𝒜

The (online) RL setting

Dynamics and reward functions are unknown.

Agent can interact with the environment and
observe states and rewards.

Design algorithm that asymptotically identify an optimal policy.

Review: Reinforcement Learning (RL)
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Agent

Environment
State 𝑆𝑡 ∈ 𝒮

Obs.
𝑆𝑡

Action
𝐴𝑡 ∈ 𝒜

The (online) RL setting

Dynamics and reward functions are unknown.

Agent can interact with the environment and
observe states and rewards.

Design algorithm that asymptotically identify an optimal policy.

Value based
methods

Estimate the Q-function 𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾∫𝑉(𝑠′)𝑃(𝑑𝑠′|𝑠, 𝑎)
using temporal difference learning (i.e., stochastic approximation).

[Watkins and Dayan, 1992; Tsitsiklis, 1994]

Policy-based
methods

Use parameterized policies 𝜋𝜃. Estimate ∇𝜃𝑉𝜃(𝑠) using single trajec­
tory gradient estimates (i.e., infitesimal perturbation analysis).

[Sutton 2000, Marback and Tsitsiklis 2001], [Cao, 1985; Ho, 1987]

Review: Reinforcement Learning (RL)



Why is learning difficult in partially
observable environments?
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State 𝑆𝑡 ∈ 𝒮

Obs.
𝑌𝑡 ∈ 𝒴

Action
𝐴𝑡 ∈ 𝒜

POMDPs: Partially observable Markov decision processes
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Environment
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Obs.
𝑌𝑡 ∈ 𝒴

Action
𝐴𝑡 ∈ 𝒜

ℙ(𝑆𝑡+1, 𝑌𝑡+1|𝑆1:𝑡, 𝑌1:𝑡, 𝐴1:𝑡)
= ℙ(𝑆𝑡+1, 𝑌𝑡+1|𝑆𝑡, 𝐴𝑡)

Reward: 𝑅𝑡 = 𝑟(𝑆𝑡, 𝐴𝑡).

Policy: 𝝅⃗ = (𝜋⃗1, 𝜋⃗2, …) where
𝐴𝑡 ∼ 𝜋⃗𝑡(𝑌1:𝑡, 𝐴1:𝑡−1)

Performance:
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∞

∑
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State 𝑆𝑡 ∈ 𝒮

Obs.
𝑌𝑡 ∈ 𝒴

Action
𝐴𝑡 ∈ 𝒜

ℙ(𝑆𝑡+1, 𝑌𝑡+1|𝑆1:𝑡, 𝑌1:𝑡, 𝐴1:𝑡)
= ℙ(𝑆𝑡+1, 𝑌𝑡+1|𝑆𝑡, 𝐴𝑡)

Reward: 𝑅𝑡 = 𝑟(𝑆𝑡, 𝐴𝑡).

Policy: 𝝅⃗ = (𝜋⃗1, 𝜋⃗2, …) where
𝐴𝑡 ∼ 𝜋⃗𝑡(𝑌1:𝑡, 𝐴1:𝑡−1)

Performance:

𝐽(𝝅⃗) ≔ 𝔼𝝅⃗[
∞

∑
𝑡=1

𝛾𝑡−1𝑅𝑡 | 𝑆1 ∼ 𝜉1]

Objective: Find the (history-dependent) policy 𝝅⃗ that maximizes 𝐽(𝝅⃗)

POMDPs: Partially observable Markov decision processes
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Key simplifying idea

Define belief state 𝐵𝑡 ∈ Δ(𝒮) as 𝐵𝑡(𝑠) = ℙ(𝑆𝑡 = 𝑠 ∣ 𝑌1:𝑡, 𝐴1:𝑡−1).

Belief state updates in a state-like manner: 𝐵𝑡+1 = function(𝐵𝑡, 𝑌𝑡+1, 𝐴𝑡).

Belief state is sufficient to evaluate rewards: 𝔼[𝑅𝑡 ∣ 𝑌1:𝑡, 𝐴1:𝑡] = 𝑟̂(𝐵𝑡, 𝐴𝑡).

Thus, {𝐵𝑡}𝑡≥1 is a perfectly observed controlled Markov process. 

📰Astrom, “Optimal control of Markov processes with incomplete information,” JMAA 1965.
📰 Stratonovich, “Conditional Markov Processes,” TVP 1960.

Review: Belief-state based planning



Agent-state based policies in POMDPs–(Mahajan)
9

Key simplifying idea

Define belief state 𝐵𝑡 ∈ Δ(𝒮) as 𝐵𝑡(𝑠) = ℙ(𝑆𝑡 = 𝑠 ∣ 𝑌1:𝑡, 𝐴1:𝑡−1).

Belief state updates in a state-like manner: 𝐵𝑡+1 = function(𝐵𝑡, 𝑌𝑡+1, 𝐴𝑡).

Belief state is sufficient to evaluate rewards: 𝔼[𝑅𝑡 ∣ 𝑌1:𝑡, 𝐴1:𝑡] = 𝑟̂(𝐵𝑡, 𝐴𝑡).

Thus, {𝐵𝑡}𝑡≥1 is a perfectly observed controlled Markov process. Therefore:

Structure of
optimal policy

There is no loss of optimality in choosing the action 𝐴𝑡 as a function
of the belief state 𝐵𝑡

Dynamic
Program

The optimal control policy is given a DP with belief 𝐵𝑡 as state.

Review: Belief-state based planning
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Implications
for planning

Allows the use of the MDP machinery for partially observed sys.

Various exact and approximate algorithms to efficiently solve DP.

Exact: incremental pruning, witness algorithm, linear support algo
Approximate: QMDP, point based methods, SARSOP, DESPOT, . . .

Implications of the POMDP modeling framework



Agent-state based policies in POMDPs–(Mahajan)
10

Implications
for planning

Allows the use of the MDP machinery for partially observed sys.

Various exact and approximate algorithms to efficiently solve DP.

Exact: incremental pruning, witness algorithm, linear support algo
Approximate: QMDP, point based methods, SARSOP, DESPOT, . . .

Implications of the POMDP modeling framework

Implications
for learning

The construction of the belief state depends on the system model.

So, when the system model is unknown, we cannot construct the be­
lief state and therefore cannot use standard RL algorithms.



Agent-state based policies in POMDPs–(Mahajan)
10

Implications
for planning

Allows the use of the MDP machinery for partially observed sys.

Various exact and approximate algorithms to efficiently solve DP.

Exact: incremental pruning, witness algorithm, linear support algo
Approximate: QMDP, point based methods, SARSOP, DESPOT, . . .

Implications of the POMDP modeling framework

Implications
for learning

The construction of the belief state depends on the system model.

So, when the system model is unknown, we cannot construct the be­
lief state and therefore cannot use standard RL algorithms.

On the theoretical side:
Propose alternative methods: PSRs (predictive state representa­
tions), bisimulation metrics, . . .

Good theoretical guarantees, but difficult to scale.



Agent-state based policies in POMDPs–(Mahajan)
10

Implications
for planning

Allows the use of the MDP machinery for partially observed sys.

Various exact and approximate algorithms to efficiently solve DP.

Exact: incremental pruning, witness algorithm, linear support algo
Approximate: QMDP, point based methods, SARSOP, DESPOT, . . .

Implications of the POMDP modeling framework

Implications
for learning

The construction of the belief state depends on the system model.

So, when the system model is unknown, we cannot construct the be­
lief state and therefore cannot use standard RL algorithms.

On the theoretical side:
Propose alternative methods: PSRs (predictive state representa­
tions), bisimulation metrics, . . .

Good theoretical guarantees, but difficult to scale.

On the practical side:
Simply stack the previous 𝑘 observations and treat it as a “state”.
Instead of a CNN, use an RNN to model policy and action-value fn.

Can be made to work but lose theoretical guarantees and insights.



Deep RL learns agent-state based policies

Environment

Observations

Actions
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Agent

Environment
State 𝑆𝑡 ∈ 𝒮

Obs.
𝑌𝑡 ∈ 𝒴

Action
𝐴𝑡 ∈ 𝒜

Agent state: 𝑍𝑡 ∈ 𝒵, where
𝑍𝑡+1 = 𝜙(𝑍𝑡, 𝑌𝑡+1, 𝐴𝑡)

Examples:
𝑍𝑡 = (𝑌𝑡−𝑛:𝑡, 𝐴𝑡−𝑛:𝑡−1)
Finite-state controllers
Recurrent neural networks

Abstract model of agent-state based policies
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Agent

Environment
State 𝑆𝑡 ∈ 𝒮

Obs.
𝑌𝑡 ∈ 𝒴

Action
𝐴𝑡 ∈ 𝒜

Agent state: 𝑍𝑡 ∈ 𝒵, where
𝑍𝑡+1 = 𝜙(𝑍𝑡, 𝑌𝑡+1, 𝐴𝑡)

Examples:
𝑍𝑡 = (𝑌𝑡−𝑛:𝑡, 𝐴𝑡−𝑛:𝑡−1)
Finite-state controllers
Recurrent neural networks

Notation: 𝐻𝑡 = (𝑌1:𝑡, 𝐴1:𝑡−1)
and 𝑍𝑡 = 𝜎⃗𝑡(𝐻𝑡).

Fundamental Questions

Q1. When is there no loss of optimality in restricting attention to agent state based policies?

Q2. For given 𝒵 and 𝜙, find optimal agent-state based policy.

Q3. For given 𝒵, find optimal state update rule 𝜙 and optimal agent-state based policy.

Abstract model of agent-state based policies
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Information
State

Agent state is an information state if it satisfies:
(P1) Sufficient for performance evaluation ∃𝑟𝖨𝖲∶ 𝒵 ×𝒜→ ℝ s.t.

𝔼[𝑅𝑡 ∣ 𝐻𝑡, 𝐴𝑡] = 𝑟𝖨𝖲(𝜎⃗𝑡(𝐻𝑡), 𝐴𝑡)

(P2) Sufficient for predicting itself ∃𝑃𝖨𝖲∶ 𝒵 ×𝒜→ Δ(𝒵) s.t.

ℙ(𝑍𝑡+1 = ⋅ ∣ 𝐻𝑡, 𝐴𝑡) = 𝑃𝖨𝖲(𝑍𝑡+1 = ⋅ ∣ 𝜎⃗𝑡(𝐻𝑡), 𝐴𝑡)

Answer to Q1: Information states
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Agent state is an information state if it satisfies:
(P1) Sufficient for performance evaluation ∃𝑟𝖨𝖲∶ 𝒵 ×𝒜→ ℝ s.t.

𝔼[𝑅𝑡 ∣ 𝐻𝑡, 𝐴𝑡] = 𝑟𝖨𝖲(𝜎⃗𝑡(𝐻𝑡), 𝐴𝑡)

(P2) Sufficient for predicting itself ∃𝑃𝖨𝖲∶ 𝒵 ×𝒜→ Δ(𝒵) s.t.

ℙ(𝑍𝑡+1 = ⋅ ∣ 𝐻𝑡, 𝐴𝑡) = 𝑃𝖨𝖲(𝑍𝑡+1 = ⋅ ∣ 𝜎⃗𝑡(𝐻𝑡), 𝐴𝑡)

Info state
based DP

Consider the following DP:

𝑄⋆
𝖨𝖲(𝑧, 𝑎) = 𝑟𝖨𝖲(𝑧, 𝑎) + ∑

𝑧′∈𝒵
𝑃𝖨𝖲(𝑧′|𝑧, 𝑎)𝑉⋆

𝖨𝖲(𝑧, 𝑎)

𝑉⋆
𝖨𝖲(𝑧) = max

𝑎∈𝒜
𝑄⋆

𝖨𝖲(𝑧, 𝑎), 𝜋⋆
𝖨𝖲(𝑧) = argmax

𝑎∈𝒜
𝑄⋆

𝖨𝖲(𝑧, 𝑎).

Define 𝜋⃗𝖨𝖲,𝑡(ℎ𝑡) ≔ 𝜋⋆
𝖨𝖲(𝜎⃗𝑡(ℎ𝑡)). Then the policy 𝝅⃗𝖨𝖲 = (𝜋⃗𝖨𝖲,1, 𝜋⃗𝖨𝖲,2, …)

is optimal, i.e., 𝐽(𝝅⃗𝖨𝖲) = 𝐽⋆
𝖭𝖣.

Answer to Q1: Information states
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Examples of info states

Current state in MDPs

Belief state 𝐵𝑡 = ℙ(𝑆𝑡 = ⋅|𝐻𝑡, 𝐴𝑡) in POMDPs

Conditional mean in LQG models

. . .

More on information states
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Examples of info states

Current state in MDPs

Belief state 𝐵𝑡 = ℙ(𝑆𝑡 = ⋅|𝐻𝑡, 𝐴𝑡) in POMDPs

Conditional mean in LQG models

. . . 

Non-examples of info state

Last observation in POMDPs

Window of last obs. (frame stacking)

Recurrent neural networks

. . .

Info states ≡ DP info

What to do if agent state is not an information state?

More on information states
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General idea of DP

𝑉𝑡(𝑧𝑡) = min
𝑎𝑡∈𝒜

𝔼[current reward + future reward | 𝑍𝑡 = 𝑧𝑡, 𝐴𝑡 = 𝑎𝑡]

= min
𝑎𝑡∈𝒜

𝔼[current reward + 𝔼[future reward ∣ 𝑍𝑡+1] | 𝑍𝑡 = 𝑧𝑡, 𝐴𝑡 = 𝑎𝑡]
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𝑎𝑡∈𝒜
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= min
𝑎𝑡∈𝒜

𝔼[current reward + 𝔼[future reward ∣ 𝑍𝑡+1] | 𝑍𝑡 = 𝑧𝑡, 𝐴𝑡 = 𝑎𝑡]

= min
𝑎𝑡∈𝒜

𝔼[[current reward +𝑉𝑡+1(𝑍𝑡+1) | 𝑍𝑡 = 𝑧𝑡, 𝐴𝑡 = 𝑎𝑡]

When agent state is not info-state:

𝜎(𝑍𝑡, 𝐴𝑡) ⊄ 𝜎(𝑍𝑡+1). Thus, cannot use smoothing property of conditional expectation and

𝔼[𝔼[future reward ∣ 𝑍𝑡+1]| 𝑍𝑡, 𝐴𝑡] ≠ 𝔼[cost-to-go | 𝑍𝑡, 𝐴𝑡]

Dynamic programming decomposition does not work
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Π⃗𝖭𝖲: history-dependent Non-stationary Stochastic

Π⃗𝖭𝖣: history-dependent Non-stationary Deterministic

𝐽⋆
𝖭𝖲 = sup

𝝅⃗∈Π⃗𝖭𝖲

𝐽(𝝅⃗).

𝐽⋆
𝖭𝖣 = sup

𝝅⃗∈Π⃗𝖭𝖣

𝐽(𝝅⃗).

There is no loss of optimality in restricting attention to deterministic
policies (follows from Kuhn's theorem in Game Theory)

𝐽⋆
𝖭𝖣 = 𝐽⋆

𝖭𝖲

Policy classes for history based policies
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Π𝖲𝖲 : agent-state based Stationary Stochastic
𝝅 = (𝜋, 𝜋,…), 𝜋∶ 𝒵 → Δ(𝒜)
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𝝅 = (𝜋1, 𝜋2,…), 𝜋𝑡∶ 𝒵 →𝒜
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𝝅 = (𝜋, 𝜋,…), 𝜋∶ 𝒵 → Δ(𝒜)
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𝝅 = (𝜋1, 𝜋2,…), 𝜋𝑡∶ 𝒵 → Δ(𝒜)

Π𝖭𝖣 : agent-state based Non-stationary Deterministic
𝝅 = (𝜋1, 𝜋2,…), 𝜋𝑡∶ 𝒵 →𝒜

Π𝖲𝖲 : agent-state based Stationary Stochastic
𝝅 = (𝜋, 𝜋,…), 𝜋∶ 𝒵 → Δ(𝒜)

Π𝖲𝖣 : agent-state based Stationary Deterministic
𝝅 = (𝜋, 𝜋,…), 𝜋∶ 𝒵 →𝒜

𝐽⋆𝖭𝖲 = sup
𝝅∈Π𝖭𝖲

𝐽(𝝅).

𝐽⋆𝖭𝖣 = sup
𝝅∈Π𝖭𝖣

𝐽(𝝅).

𝐽⋆𝖲𝖲 = sup
𝝅∈Π𝖲𝖲

𝐽(𝝅).

𝐽⋆𝖲𝖣 = sup
𝝅∈Π𝖲𝖣

𝐽(𝝅).

Policy classes for agent state based policies
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Relationship between different policy classes

𝐽⋆𝖲𝖣

𝐽⋆𝖲𝖲

𝐽⋆𝖭𝖣

𝐽⋆𝖭𝖲

𝐽⋆
𝖭𝖣

𝐽⋆
𝖭𝖲

History based
policies

Agent-state based
policies
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When agent state is an information state (e.g., belief state),
all policy classes have the same performance.

Relationship between different policy classes

𝐽⋆𝖲𝖣

𝐽⋆𝖲𝖲

𝐽⋆𝖭𝖣

𝐽⋆𝖭𝖲

𝐽⋆
𝖭𝖣

𝐽⋆
𝖭𝖲

𝐽⋆𝖲𝖣

𝐽⋆
𝖭𝖲



Salient features of agent state-based policies

𝐽⋆𝖲𝖣 < 𝐽⋆𝖲𝖲 < 𝐽⋆𝖭𝖣
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Observation: Odd or Even

In red states:

Action 0 gives reward 1 and moves to right.
Action 1 gives reward -1 and resets state to 1.

In the non-red states: opposite behavior

Non-stationary policies can outperform stationary ones

📰 Sinha, Geist, Mahajan, “Periodic agent-state based Q-learning for POMDPs”, NeurIPS 2024.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Observation: Odd or Even

In red states:

Action 0 gives reward 1 and moves to right.
Action 1 gives reward -1 and resets state to 1.

In the non-red states: opposite behavior

𝐽⋆
𝖭𝖣 = 1⁄

1 − 𝛾

𝐽⋆𝖲𝖣 = 1+ 𝛾−𝛾2
⁄
1 − 𝛾3

For all 𝛾 ∈ (0, 1), 𝐽⋆𝖲𝖣 < 𝐽⋆
𝖭𝖣

Non-stationary policies can outperform stationary ones

📰 Sinha, Geist, Mahajan, “Periodic agent-state based Q-learning for POMDPs”, NeurIPS 2024.
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𝑟(⋅, 0) = [−1, 0, 2] 𝑟(⋅, 1) = [−0.5, −0.5, −0.5]

Stochastic policies can outperform deterministic ones

📰 Sinha, Geist, Mahajan, “Periodic agent-state based Q-learning for POMDPs”, NeurIPS 2024.
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Background
Review of MDPs and RL
Review of POMDPs
Why is RL for POMDPs difficult?

Agent-state
based planning

Agent state based policies
Policy classes
Planning for different policy classes

Agent-state
based learning

Agent state based Q-Learning
Self-predictive representation learning
Agent state based actor-critic

Outline



𝐽⋆𝖲𝖣

𝐽⋆𝖲𝖲

𝐽⋆𝖭𝖣

𝐽⋆𝖭𝖲

𝐽⋆
𝖭𝖣

𝐽⋆
𝖭𝖲



𝐽⋆𝖲𝖣

𝐽⋆𝖲𝖲

𝐽⋆𝖭𝖣

𝐽⋆𝖭𝖲

𝐽⋆
𝖭𝖣

𝐽⋆
𝖭𝖲

How to find optimal non-stationary
agent-state based policies?
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Key observation: Finding the best agent-state
based policy is a decentralized control problem

Finding best agent-state based policies
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Key observation: Finding the best agent-state
based policy is a decentralized control problem

Why?

Consider each “agent at time 𝑡” as separate decision maker.

Let ℐ𝓉 denote the information sigma-algebra generated by 𝑍𝑡.

Information is non-nested: ℐ𝓉 ⊄ ℐ𝓉+1.

Thus, the problem is a decentralized control problem.

Finding best agent-state based policies
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Key observation: Finding the best agent-state
based policy is a decentralized control problem

So, we can use tools from decentralized control
to find optimal agent-state based policies!

Finding best agent-state based policies



Agent-state based policies in POMDPs–(Mahajan)
22

Environment

Observations

Actions

Designer's approach to find optimal policy in Π𝖭𝖲

📰 Witsenhausen, “A standard form for sequential stochastic control,” Math. Systems Theory, 1973/
📰 Mahajan, “Sequential decomposition of sequential teams”, PhD thesis, 2008.
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Environment
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Designer

𝜋𝑡

Designer's approach to find optimal policy in Π𝖭𝖲

📰 Witsenhausen, “A standard form for sequential stochastic control,” Math. Systems Theory, 1973/
📰 Mahajan, “Sequential decomposition of sequential teams”, PhD thesis, 2008.
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Environment

Observations

Actions

Designer

𝜋𝑡
Designer's problem is a POMDP with:

Unobserved state: (𝑆𝑡, 𝑍𝑡)

Observations: ∅

Action: 𝜋𝑡

Designer's approach to find optimal policy in Π𝖭𝖲

📰 Witsenhausen, “A standard form for sequential stochastic control,” Math. Systems Theory, 1973/
📰 Mahajan, “Sequential decomposition of sequential teams”, PhD thesis, 2008.
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Designer's approach to find optimal policy in Π𝖭𝖲

📰 Mahajan, “Sequential decomposition of sequential teams”, PhD thesis, 2008.
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Joint distribution
of env and

agent states

For any 𝝅 ∈ Π𝖭𝖲, define 𝜉𝝅
𝑡 (𝑠, 𝑧) ≔ ℙ𝝅(𝑆𝑡 = 𝑠, 𝑍𝑡 = 𝑧). Then:

𝜉𝝅
𝑡+1 = 𝜙𝖣𝖤𝖲(𝜋𝑡, 𝜉𝝅

𝑡 ).

𝔼𝝅[𝑅𝑡] = 𝑟𝖣𝖤𝖲(𝜋𝑡, 𝜉𝝅
𝑡 ).

Designer's approach to find optimal policy in Π𝖭𝖲

📰 Mahajan, “Sequential decomposition of sequential teams”, PhD thesis, 2008.



Agent-state based policies in POMDPs–(Mahajan)
23

Joint distribution
of env and

agent states

For any 𝝅 ∈ Π𝖭𝖲, define 𝜉𝝅
𝑡 (𝑠, 𝑧) ≔ ℙ𝝅(𝑆𝑡 = 𝑠, 𝑍𝑡 = 𝑧). Then:

𝜉𝝅
𝑡+1 = 𝜙𝖣𝖤𝖲(𝜋𝑡, 𝜉𝝅

𝑡 ).

𝔼𝝅[𝑅𝑡] = 𝑟𝖣𝖤𝖲(𝜋𝑡, 𝜉𝝅
𝑡 ).

DP using
desginer's
approach

Consider the following DP:

𝑉𝖣𝖤𝖲(𝜉) = max
𝜋∶𝒵→Δ(𝒜)

{𝑟𝖣𝖤𝖲(𝜋, 𝜉) + 𝛾𝑉𝖣𝖤𝖲(𝜙𝖣𝖤𝖲(𝜋, 𝜉))}.

Let 𝜓𝖣𝖤𝖲(𝜉) denote any arg max of the RHS. Let 𝜉⋆
1 = 𝜉1 and recur­

sively define

𝜋⋆
𝑡 = 𝜓𝖣𝖤𝖲(𝜉⋆

𝑡 ) and 𝜉⋆
𝑡+1 = 𝜙𝖣𝖤𝖲(𝜋⋆

𝑡 , 𝜉⋆
𝑡 ).

Then, the policy 𝜋⋆ = (𝜋⋆
1 , 𝜋⋆

2 , …) ∈ Π𝖭𝖲 is optimal in Π𝖭𝖲.

Designer's approach to find optimal policy in Π𝖭𝖲

📰 Mahajan, “Sequential decomposition of sequential teams”, PhD thesis, 2008.
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Historical review

The idea goes back to Witsenhausen's standard form (1973).

Used for POMDPs in Sandell (1974) and general finite state Dec-POMDPs in Mahajan (2008).

Related to NO MDP approach of Dibangoye et al (2016).

Some comments



Agent-state based policies in POMDPs–(Mahajan)
24

Historical review

The idea goes back to Witsenhausen's standard form (1973).

Used for POMDPs in Sandell (1974) and general finite state Dec-POMDPs in Mahajan (2008).

Related to NO MDP approach of Dibangoye et al (2016).

Implications

Provides a DP to find best policy in Π𝖭𝖣 and Π𝖭𝖲.

Using properties of the DP can show that 𝐽⋆𝖭𝖲 = 𝐽⋆𝖭𝖣. 

𝐽⋆𝖲𝖣

𝐽⋆𝖲𝖲

𝐽⋆𝖭𝖣

𝐽⋆𝖭𝖲

𝐽⋆
𝖭𝖣

𝐽⋆
𝖭𝖲

𝐽⋆𝖭𝖣

𝐽⋆𝖭𝖲

Some comments
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ℙ(𝐻 =ℋ0) = 0.7

Agent state: 𝑍𝑡 = 𝑌𝑡 (last observation)

An example: Reactive hypothesis testing
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0.7

0.8

ℋ0

ℋ1

𝑌𝑡 = 0

𝑌𝑡 = 1
ℙ(𝐻 =ℋ0) = 0.7

Agent state: 𝑍𝑡 = 𝑌𝑡 (last observation)

Actions

Stop and declare ℋ0

Stop and declare ℋ1

Continue and take another measurement

Per-step reward

𝑟(ℋ0,ℋ0) = 1, 𝑟(ℋ0,ℋ1) = −1,

𝑟(ℋ1,ℋ1) = 2, 𝑟(ℋ1,ℋ0) = −2,

𝑟(⋅, 𝑐) = −0.01.

An example: Reactive hypothesis testing
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Designer's state space

Global state: (Terminated, Hypothesis, Obs).

Designer's state: ℙ(
(0, 0, 0) (0, 0, 1) (1, 0, 0) (1, 0, 1)
(0, 1, 0) (0, 1, 1) (1, 1, 0) (1, 1, 1)

)

An example: Reactive hypothesis testing
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Designer's state space

Global state: (Terminated, Hypothesis, Obs).

Designer's state: ℙ(
(0, 0, 0) (0, 0, 1) (1, 0, 0) (1, 0, 1)
(0, 1, 0) (0, 1, 1) (1, 1, 0) (1, 1, 1)

) ∈ Δ5

Designer's Action space

Designer's action space: {0, 1} → {ℋ0,ℋ1, 𝑐}. 9 possibilities

No need to consider stochastic policies. 
𝐽⋆𝖲𝖣

𝐽⋆𝖲𝖲

𝐽⋆𝖭𝖣

𝐽⋆𝖭𝖲

𝐽⋆
𝖭𝖣

𝐽⋆
𝖭𝖲

𝐽⋆𝖭𝖣

𝐽⋆𝖭𝖲

An example: Reactive hypothesis testing
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Solution of the DP (for 𝛾 = 0.95)

1 2 3 4 5 6

𝑌𝑡 = 0 ℋ0 𝑐 ℋ0 𝑐 ⋯ ⋯

𝑌𝑡 = 1 𝑐 ℋ1 𝑐 ℋ1 ⋯ ⋯

𝐽⋆𝖲𝖣 = 0.8093

In this case, optimal solution turns out to be periodic! Not a general result.

An example: Reactive hypothesis testing
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Solution of the DP (for 𝛾 = 0.95)

1 2 3 4 5 6

𝑌𝑡 = 0 ℋ0 𝑐 ℋ0 𝑐 ⋯ ⋯

𝑌𝑡 = 1 𝑐 ℋ1 𝑐 ℋ1 ⋯ ⋯

𝐽⋆𝖲𝖣 = 0.8093

In this case, optimal solution turns out to be periodic! Not a general result.

Key Takeaway

Designer's DP provides optimal agent-state based policy.

It is solvable for small models . . . but still hard to solve for large models.

An example: Reactive hypothesis testing



𝐽⋆𝖲𝖣

𝐽⋆𝖲𝖲

𝐽⋆𝖭𝖣

𝐽⋆𝖭𝖲

𝐽⋆
𝖭𝖣

𝐽⋆
𝖭𝖲

Are there methods which
scale to large models
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Environment

Observations

Actions

Joint env and agent state process

{(𝑆𝑡, 𝑍𝑡)}𝑡≥1 is a controlled Markov process controlled by {𝐴𝑡}𝑡≥1. In particuar,

𝑃𝖯𝖱𝖮𝖣(𝑠′, 𝑧′|𝑠, 𝑧, 𝑎) = ∑
𝑦′∈𝒴

𝑃(𝑠′, 𝑦′|𝑠, 𝑎) 𝟙{𝑧′ = 𝜙(𝑧, 𝑦′, 𝑎)}

We can use standard formulas to evaluate any policy in Π𝖯𝖱𝖮𝖣.

Policy evaluation for policies in Π𝖲𝖲
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Environment

Observations

Actions

Joint env and agent state process

{(𝑆𝑡, 𝑍𝑡)}𝑡≥1 is a controlled Markov process controlled by {𝐴𝑡}𝑡≥1. In particuar,

𝑃𝖯𝖱𝖮𝖣(𝑠′, 𝑧′|𝑠, 𝑧, 𝑎) = ∑
𝑦′∈𝒴

𝑃(𝑠′, 𝑦′|𝑠, 𝑎) 𝟙{𝑧′ = 𝜙(𝑧, 𝑦′, 𝑎)}

We can use standard formulas to evaluate any policy in Π𝖯𝖱𝖮𝖣.

Any 𝝅 ∈ Π𝖲𝖲 also belongs to Π𝖯𝖱𝖮𝖣 (the set of stationary stochastic policies on 𝒮× 𝒵). Thus:

𝐽(𝝅) = ∑
(𝑠,𝑧)∈𝒮×𝒵

𝜉1(𝑠, 𝑧)𝑉𝖯𝖱𝖮𝖣(𝑠, 𝑧)

where

𝑉𝖯𝖱𝖮𝖣(𝑠, 𝑧) = ∑
𝑎∈𝒜

𝜋(𝑎|𝑧)[𝑟(𝑠, 𝑎) + 𝛾 ∑
𝑠′,𝑧′∈𝒮×𝒵

𝑃𝖯𝖱𝖮𝖣(𝑠′, 𝑧′|𝑠, 𝑧, 𝑎)𝑉𝖯𝖱𝖮𝖣(𝑠′, 𝑧′)].

Policy evaluation for policies in Π𝖲𝖲
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Historical review

The idea of policy evaluation on the product space goes back to Platzman (1977) and has
been rediscovered multiple times: Littman (1996), Hauskrecht (1997), Cassandra (1998),
Hansen (1998),

Some comments
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Historical review

The idea of policy evaluation on the product space goes back to Platzman (1977) and has
been rediscovered multiple times: Littman (1996), Hauskrecht (1997), Cassandra (1998),
Hansen (1998),

Implications

Since we can do policy evaluation, we can do policy search!
. . .provided we have access to env state.

Some comments
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0.7

0.8

ℋ0

ℋ1

𝑌𝑡 = 0

𝑌𝑡 = 1
ℙ(𝐻 =ℋ0) = 0.7

Brute force search

Stochastic policy: {0, 1} → Δ({ℋ0,ℋ1, 𝑐}).

Characterized by two PMFs: 𝜋(⋅ ∣ 0) and 𝜋(⋅ ∣ 1).

Discretize each PMF to 50 bins (approximately 1.7 × 106 policies)

Evaluate performance of each policy by previous formula to find the best policy.

Back to example: Reactive hypothesis testing
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0.7

0.8

ℋ0

ℋ1

𝑌𝑡 = 0

𝑌𝑡 = 1
ℙ(𝐻 =ℋ0) = 0.7

Brute force search

Stochastic policy: {0, 1} → Δ({ℋ0,ℋ1, 𝑐}).

Characterized by two PMFs: 𝜋(⋅ ∣ 0) and 𝜋(⋅ ∣ 1).

Discretize each PMF to 50 bins (approximately 1.7 × 106 policies)

Evaluate performance of each policy by previous formula to find the best policy.

Best (quantized) stochastic policy

𝜋(⋅ ∣ 0) = [1, 0, 0] and 𝜋(⋅ ∣ 1) = [0, 0.72, 0.28]

𝐽⋆𝖲𝖲 = 0.6532 (21% worse than the best non-stationary policy)

Back to example: Reactive hypothesis testing
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0.7

0.8

ℋ0

ℋ1

𝑌𝑡 = 0

𝑌𝑡 = 1
ℙ(𝐻 =ℋ0) = 0.7

Brute force search

Stochastic policy: {0, 1} → Δ({ℋ0,ℋ1, 𝑐}).

Characterized by two PMFs: 𝜋(⋅ ∣ 0) and 𝜋(⋅ ∣ 1).

Discretize each PMF to 50 bins (approximately 1.7 × 106 policies)

Evaluate performance of each policy by previous formula to find the best policy.

Best (quantized) stochastic policy

𝜋(⋅ ∣ 0) = [1, 0, 0] and 𝜋(⋅ ∣ 1) = [0, 0.72, 0.28]

𝐽⋆𝖲𝖲 = 0.6532 (21% worse than the best non-stationary policy)

Main takeaway

Possible to search for stationary stochastic policies

Back to example: Reactive hypothesis testing
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̂𝑠1 ̂𝑠2 ̂𝑠3 ̂𝑠4

̂𝑠5 ̂𝑠6 ̂𝑠7 ̂𝑠8

̂𝑠9 ̂𝑠10 ̂𝑠11 ̂𝑠12

𝑞1

𝑞2

𝑞3
𝑞4

State discretization (for cts state MDPs)

Quantize the state space into disjoint cells

Associate a grid point with each cell.

Construct a model (𝑟̂, ̂𝑃) for a discrete MDP with grid cells.

Compute policy 𝜋̂ for the discrete MDP

Another idea to search for stationary policies



Agent-state based policies in POMDPs–(Mahajan)
31

̂𝑠1 ̂𝑠2 ̂𝑠3 ̂𝑠4

̂𝑠5 ̂𝑠6 ̂𝑠7 ̂𝑠8

̂𝑠9 ̂𝑠10 ̂𝑠11 ̂𝑠12

𝑞1

𝑞2

𝑞3
𝑞4

State discretization (for cts state MDPs)

Quantize the state space into disjoint cells

Associate a grid point with each cell.

Construct a model (𝑟̂, ̂𝑃) for a discrete MDP with grid cells.

Compute policy 𝜋̂ for the discrete MDP

Observations

The discretized model is a POMDP. But we treat it as an MDP!

Why does this work? For fine discretization:

The constructed discrete MDP model is close enough to the discrete POMDP.
The discrete POMDP model is close to the cts MDP model.

Another idea to search for stationary policies
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Intuition

Any made-up model (𝑃𝖠𝖨𝖲, 𝑟𝖠𝖨𝖲) where 𝑃𝖠𝖨𝖲∶ 𝒵 ×𝒜→ Δ(𝒵) and 𝑟𝖠𝖨𝖲∶ 𝒵 ×𝒜→ ℝ gives rise
to an feasible policy 𝜋𝖠𝖨𝖲 ∈ Π𝖲𝖣.

If the model (𝑃𝖠𝖨𝖲, 𝑟𝖠𝖨𝖲) is close to the “true” model, then policy 𝜋𝖠𝖨𝖲 is approx. optimal.

Use the same idea for finding good policies in Π𝑆𝐷
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Intuition

Any made-up model (𝑃𝖠𝖨𝖲, 𝑟𝖠𝖨𝖲) where 𝑃𝖠𝖨𝖲∶ 𝒵 ×𝒜→ Δ(𝒵) and 𝑟𝖠𝖨𝖲∶ 𝒵 ×𝒜→ ℝ gives rise
to an feasible policy 𝜋𝖠𝖨𝖲 ∈ Π𝖲𝖣.

If the model (𝑃𝖠𝖨𝖲, 𝑟𝖠𝖨𝖲) is close to the “true” model, then policy 𝜋𝖠𝖨𝖲 is approx. optimal.

How to make this precise?

Need to measure “closeness” of models.

Depends on the type of approximation guarantees we want (absolute error vs relative error)

Large literature on approximation of MDPs. Need to extend it to POMDPs.

Use the same idea for finding good policies in Π𝑆𝐷
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Quantifying model approximation

📰 Subramanian, Sinha, Seraj, and Mahajan, “Approximate information state for . . . partially observed systems”, JMLR 2022.
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Approximate
info state

Agent state {𝑍𝑡}𝑡≥1 and a model (𝑃𝖠𝖨𝖲, 𝑟𝖠𝖨𝖲) is said to be an (𝜺, 𝜹)
approximate information state (AIS) if it is
(AP1) Approximately sufficient for performance evaluation

|𝔼[𝑅𝑡 ∣ 𝐻𝑡, 𝐴𝑡] − 𝑟𝖠𝖨𝖲(𝜎⃗𝑡(𝐻𝑡), 𝐴𝑡)| ≤ 𝜀𝑡

(AP2) Approximately sufficient for predicting itself

𝑑𝔉(ℙ(𝑍𝑡+1 = ⋅ ∣ 𝐻𝑡, 𝐴𝑡), 𝑃𝖠𝖨𝖲(𝑍𝑡+1 = ⋅ ∣ 𝜎⃗𝑡(𝐻𝑡), 𝐴𝑡)) ≤ 𝛿𝑡

Quantifying model approximation

📰 Subramanian, Sinha, Seraj, and Mahajan, “Approximate information state for . . . partially observed systems”, JMLR 2022.
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Approximate
info state

Agent state {𝑍𝑡}𝑡≥1 and a model (𝑃𝖠𝖨𝖲, 𝑟𝖠𝖨𝖲) is said to be an (𝜺, 𝜹)
approximate information state (AIS) if it is
(AP1) Approximately sufficient for performance evaluation

|𝔼[𝑅𝑡 ∣ 𝐻𝑡, 𝐴𝑡] − 𝑟𝖠𝖨𝖲(𝜎⃗𝑡(𝐻𝑡), 𝐴𝑡)| ≤ 𝜀𝑡

(AP2) Approximately sufficient for predicting itself

𝑑𝔉(ℙ(𝑍𝑡+1 = ⋅ ∣ 𝐻𝑡, 𝐴𝑡), 𝑃𝖠𝖨𝖲(𝑍𝑡+1 = ⋅ ∣ 𝜎⃗𝑡(𝐻𝑡), 𝐴𝑡)) ≤ 𝛿𝑡

AIS based
approx DP

Let 𝜋𝖠𝖨𝖲 be the optimal policy for model (𝑃𝖠𝖨𝖲, 𝑟𝖠𝖨𝖲). Define 𝝅⃗𝖠𝖨𝖲 =
(𝜋⃗𝖠𝖨𝖲,1, 𝜋⃗𝖠𝖨𝖲,2, …) where

𝝅⃗𝖠𝖨𝖲,𝑡(ℎ𝑡) = 𝜋𝖠𝖨𝖲(𝜎⃗𝑡(ℎ𝑡))

Then, 𝐽⋆
𝖭𝖣 − 𝐽(𝝅⃗𝖠𝖨𝖲) ≤

2⁄
1 − 𝛾[𝜀 + 𝛾𝛿𝜌𝔉(𝑉⋆

𝖠𝖨𝖲)]

where 𝜀 = (1 − 𝛾)∑∞
𝑡=1 𝛾𝑡−1𝜀𝑡, and 𝛿 = (1 − 𝛾)∑∞

𝑡=1 𝛾𝑡−1𝛿𝑡.

Quantifying model approximation
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Two ways to interpret the results:

Given the information state space 𝒵, find the best compression 𝜎𝑡∶ℋ𝑡 → 𝒵

Given any compression function 𝜎𝑡∶ℋ𝑡 → 𝒵, find the approximation error.          

Some remarks on AIS
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Two ways to interpret the results:

Given the information state space 𝒵, find the best compression 𝜎𝑡∶ℋ𝑡 → 𝒵

Given any compression function 𝜎𝑡∶ℋ𝑡 → 𝒵, find the approximation error.

Key obs: the second interpretation allows us to develop AIS-based RL algorithms

Some remarks on AIS
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Two ways to interpret the results:

Given the information state space 𝒵, find the best compression 𝜎𝑡∶ℋ𝑡 → 𝒵

Given any compression function 𝜎𝑡∶ℋ𝑡 → 𝒵, find the approximation error.

Key obs: the second interpretation allows us to develop AIS-based RL algorithms

Results depend on the choice of metric on probability spaces.

The bounds use what are known as integral probability metrics (IPM), which include
many commonly used metrics:

Total variation

Wasserstein distance

Maximum mean discrepancy (MMD)

Some remarks on AIS
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(𝑃, 𝑟) ( ̂𝑃, 𝑟̂)(𝑃, 𝑟) ( ̂𝑃, 𝑟̂)

Real-world
model

Simulation
model

What is the loss in performance if we
choose a policy using the simulation model
and use it in the real world?

Example 1: Robustness to model mismatch in MDPs
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(𝑃, 𝑟) ( ̂𝑃, 𝑟̂)(𝑃, 𝑟) ( ̂𝑃, 𝑟̂)

Real-world
model

Simulation
model

What is the loss in performance if we
choose a policy using the simulation model
and use it in the real world?

Example 1: Robustness to model mismatch in MDPs

Model mismatch as an AIS

(Identity, ̂𝑃, 𝑟̂) is an (𝜀,𝛿)-AIS with 𝜀 = sup
𝑠,𝑎

|𝑟(𝑠,𝑎)−𝑟̂(𝑠,𝑎)| and 𝛿𝔉 = sup
𝑠,𝑎

𝑑𝔉(𝑃(⋅ |𝑠,𝑎), ̂𝑃(⋅ |𝑠,𝑎)).
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(𝑃, 𝑟) ( ̂𝑃, 𝑟̂)(𝑃, 𝑟) ( ̂𝑃, 𝑟̂)

Real-world
model

Simulation
model

What is the loss in performance if we
choose a policy using the simulation model
and use it in the real world?

𝑑𝔉 is total variation

𝑉(𝑠) −𝑉𝜋(𝑠) ≤ 2𝜀⁄
1 − 𝛾+𝛾𝛿 span(𝑟)⁄

(1 − 𝛾)2

Recover bounds of Müller (1997).

Example 1: Robustness to model mismatch in MDPs

Model mismatch as an AIS

(Identity, ̂𝑃, 𝑟̂) is an (𝜀,𝛿)-AIS with 𝜀 = sup
𝑠,𝑎

|𝑟(𝑠,𝑎)−𝑟̂(𝑠,𝑎)| and 𝛿𝔉 = sup
𝑠,𝑎

𝑑𝔉(𝑃(⋅ |𝑠,𝑎), ̂𝑃(⋅ |𝑠,𝑎)).

📰 Müller, “How does the value function of a Markov deci­
sion process depend on the transition probabilities?” MOR
1997.         
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(𝑃, 𝑟) ( ̂𝑃, 𝑟̂)(𝑃, 𝑟) ( ̂𝑃, 𝑟̂)

Real-world
model

Simulation
model

What is the loss in performance if we
choose a policy using the simulation model
and use it in the real world?

𝑑𝔉 is total variation

𝑉(𝑠) −𝑉𝜋(𝑠) ≤ 2𝜀⁄
1 − 𝛾+𝛾𝛿 span(𝑟)⁄

(1 − 𝛾)2

Recover bounds of Müller (1997).

Example 1: Robustness to model mismatch in MDPs

Model mismatch as an AIS

(Identity, ̂𝑃, 𝑟̂) is an (𝜀,𝛿)-AIS with 𝜀 = sup
𝑠,𝑎

|𝑟(𝑠,𝑎)−𝑟̂(𝑠,𝑎)| and 𝛿𝔉 = sup
𝑠,𝑎

𝑑𝔉(𝑃(⋅ |𝑠,𝑎), ̂𝑃(⋅ |𝑠,𝑎)).

📰 Müller, “How does the value function of a Markov deci­
sion process depend on the transition probabilities?” MOR
1997.

📰 Asadi, Misra, Littman, “Lipscitz continuity in model-based
reinfocement learning,” ICML 2018.

𝑑𝔉 is Wasserstein distance

𝑉(𝑠) −𝑉𝜋(𝑠) ≤ 2𝜀⁄
1 − 𝛾+ 2𝛾𝛿𝐿𝑟⁄

(1 − 𝛾) (1 − 𝛾𝐿𝑝)
Recover bounds of Asadi, Misra, Littman (2018).
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𝒮 ̂𝒮

𝜑

( ̂𝑃, 𝑟̂) is determined from (𝑃, 𝑟) using 𝜑

What is the loss in performance if we
choose a policy using the abstract model
and use it in the original model?

Example 2: Feature abstraction in MDPs
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𝒮 ̂𝒮

𝜑

( ̂𝑃, 𝑟̂) is determined from (𝑃, 𝑟) using 𝜑

What is the loss in performance if we
choose a policy using the abstract model
and use it in the original model?

Example 2: Feature abstraction in MDPs

Feature abstraction as AIS

(𝜑, ̂𝑃, 𝑟̂) is an (𝜀, 𝛿)-AIS with 𝜀 = sup
𝑠,𝑎

|𝑟(𝑠, 𝑎) − 𝑟̂(𝜑(𝑠), 𝑎)|

and 𝛿𝔉 = sup
𝑠,𝑎

𝑑𝔉(𝑃(𝜑−1(⋅)|𝑠, 𝑎), ̂𝑃(⋅ |𝜑(𝑠), 𝑎).
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𝒮 ̂𝒮

𝜑

( ̂𝑃, 𝑟̂) is determined from (𝑃, 𝑟) using 𝜑

What is the loss in performance if we
choose a policy using the abstract model
and use it in the original model?

𝑑𝔉 is total variation

𝑉(𝑠) −𝑉𝜋(𝑠) ≤ 2𝜀⁄
1 − 𝛾+

𝛾𝛿𝔉 span(𝑟)⁄
(1 − 𝛾)2

Improve bounds of Abel et al. (2016)

Example 2: Feature abstraction in MDPs

Feature abstraction as AIS

(𝜑, ̂𝑃, 𝑟̂) is an (𝜀, 𝛿)-AIS with 𝜀 = sup
𝑠,𝑎

|𝑟(𝑠, 𝑎) − 𝑟̂(𝜑(𝑠), 𝑎)|

and 𝛿𝔉 = sup
𝑠,𝑎

𝑑𝔉(𝑃(𝜑−1(⋅)|𝑠, 𝑎), ̂𝑃(⋅ |𝜑(𝑠), 𝑎).

📰 Abel, Hershkowitz, Littman, “Near optimal behavior via ap­
proximate state abstraction,” ICML 2016.              
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𝒮 ̂𝒮

𝜑

( ̂𝑃, 𝑟̂) is determined from (𝑃, 𝑟) using 𝜑

What is the loss in performance if we
choose a policy using the abstract model
and use it in the original model?

𝑑𝔉 is total variation

𝑉(𝑠) −𝑉𝜋(𝑠) ≤ 2𝜀⁄
1 − 𝛾+

𝛾𝛿𝔉 span(𝑟)⁄
(1 − 𝛾)2

Improve bounds of Abel et al. (2016)

Example 2: Feature abstraction in MDPs

Feature abstraction as AIS

(𝜑, ̂𝑃, 𝑟̂) is an (𝜀, 𝛿)-AIS with 𝜀 = sup
𝑠,𝑎

|𝑟(𝑠, 𝑎) − 𝑟̂(𝜑(𝑠), 𝑎)|

and 𝛿𝔉 = sup
𝑠,𝑎

𝑑𝔉(𝑃(𝜑−1(⋅)|𝑠, 𝑎), ̂𝑃(⋅ |𝜑(𝑠), 𝑎).

📰 Abel, Hershkowitz, Littman, “Near optimal behavior via ap­
proximate state abstraction,” ICML 2016.

📰 Gelada, Kumar, Buckman, Nachum, Bellemare, “DeepMDP:
Learning continuous latent space models for representa­
tion learning,” ICML 2019.

𝑑𝔉 is Wasserstein distance

𝑉(𝑠) −𝑉𝜋(𝑠) ≤ 2𝜀⁄
1 − 𝛾+

2𝛾𝛿𝔉‖𝑉̂‖Lip⁄
(1 − 𝛾)2

Recover bounds of Gelada et al. (2019).
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Belief space Quantized beliefs

What is the loss in performance if we
choose a policy using the approximate be­
liefs and use it in the original model?

Example 3: Belief approximation in POMDPs
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Belief space Quantized beliefs

What is the loss in performance if we
choose a policy using the approximate be­
liefs and use it in the original model?

Example 3: Belief approximation in POMDPs

Belief approximation in POMDPs

Quantized cells of radius 𝜀 (in terms of total variation) are (𝜀‖𝑟‖∞, 3𝜀)-AIS.
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Belief space Quantized beliefs

What is the loss in performance if we
choose a policy using the approximate be­
liefs and use it in the original model?

𝑉(𝑠) −𝑉𝜋(𝑠) ≤ 2𝜀‖𝑟‖∞⁄
1 − 𝛾 + 6𝛾𝜀‖𝑟‖∞⁄

(1 − 𝛾)2

Improve bounds of Francois Lavet et al. (2019) by a factor of 1/(1 − 𝛾).

Example 3: Belief approximation in POMDPs

Belief approximation in POMDPs

Quantized cells of radius 𝜀 (in terms of total variation) are (𝜀‖𝑟‖∞, 3𝜀)-AIS.

📰 Francois-Lavet, Rabusseau, Pineau, Ernst, Fonteneau, “On
overfitting and asymptotic bias in batch reinforcement learn­
ing with partial observability,” JAIR 2019.
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Background
Review of MDPs and RL
Review of POMDPs
Why is RL for POMDPs difficult?

Agent-state
based planning

Agent state based policies
Policy classes
Planning for different policy classes

Agent-state
based learning

Agent state based Q-Learning
Self-predictive representation learning
Agent state based actor-critic

Outline
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𝑄𝑡+1(𝑧, 𝑎) = 𝑄𝑡(𝑧, 𝑎) + 𝛼𝑡(𝑧, 𝑎)[𝑅𝑡 + 𝛾 max
𝑎′∈𝒜

𝑄𝑡(𝑍𝑡+1, 𝑎′) −𝑄𝑡(𝑧, 𝑎)]

Agent-state based Q-learning (ASQL)
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𝑄𝑡+1(𝑧, 𝑎) = 𝑄𝑡(𝑧, 𝑎) + 𝛼𝑡(𝑧, 𝑎)[𝑅𝑡 + 𝛾 max
𝑎′∈𝒜

𝑄𝑡(𝑍𝑡+1, 𝑎′) −𝑄𝑡(𝑧, 𝑎)]

Key Questions

Does this converge?

To what?

Agent-state based Q-learning (ASQL)
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Key Questions

Does this converge?

To what?

Challenges

{𝑍𝑡}𝑡≥1 is not a controlled Markov process.

No DP to find optimal policy in Π𝖲𝖣

Agent-state based Q-learning (ASQL)
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𝑄𝑡+1(𝑧, 𝑎) = 𝑄𝑡(𝑧, 𝑎) + 𝛼𝑡(𝑧, 𝑎)[𝑅𝑡 + 𝛾 max
𝑎′∈𝒜

𝑄𝑡(𝑍𝑡+1, 𝑎′) −𝑄𝑡(𝑧, 𝑎)]

Key Questions

Does this converge?

To what?

Challenges

{𝑍𝑡}𝑡≥1 is not a controlled Markov process.

No DP to find optimal policy in Π𝖲𝖣

Main result: Converges, under mild conditions, but not to optimal.
Characterize degree of sub-optimality and use it to improve algorithm.

Agent-state based Q-learning (ASQL)
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Characterization of convergence

📰 Sinha, Geist, Mahajan, “Periodic agent-state based Q-learning for POMDPs”, Neurips 2024.
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Assumptions

(A1) The behavior policy 𝜇 such that the MC {(𝑆𝑡, 𝑌𝑡, 𝑍𝑡, 𝐴𝑡)}𝑡≥1 is
irreducible and aperiodic with stationary distribution 𝜁𝜇.

Moreover, each (𝑧, 𝑎) is visited infinitely often.

(A2) The learning rate satisfies: 𝛼𝑡(𝑧, 𝑎) = 0 when (𝑧, 𝑎) ≠ (𝑍𝑡, 𝐴𝑡)
and for all (𝑧, 𝑎):

∑
𝑡≥1

𝛼𝑡(𝑧, 𝑎) = ∞ and ∑
𝑡≥1

𝛼2
𝑡(𝑧, 𝑎) < ∞

Characterization of convergence

📰 Sinha, Geist, Mahajan, “Periodic agent-state based Q-learning for POMDPs”, Neurips 2024.
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Assumptions

(A1) The behavior policy 𝜇 such that the MC {(𝑆𝑡, 𝑌𝑡, 𝑍𝑡, 𝐴𝑡)}𝑡≥1 is
irreducible and aperiodic with stationary distribution 𝜁𝜇.

Moreover, each (𝑧, 𝑎) is visited infinitely often.

(A2) The learning rate satisfies: 𝛼𝑡(𝑧, 𝑎) = 0 when (𝑧, 𝑎) ≠ (𝑍𝑡, 𝐴𝑡)
and for all (𝑧, 𝑎):

∑
𝑡≥1

𝛼𝑡(𝑧, 𝑎) = ∞ and ∑
𝑡≥1

𝛼2
𝑡(𝑧, 𝑎) < ∞

Convergence
guarantee

Under (A1) and (A2), ASQL converges almost surely to 𝑄𝜇
𝖠𝖲𝖰𝖫 where

𝑄𝜇
𝖠𝖲𝖰𝖫 is the Q-function for the model (𝑃𝜇

𝖠𝖲𝖰𝖫, 𝑟
𝜇
𝖠𝖲𝖰𝖫) given by

𝑃𝜇
𝖠𝖲𝖰𝖫(𝑧

′|𝑧, 𝑎) = ∑
𝑠′,𝑦′∈𝒮×𝒴

𝟙{𝑧′ = 𝜙(𝑧, 𝑦′, 𝑎)}𝑃(𝑦′|𝑠, 𝑎)𝜁𝜇(𝑠|𝑧, 𝑎)

𝑟𝜇
𝖠𝖲𝖰𝖫(𝑧, 𝑎) = ∑

𝑠∈𝒮
𝜁𝜇(𝑠|𝑧, 𝑎)𝑟(𝑠, 𝑎)

Characterization of convergence

📰 Sinha, Geist, Mahajan, “Periodic agent-state based Q-learning for POMDPs”, Neurips 2024.
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Salient features

𝜋𝜇
𝖠𝖲𝖰𝖫 ∈ Π𝖲𝖣. So, doesn't converge to best agent-state based policy since 𝐽⋆𝖲𝖣 ≤ 𝐽⋆

𝖭𝖣.

May not even converge to the optimal within Π𝖲𝖣.

In fact, the converged policy 𝜋𝜇
𝖠𝖲𝖰𝖫 depends on the exploration policy!

But how good is the converged policy?
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Salient features

𝜋𝜇
𝖠𝖲𝖰𝖫 ∈ Π𝖲𝖣. So, doesn't converge to best agent-state based policy since 𝐽⋆𝖲𝖣 ≤ 𝐽⋆

𝖭𝖣.

May not even converge to the optimal within Π𝖲𝖣.

In fact, the converged policy 𝜋𝜇
𝖠𝖲𝖰𝖫 depends on the exploration policy!

Convergence guarantees

𝜋𝜇
𝖠𝖲𝖰𝖫 is optimal policy of model (𝑃𝜇

𝖠𝖲𝖰𝖫, 𝑟
𝜇
𝖠𝖲𝖰𝖫).

So, we can use AIS approximation bounds to get sub-optimality bounds.

But give bounds between 𝐽⋆
𝖭𝖣 − 𝐽(𝜋⃗𝜇

𝖠𝖲𝖰𝖫) rather than 𝐽⋆𝖲𝖣 − 𝐽(𝜋⃗𝜇
𝖠𝖲𝖰𝖫).

But how good is the converged policy?
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𝐽⋆𝖲𝖣

𝐽⋆𝖲𝖲

𝐽⋆𝖭𝖣

𝐽⋆𝖭𝖲

𝐽⋆
𝖭𝖣

𝐽⋆
𝖭𝖲

Q-learning will always learn policies
in Π𝑆𝐷. But that is the worst policy class!

Can we do better?
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𝐽⋆𝖲𝖣

𝐽⋆𝖲𝖲

𝐽⋆𝖭𝖣

𝐽⋆𝖭𝖲

𝐽⋆
𝖭𝖣

𝐽⋆
𝖭𝖲

Q-learning will always learn policies
in Π𝑆𝐷. But that is the worst policy class!

Periodic policies

𝜋 = (𝜋(1), 𝜋(2), … , 𝜋(𝐿), 𝜋(1), 𝜋(2), … , 𝜋(𝐿), …)
Periodic policies are a class of finitely parameterized non-stationary policies.

Can we do better?
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𝑄ℓ
𝑡+1(𝑧, 𝑎) = 𝑄ℓ

𝑡(𝑧, 𝑎) + 𝛼ℓ
𝑡(𝑧, 𝑎)[𝑅𝑡 + 𝛾 max

𝑎′∈𝒜
𝑄⟦ℓ+1⟧

𝑡 (𝑍𝑡+1, 𝑎′) −𝑄ℓ
𝑡(𝑧, 𝑎)]

Periodic ASQL

📰 Sinha, Geist, Mahajan, “Periodic agent-state based Q-learning for POMDPs”, Neurips 2024.
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𝑄ℓ
𝑡+1(𝑧, 𝑎) = 𝑄ℓ

𝑡(𝑧, 𝑎) + 𝛼ℓ
𝑡(𝑧, 𝑎)[𝑅𝑡 + 𝛾 max

𝑎′∈𝒜
𝑄⟦ℓ+1⟧

𝑡 (𝑍𝑡+1, 𝑎′) −𝑄ℓ
𝑡(𝑧, 𝑎)]

Similar guarantees as before

Periodic ASQL converges almost surely to the solution of a periodic MDP.

The converged periodic policy depends on the exploration policy.

We can use AIS approxiation bounds to get sub-optimality bounds for the converged policy.

Periodic ASQL

📰 Sinha, Geist, Mahajan, “Periodic agent-state based Q-learning for POMDPs”, Neurips 2024.
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(a) Action 1

PAQSL may outperform ASQL
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(a) Action 1

Search over stationary policies

Consider three exploration policies
𝜇1 = [0.2; 0.8]

𝜇2 = [0.5; 0.5]

𝜇 = [0.8; 0.2]

PAQSL may outperform ASQL



Agent-state based policies in POMDPs–(Mahajan)
54

0

1

2

3

4

5

1

0.5 0.5

0.5 0.5

10.50.5

0.50.5

(a) Action 0

0

1

2

3

4

5

1

0.5 0.5

0.5 0.5

1
0.50.5

0.50.5

(a) Action 1

Search over stationary policies

Consider three exploration policies
𝜇1 = [0.2; 0.8] 𝐽𝜋𝜇1 = 0.0

𝜇2 = [0.5; 0.5] 𝐽𝜋𝜇2 = 1.064

𝜇 = [0.8; 0.2] 𝐽𝜋𝜇3 = 2.633

PAQSL may outperform ASQL
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(a) Action 1

Search over stationary policies

Consider three exploration policies
𝜇1 = [0.2; 0.8] 𝐽𝜋𝜇1 = 0.0

𝜇2 = [0.5; 0.5] 𝐽𝜋𝜇2 = 1.064

𝜇 = [0.8; 0.2] 𝐽𝜋𝜇3 = 2.633

Search over period 𝐿 = 2 policies

Consider three exploration policies
𝜇1 = [0.2, 0.8; 0.8, 0.2]

𝜇2 = [0.5, 0.5; 0.5, 0.5]

𝜇3 = [0.8, 0.2; 0.2, 0.8]

PAQSL may outperform ASQL
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(a) Action 1

Search over stationary policies

Consider three exploration policies
𝜇1 = [0.2; 0.8] 𝐽𝜋𝜇1 = 0.0

𝜇2 = [0.5; 0.5] 𝐽𝜋𝜇2 = 1.064

𝜇 = [0.8; 0.2] 𝐽𝜋𝜇3 = 2.633

Search over period 𝐿 = 2 policies

Consider three exploration policies
𝜇1 = [0.2, 0.8; 0.8, 0.2] 𝐽𝜋𝜇1 = 6.793

𝜇2 = [0.5, 0.5; 0.5, 0.5] 𝐽𝜋𝜇2 = 1.064

𝜇3 = [0.8, 0.2; 0.2, 0.8] 𝐽𝜋𝜇3 = 0.532

PAQSL may outperform ASQL
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Faster timescale:

𝑄𝜋
𝑡+1(𝑧, 𝑎) = 𝑄𝜋

𝑡 (𝑧, 𝑎) + 𝛼𝑡(𝑧, 𝑎)[𝑅𝑡 + 𝛾𝑄𝜋
𝑡 (𝑍𝑡+1, 𝐴𝑡+1) −𝑄𝑡(𝑧, 𝑎)]

Slower timescale: Use policy gradient to update 𝜋

Agent-state based actor-critic (ASAC)

📰 Subramanian, Sinha, Seraj, and Mahajan, “Approximate information state for . . . partially observed systems”, JMLR 2022.
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Faster timescale:

𝑄𝜋
𝑡+1(𝑧, 𝑎) = 𝑄𝜋

𝑡 (𝑧, 𝑎) + 𝛼𝑡(𝑧, 𝑎)[𝑅𝑡 + 𝛾𝑄𝜋
𝑡 (𝑍𝑡+1, 𝐴𝑡+1) −𝑄𝑡(𝑧, 𝑎)]

Slower timescale: Use policy gradient to update 𝜋

Some comments

Similar to ASQL, can show that {𝑄𝜋
𝑡 }𝑡≥1 converges to some 𝑄𝜋

𝖠𝖲𝖠𝖢 almost surely.

Different ways to compute the policy gradient. Either converges to something related to
𝑄𝜋

𝖠𝖲𝖠𝖢 or leads to biased gradients. Difficult to characterize convergence.

Agent-state based actor-critic (ASAC)

📰 Subramanian, Sinha, Seraj, and Mahajan, “Approximate information state for . . . partially observed systems”, JMLR 2022.



All this theory is good, but
what does it mean in practice?
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ASQL

𝑄𝑡+1(𝑧, 𝑎) = 𝑄𝑡(𝑧, 𝑎) + 𝛼𝑡(𝑧, 𝑎)[𝑅𝑡 + 𝛾 max
𝑎′∈𝒜

𝑄𝑡(𝑍𝑡+1, 𝑎′) −𝑄𝑡(𝑧, 𝑎)]

Sub-optimality bound: 𝐽⋆
𝖭𝖣 − 𝐽(𝝅⃗𝜇

𝖠𝖲𝖰𝖫) ≤ function(𝜀, 𝛿) where

𝜀𝑡 = sup
ℎ𝑡,𝑎𝑡

|𝔼[𝑅𝑡|ℎ𝑡, 𝑎𝑡] − 𝑟𝜇
𝖠𝖲𝖰𝖫(𝜎⃗𝑡(ℎ𝑡), 𝑎𝑡)|

𝛿𝑡 = sup
ℎ𝑡,𝑎𝑡

𝑑𝔉(ℙ(𝑍𝑡+1|ℎ𝑡, 𝑎𝑡), 𝑃𝜇
𝖠𝖲𝖰𝖫(𝑍𝑡+1|𝜎⃗𝑡(ℎ𝑡), 𝑎𝑡))

Adding representation learning losses help
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ASQL

𝑄𝑡+1(𝑧, 𝑎) = 𝑄𝑡(𝑧, 𝑎) + 𝛼𝑡(𝑧, 𝑎)[𝑅𝑡 + 𝛾 max
𝑎′∈𝒜

𝑄𝑡(𝑍𝑡+1, 𝑎′) −𝑄𝑡(𝑧, 𝑎)]

Sub-optimality bound: 𝐽⋆
𝖭𝖣 − 𝐽(𝝅⃗𝜇

𝖠𝖲𝖰𝖫) ≤ function(𝜀, 𝛿) where

𝜀𝑡 = sup
ℎ𝑡,𝑎𝑡

|𝔼[𝑅𝑡|ℎ𝑡, 𝑎𝑡] − 𝑟𝜇
𝖠𝖲𝖰𝖫(𝜎⃗𝑡(ℎ𝑡), 𝑎𝑡)|

𝛿𝑡 = sup
ℎ𝑡,𝑎𝑡

𝑑𝔉(ℙ(𝑍𝑡+1|ℎ𝑡, 𝑎𝑡), 𝑃𝜇
𝖠𝖲𝖰𝖫(𝑍𝑡+1|𝜎⃗𝑡(ℎ𝑡), 𝑎𝑡))

Main idea: Minimizing 𝜀 and 𝛿 will lead to better learning.

Adding representation learning losses help
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R2D2
buffer

LSTM
AIS

predictor

𝑍𝑡 Estimated reward func.

Estimated obs. distr.

Q function
Target

Q function

𝜀-greedy
policy

From
replay buffer

AIS Block

Q-learning block

Adding AIS losses

📰 SeyedSalehi, Akbarzadeh, Sinha, Mahajan, “Approximate information state based convergence analysis of recurrent Q-learning”, EWRL 2023.
📰 Subramanian, Sinha, Seraj, and Mahajan, “Approximate information state for . . . partially observed systems”, JMLR 2022.
📰 Ni, et al, “Briding State and History Representations: Understanding self-predictive RL”, ICLR 2024.
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R2D2
buffer

LSTM
AIS

predictor

𝑍𝑡 Estimated reward func.

Estimated obs. distr.

Q function
Target

Q function

𝜀-greedy
policy

From
replay buffer

AIS Block

Q-learning block

Same idea in actor-critic algorithms

Adding AIS losses

📰 SeyedSalehi, Akbarzadeh, Sinha, Mahajan, “Approximate information state based convergence analysis of recurrent Q-learning”, EWRL 2023.
📰 Subramanian, Sinha, Seraj, and Mahajan, “Approximate information state for . . . partially observed systems”, JMLR 2022.
📰 Ni, et al, “Briding State and History Representations: Understanding self-predictive RL”, ICLR 2024.
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Lava Crossing Door Key Key Corridor

Partially observable gridworlds with increasing complexity

Compare several variations of QL+AIS with R2D2

Minigrid test bench
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Experimental results
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📰 Ni, et al, “Briding State and History Representations: Understanding self-predictive RL”, ICLR 2024.
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