Sub-optimality bounds for Certainty Equivalence in POMDPs

Aditya Mahajan McGill University

Joint work with Berk Bozkurt, Ashutosh Nayyar, and Yi Ouyang

CDC Workshop on Information Decentralization

December 2025 ▶ email: aditya.mahajan@mcgill.ca

web: https://adityam.github.io

Using POMDPs in real-world applications

POMDPs model many real-world applications

- ▶ Model applications where the decision maker does not have access to the complete state.
- **Examples**: Robotics, autonomous systems, finance, healthcare, and other domains

Using POMDPs in real-world applications

POMDPs model many real-world applications

- ▶ Model applications where the decision maker does not have access to the complete state.
- **Examples**: Robotics, autonomous systems, finance, healthcare, and other domains

Computational challenges

> Standard approach: translate POMDPs to belief-state MDPs

Astrom, "Optimal control of Markov processes with incomplete information," JMAA 1965.

Smallwood, "Optimal control of partially observable Markov processes over a finite horizon," OR 1973.

Papadimitriou and Tsitsiklis, "The complexity of Markov decision processes," MOR 1987.

Using POMDPs in real-world applications

POMDPs model many real-world applications

- ▶ Model applications where the decision maker does not have access to the complete state.
- **Examples**: Robotics, autonomous systems, finance, healthcare, and other domains

Computational challenges

- > Standard approach: translate POMDPs to belief-state MDPs
- Finding optimal policy is PSPACE-hard
- Exact algorithms have exponential worst-case complexity
- Finding approximately optimal policies is also PSPACE-hard
- ▶ Heuristic approaches can be efficient but lack provable performance guarantees

[🖺] Astrom, "Optimal control of Markov processes with incomplete information," JMAA 1965.

I Smallwood, "Optimal control of partially observable Markov processes over a finite horizon," OR 1973.

Papadimitriou and Tsitsiklis, "The complexity of Markov decision processes," MOR 1987.

Trading off computational tractability and performance

Structured agent-state based policies

- Balance computational tractability and good performance guarantees
- Examples: Finite window policies (frame stacking in RL), RNN-based policies
- ▶ Agent-state: recursively updatable function of past observations and actions

Trading off computational tractability and performance

Structured agent-state based policies

- ▶ Balance computational tractability and good performance guarantees
- **Examples:** Finite window policies (frame stacking in RL), RNN-based policies
- ► Agent-state: recursively updatable function of past observations and actions

Sufficient conditions for good performance

- Approximate information state [Subramanian et al., 2022]
- ▶ Filter stability [Kara Yüksel 2022; McDonald Yüksel 2022; Golowich et al., 2023.]
- ▶ Weakly revealing observations [Liu et al, 2022]
- ▶ Low covering numbers [Lee, Long, Hsu 2007] ▶ Low-rank structure [Guo et al, 2023]
- ▶ Revealing observation models [Belly et al, 2025]
- ▶ Structured policies can be approximately optimal for specific sub-classes of POMDPs Certainty Equivalence in POMDPs—(Mahajan)

This talk: Revisit a classical class of structured policies.

Special class of policies: Certainty Equivalence

Classical Certainty Equivalence Principle (LQG)

- ▶ In LQG systems, the optimal policy has a special structure:
- Standard interpretation:
 - ▶ Optimal action is linear function of the MMSE estimate
 - ▶ Feedback gain equals to that of the deterministic system (obtained replacing random variables by their means)

Special class of policies: Certainty Equivalence

Classical Certainty Equivalence Principle (LQG)

- ▶ In LQG systems, the optimal policy has a special structure:
- Standard interpretation:
 - ▶ Optimal action is linear function of the MMSE estimate
 - ▶ Feedback gain equals to that of the deterministic system (obtained replacing random variables by their means)
- ▶ Alternative interpretation:
 - ▶ Feedback gain equals to that of the stochastic perfectly observed system.

Special class of policies: Certainty Equivalence

Classical Certainty Equivalence Principle (LQG)

- In LQG systems, the optimal policy has a special structure:
- > Standard interpretation:
 - > Optimal action is linear function of the MMSE estimate
 - ▶ Feedback gain equals to that of the deterministic system (obtained replacing random variables by their means)
- Alternative interpretation:
 - ▶ Feedback gain equals to that of the stochastic perfectly observed system.

What if model is not LQG?

- ▶ CE remains optimal when there is dual effect [Bar-Shalom Tse 1974; Derpich Yuksel 2022]
- ▶ Also optimal for some risk sensitive objectives [Whittle 1986]
- 🖺 Simon, "Dynamic programming under uncertainty with a quadratic criterion function," Econometrica 1956.

Certainty equivalence for general POMDPs

POMDP P

- \triangleright Finite horizon T; State space S, action space A, observation space Y.
- \triangleright Dynamics P_t, given by P_t($ds_{t+1}, dy_t \mid s_t, a_t$)
- $\blacktriangleright \text{ Per-step cost } c_t : \mathbb{S} \times \mathcal{A} \to \mathbb{R} \text{, } \|c_t\|_{\infty} < \infty.$

Certainty equivalence for general POMDPs

POMDP P

- \triangleright Finite horizon T; State space S, action space A, observation space Y.
- \triangleright Dynamics P_t, given by P_t($ds_{t+1}, dy_t \mid s_t, a_t$)
- ightharpoonup Per-step cost c_t : $\mathbb{S} imes \mathcal{A} o \mathbb{R}$, $\|c_t\|_{\infty} < \infty$.

Auxiliary Fully Observable MDP ${\mathfrak M}$

- $ightharpoonup \mathbb{M}$ uses the same dynamics and costs as \mathcal{P} but assumes the controller observes S_t
- $\triangleright \pi^{\mathcal{M}}$: optimal state-feedback policy for \mathcal{M} .

Certainty equivalent (CE) Policy

- ▶ Uses an arbitrary state estimation function \mathcal{E}_t : $\mathcal{H}_t \to \mathcal{S}$
- ▶ CE policy: $\mu_t^{\mathcal{E}}(h_t) = \pi_t^{\mathcal{M}}(\mathcal{E}_t(h_t))$

Technical Assumptions

Assumption 1: Measurable Selection

MDP $\mathfrak M$ satisfies a measurable selection condition which ensures existence of optimal policy $\pi^{\mathfrak M}$

Technical Assumptions

Assumption 1: Measurable Selection

MDP $\mathfrak M$ satisfies a measurable selection condition which ensures existence of optimal policy $\pi^{\mathfrak M}$

Assumption 2: Smoothness

There exist a sequence of concave and non-decreasing functions $F_t^P, F_t^c : \mathbb{R}_{\geqslant 0} \to \mathbb{R}_{\geqslant 0}, \ t \in \{1, ..., T\}$, such that for any $s, s' \in \mathbb{S}$ and $\alpha \in \mathcal{A}$:

- **Dynamics**: $d_{Was}(P_{S,t}(\cdot|s,\alpha),P_{S,t}(\cdot|s',\alpha)) \leq F_t^P(d_S(s,s'))$
- ▶ Cost: $|c_t(s, a) c_t(s', a)| \leq F_t^c(d_{\mathcal{S}}(s, s'))$

Special case: When F_t^P and F_t^c are linear, this reduces to standard Lipschitz continuity.

Sub-optimality bounds

Quality of estimator

Worst-case conditional expected estimation error η_t :

$$\eta_t := \sup_{h_t} \mathbb{E}[d_S(S_t, \mathcal{E}_t(h_t)) \mid h_t]$$

We assume η_t is bounded.

Sub-optimality bounds

Quality of estimator

Worst-case conditional expected estimation error η_t :

$$\eta_t := \sup_{h_t} \mathbb{E}[d_S(S_t, \mathcal{E}_t(h_t)) \mid h_t]$$

We assume η_t is bounded.

Theorem 1

Define $\epsilon_t = F_t^c(\eta_t)$ and $\delta_t = F_t^P(\eta_t) + \eta_{t+1}$. Under our assumptions, the CE policy satisfies:

$$W_{\mathsf{t}}^{\mathcal{P},\,\mu^{\mathcal{E}}}(\mathsf{h}_{\mathsf{t}}) - W_{\mathsf{t}}^{\mathcal{P}}(\mathsf{h}_{\mathsf{t}}) \leqslant 2\alpha_{\mathsf{t}}$$

where

$$\alpha_t = \epsilon_t + \sum_{\tau=t}^{T-1} \big[\delta_\tau \text{Lip}(V_{\tau+1}^{\mathfrak{M}}) + \epsilon_{\tau+1} \big], \quad \text{ where } V_{\tau+1}^{\mathfrak{M}} \text{ is the opt. value fn. for MDP } \mathfrak{M}.$$

Certainty equivalence using state abstraction

State abstraction

- ightharpoonup Abstract state space $\tilde{\mathbb{S}}$ with metric $d_{\tilde{\mathbb{S}}}$
- ▶ Abstraction function $\phi: S \to \tilde{S}$ and stochastic kernels $\lambda^P, \lambda^c: \tilde{S} \to \Delta(S)$
- ▶ Construct abstract MDP $\tilde{\mathcal{M}} = \langle \tilde{\mathcal{S}}, \mathcal{A}, \{\tilde{\mathcal{P}}_t\}_{t=1}^{T-1}, \{\tilde{c}_t\}_{t=1}^T, \mathsf{T} \rangle$:

 - ▶ Cost: $\tilde{c}_t(\tilde{s}_t, a_t) = \int_{\Phi^{-1}(\tilde{s}_t)} c_t(s_t, a_t) \lambda^c(ds_t | \tilde{s}_t)$
- Cost function is a weighted averaging over all states in $\phi^{-1}(\tilde{s}_t)$; similar interpretation for the dynamics

Certainty equivalence using state abstraction

State abstraction

- ightharpoonup Abstract state space \tilde{S} with metric $d_{\tilde{S}}$
- ▶ Abstraction function $\phi: S \to \tilde{S}$ and stochastic kernels $\lambda^P, \lambda^c: \tilde{S} \to \Delta(S)$
- ▶ Construct abstract MDP $\tilde{\mathcal{M}} = \langle \tilde{\mathcal{S}}, \mathcal{A}, \{\tilde{\mathcal{P}}_t\}_{t=1}^{T-1}, \{\tilde{c}_t\}_{t=1}^{T}, \mathsf{T} \rangle$:
 - **>** Dynamics: $\tilde{P}_t(\tilde{S}_{t+1} \in M_{\tilde{S}}|\tilde{s}_t, \alpha_t) = \int_{\Phi^{-1}(\tilde{s}_t)} P_{\tilde{S},t}(\phi(S_{t+1}) \in M_{\tilde{S}}|s_t, \alpha_t)) \lambda^P(ds_t|\tilde{s}_t)$
 - ▶ Cost: $\tilde{c}_t(\tilde{s}_t, a_t) = \int_{\Phi^{-1}(\tilde{s}_t)} c_t(s_t, a_t) \lambda^c(ds_t | \tilde{s}_t)$
- Cost function is a weighted averaging over all states in $\phi^{-1}(\tilde{s}_t)$; similar interpretation for the dynamics

Assumptions

- ightharpoonup The model $\tilde{\mathcal{M}}$ satisfies measurable selection
- ightharpoonup The model $\tilde{\mathcal{M}}$ is smooth

Sub-optimality bounds for state abstraction

Quality of estimator

Worst-case conditional expected estimation error η_t :

$$\tilde{\eta}_t := \sup_{h_t} \mathbb{E}[d_{\tilde{S}}(\varphi(S_t), \mathcal{E}_t(h_t)) \mid h_t]$$

We assume $\tilde{\eta}_t$ is bounded.

Sub-optimality bounds for state abstraction

Quality of estimator

Worst-case conditional expected estimation error η_t :

$$\tilde{\eta}_t := \sup_{\mathbf{h}} \mathbb{E}[d_{\tilde{S}}(\mathbf{\phi}(S_t), \mathcal{E}_t(\mathbf{h}_t)) \mid \mathbf{h}_t]$$

We assume $\tilde{\eta}_t$ is bounded.

Theorem 2

Define $\tilde{\epsilon}_t = F_t^c(\tilde{\eta}_t)$ and $\tilde{\delta}_t = F_t^P(\tilde{\eta}_t) + \tilde{\eta}_{t+1}$. Under our assumptions, the CE policy satisfies:

$$W_{t}^{\mathcal{P}, \mu^{\mathcal{E}}}(\mathbf{h}_{t}) - W_{t}^{\mathcal{P}}(\mathbf{h}_{t}) \leq 2\tilde{\alpha}_{t}$$

where

$$\tilde{\alpha}_t = \tilde{\epsilon}_t + \sum_{\tau=t}^{T-1} \big[\tilde{\delta}_\tau \text{Lip}(V_{\tau+1}^{\tilde{\mathcal{M}}}) + \tilde{\epsilon}_{\tau+1} \big], \quad \text{ where } V_{\tau+1}^{\tilde{\mathcal{M}}} \text{ is the opt. value fn. for MDP } \tilde{\mathcal{M}}.$$

Some Examples

Example 1: Bounded Observation Noise

System Model

- $\triangleright y = S$ and $d_S(Y_t, S_t) \leq r$.
- \triangleright M satisfies measurable selection.
- Dynamics and cost are Lipschitz continuous with Lipschitz constants L_t^P and L_t^c .

Example 1: Bounded Observation Noise

System Model

- ▶ $\mathcal{Y} = \mathcal{S}$ and $d_{\mathcal{S}}(Y_t, S_t) \leq r$.
- $ightharpoonup \mathbb{M}$ satisfies measurable selection.
- Dynamics and cost are Lipschitz continuous with Lipschitz constants L_t^P and L_t^c .

Certainty equivalent policy

- $\triangleright \ \mathcal{E}_{t}(h_{t}) = y_{t}$
- $\blacktriangleright \ \mu_t^{\mathcal{E}}(h_t) = \pi_t^{\mathcal{M}}(y_t)$

Example 1: Bounded Observation Noise

System Model

- $\triangleright y = S \text{ and } d_S(Y_t, S_t) \leqslant r.$
- $ightharpoonup \mathcal{M}$ satisfies measurable selection.
- Dynamics and cost are Lipschitz continuous with Lipschitz constants L_t^P and L_t^c .

Certainty equivalent policy

- $\triangleright \mathcal{E}_{t}(h_{t}) = y_{t}$
- $\triangleright \ \mu_t^{\mathcal{E}}(h_t) = \pi_t^{\mathcal{M}}(y_t)$

Sub-optimality bound

- $\blacktriangleright \ \mathbb{E}[d_{\mathcal{S}}(S_t,Y_t) \mid h_t] \leqslant r. \quad \text{Thus, } \eta_t \leqslant r. \quad \blacktriangleright \ \epsilon_t \leqslant rL_t^c \text{ and } \delta_t \leqslant r(1+L_t^P).$
- ▶ Hence, $W_t^{\mathcal{P}, \mu^{\mathcal{E}}}(h_t) W_t^{\mathcal{P}}(h_t) \leq 2rL_T$ where

$$L_{T} = \left[L_{t}^{c} + \sum_{\tau=t}^{T-1} \left[(1 + L_{\tau}^{P}) Lip(V_{\tau+1}^{M}) + L_{\tau+1}^{c} \right] \right]$$

Example 2: Bounded obs noise with state quantization

System Model

- \triangleright Same as previous model but S is so large that we cannot solve MDP \mathfrak{M} .
- ▶ Quantize state space S into K bins. Quantized state $\tilde{S} = \{1, ..., K\}$.
- ▶ Quantization function ϕ : $S \to \tilde{S}$.

ŝ	\$10	\hat{s}_{11}	\hat{s}_{12}
$\hat{\hat{s}}_5$	q_4 q_1 \hat{s}_6 q_2	\$ 7	Ŝ8
$\hat{\hat{s}}_1$	$\hat{\hat{s}}_2$	\hat{s}_3	$\hat{\hat{s}}_4$

Example 2: Bounded obs noise with state quantization

System Model

- \triangleright Same as previous model but S is so large that we cannot solve MDP \mathcal{M} .
- ▶ Quantize state space S into K bins. Quantized state $\tilde{S} = \{1, ..., K\}$.
- $\qquad \qquad \textbf{Quantization function } \varphi \text{: } \mathbb{S} \to \tilde{\mathbb{S}}.$

\hat{s}_9	\$10	\hat{s}_{11}	\hat{s}_{12}
$\hat{\hat{s}}_5$	q_4 q_1 \hat{s}_6 q_2	\$ 7	\hat{s}_8
\hat{s}_1	\hat{s}_2	\hat{s}_3	\hat{s}_4

Certainty equivalent policy

- ightharpoonup Solve quantized MDP $\tilde{\mathcal{M}}$.
- $\triangleright \ \mathcal{E}_{t}(h_{t}) = \phi(Y_{t}).$
- $\triangleright \ \mu_t^{\mathcal{E}}(h_t) = \pi_t^{\tilde{\mathcal{M}}}(\phi(Y_t))$

Example 2: Bounded obs noise with state quantization

System Model

- \triangleright Same as previous model but S is so large that we cannot solve MDP \mathfrak{M} .
- ▶ Quantize state space S into K bins. Quantized state $\tilde{S} = \{1, ..., K\}$.
- \blacktriangleright Quantization function $\varphi \colon \mathbb{S} \to \tilde{\mathbb{S}}.$

\hat{s}_9	\$10	\hat{s}_{11}	\hat{s}_{12}
$\hat{\hat{s}}_5$	q_4 q_1 \hat{s}_6 q_2	\$ 57	ŝ ₈
$\hat{\hat{s}}_1$	\hat{s}_2	\hat{s}_3	\hat{s}_4

Certainty equivalent policy

- ightharpoonup Solve quantized MDP $\tilde{\mathcal{M}}$.
- $\triangleright \ \mathcal{E}_{t}(h_{t}) = \phi(Y_{t}).$
- $\blacktriangleright \mu_t^{\mathcal{E}}(h_t) = \pi_t^{\tilde{\mathcal{M}}}(\phi(Y_t))$

Sub-optimality bound

$$\triangleright \tilde{\eta}_t \leqslant \bar{r} := r + 2D$$

where D is diameter of quantization cell.

▶ Thus,

$$\tilde{\epsilon}_t \leqslant L_t^c(\bar{r})$$
 and $\tilde{\delta}_t \leqslant L_t^p(\bar{r}) + \bar{r}$

Example 3: Intermittently degraded observation

System Model

- \triangleright y = S and M satisfies measurable selection.
- Dbservation is either bad (with prob. p) or good.
- ▶ Good obs: $d_{\mathcal{S}}(Y_t, S_t) \leq r$.
- **Bad obs:** $d_S(Y_t, S_t) \leq R$, where R > r.
- Dynamics and cost are Lipschitz continuous

Example 3: Intermittently degraded observation

System Model

- ightharpoonup
 angle =
 m S and m M satisfies measurable selection.
- Observation is either bad (with prob. p) or good.
- ▶ Good obs: $d_{\mathcal{S}}(Y_t, S_t) \leq r$.
- ▶ Bad obs: $d_{\mathcal{S}}(Y_t, S_t) \leq R$, where R > r.
- Dynamics and cost are Lipschitz continuous

Certainty equivalent policy

- $\triangleright \ \mathcal{E}_{t}(h_{t}) = y_{t}$
- $\blacktriangleright \ \mu_t^{\mathcal{E}}(h_t) = \pi_t^{\mathcal{M}}(y_t)$

Example 3: Intermittently degraded observation

System Model

Certainty equivalent policy

 $\triangleright \mathcal{E}_{t}(h_{t}) = u_{t}$

 $\triangleright \mu_t^{\mathcal{E}}(h_t) = \pi_t^{\mathcal{M}}(u_t)$

- ightharpoonup
 angle =
 m S and m M satisfies measurable selection.
- Dbservation is either bad (with prob. p) or good.
- ▶ Good obs: $d_{\mathcal{S}}(Y_t, S_t) \leq r$.
- **Bad obs:** $d_{\mathcal{S}}(Y_t, S_t) \leq R$, where R > r.
- Dynamics and cost are Lipschitz continuous

Sub-optimality bound

- $\triangleright \mathbb{E}[d_{\mathcal{S}}(S_t, Y_t) \mid h_t] \leq (1-p)r + pR$. Thus, $\eta_t \leq (1-p)r + pR$.
- $\triangleright \ \varepsilon_t \leqslant [(1-p)r+pR]L_t^c \ \text{and} \ \delta_t \leqslant [(1-p)r+pR](1+L_t^P).$
- ▶ Hence, $W_{t}^{\mathcal{P}, \mu^{\mathcal{E}}}(h_{t}) W_{t}^{\mathcal{P}}(h_{t}) \leq 2[(1-p)r + pR]L_{T}$

Example 4: Certainty equivalence in adaptive control

System Model

- ▶ Parameterized MDP $\mathcal{M}_X(\theta)$, $\theta \in \Theta$, with state space \mathcal{X} , action space \mathcal{A} .
- ightharpoonup Dynamics $P_{X,\,\theta}$ and per-step cost ℓ_{θ} . Assumed to be Lipschitz continuous.
- ▶ POMDP with state (X_t, θ) , observation $(X_t, \ell_{\theta}(X_{t-1}, A_{t-1}))$
- ▶ Corresponding MDP $\mathfrak{M} = \mathfrak{M}_X(\theta)$.

Example 4: Certainty equivalence in adaptive control

System Model

- ▶ Parameterized MDP $\mathcal{M}_X(\theta)$, $\theta \in \Theta$, with state space \mathcal{X} , action space \mathcal{A} .
- ightharpoonup Dynamics $P_{X,\theta}$ and per-step cost ℓ_{θ} . Assumed to be Lipschitz continuous.
- ▶ POMDP with state (X_t, θ) , observation $(X_t, \ell_{\theta}(X_{t-1}, A_{t-1}))$
- ightharpoonup Corresponding MDP $\mathfrak{M}=\mathfrak{M}_X(\theta).$

Certainty equivalent policy

- \triangleright Let $\hat{\theta}_t$ be any estimator of θ .
- $\blacktriangleright \mu_t^{\mathcal{E}}(h_t) = \pi_t^{\mathcal{M}}(x_t, \hat{\theta}_t) = \pi_t^{\mathcal{M}_X(\hat{\theta}_t)}(x_t)$

Example 4: Certainty equivalence in adaptive control

System Model

- \triangleright Parameterized MDP $\mathcal{M}_X(\theta)$, $\theta \in \Theta$, with state space \mathcal{X} , action space \mathcal{A} .
- ightharpoonup Dynamics $P_{X,\theta}$ and per-step cost ℓ_{θ} . Assumed to be Lipschitz continuous.
- ▶ POMDP with state (X_t, θ) , observation $(X_t, \ell_{\theta}(X_{t-1}, A_{t-1}))$
- ightharpoonup Corresponding MDP $\mathfrak{M}=\mathfrak{M}_X(\theta)$.

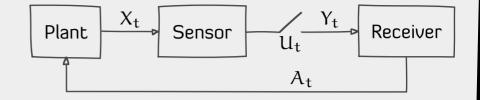
Certainty equivalent policy

- ightharpoonup Let $\hat{\theta}_t$ be any estimator of θ .
- $\blacktriangleright \ \mu_t^{\mathcal{E}}(h_t) = \pi_t^{\mathcal{M}}(x_t, \hat{\theta}_t) = \pi_t^{\mathcal{M}_X(\hat{\theta}_t)}(x_t)$

Sub-optimality bound

- ▶ Thus, $\varepsilon_t \leq L^c \eta_t$ and $\delta_t \leq L^p \eta_t + \eta_{t+1}$.
- If η_t decays sufficiently fast, we can obtain upper bounds on performance loss even as $T \to \infty$.

Example 5: Remote estimation with event-triggered comm



Example 5: Remote estimation with event-triggered comm

Event-triggered communication

- Plant X_t Sensor U_t Receiver A_t
- ▶ Let $g: \mathcal{X} \times \mathcal{A} \to \mathcal{X}$ is a pre-specified function.
- ▶ The remote controller generates an estimate

$$\hat{X}_{t|t-1} = g(X_{t-1|t-1}, A_{t-1}) \quad \text{and} \quad \hat{X}_{t|t} = \begin{cases} Y_t & \text{if } Y_t = \mathfrak{E} \\ \hat{X}_{t|t-1} & \text{otherwise} \end{cases}$$

 $\begin{tabular}{ll} \hline \textbf{Event-triggered communication:} & Communicate if $d_{\mathfrak{X}}(X_t, \hat{X}_{t|t-1}) > r. \\ \hline \end{tabular}$

Example 5: Remote estimation with event-triggered comm

Event-triggered communication

- Plant X_t Sensor U_t Receiver A_t
- ▶ Let $g: \mathcal{X} \times \mathcal{A} \to \mathcal{X}$ is a pre-specified function. ▶ The remote controller generates an estimate

$$\widehat{X}_{t|t-1} = g(X_{t-1|t-1}, A_{t-1}) \quad \text{and} \quad \widehat{X}_{t|t} = \begin{cases} Y_t & \text{if } Y_t = \mathfrak{E} \\ \widehat{X}_{t|t-1} & \text{otherwise} \end{cases}$$

 $\qquad \textbf{Event-triggered communication:} \quad \textbf{Communicate if } d_{\mathcal{X}}(X_t, \widehat{X}_{t|t-1}) > r.$

Certainty equivalent policy

- ▶ POMDP with $S_t = (X_t, \hat{X}_{t|t-1})$ and obs. Y_t .
- ▶ State estimate $\mathcal{E}_t(h_t) = (\hat{x}_{t|t}, \hat{x}_{t|t-1})$.
- $\blacktriangleright \ \mu_t^{\mathcal{E}}(h_t) = \pi_t^{\mathcal{M}}(\hat{x}_{t|t}, \hat{x}_{t|t-1}) = \pi_t^{\mathcal{M}_X}(\hat{x}_{t|t}).$

Example 5: Remote estimation with event-triggered comm

Event-triggered communication

- Plant Sensor
- ightharpoonup Let $g: \mathcal{X} \times \mathcal{A} \to \mathcal{X}$ is a pre-specified function.
- ▶ The remote controller generates an estimate

$$\hat{X}_{t|t-1} = g(X_{t-1|t-1}, A_{t-1}) \quad \text{and} \quad \hat{X}_{t|t} = \begin{cases} Y_t & \text{if } Y_t = \mathfrak{E} \\ \hat{X}_{t|t-1} & \text{otherwise} \end{cases}$$

Event-triggered communication: Communicate if $d_{\mathfrak{X}}(X_{t}, \hat{X}_{t|t-1}) > r$.

Certainty equivalent policy

- ▶ POMDP with $S_t = (X_t, \hat{X}_{t|t-1})$ and obs. Y_t .
- ▶ State estimate $\mathcal{E}_t(h_t) = (\hat{x}_{t|t}, \hat{x}_{t|t-1})$.
- $\blacktriangleright \mu_t^{\mathcal{E}}(h_t) = \pi_t^{\mathcal{M}}(\hat{x}_{t|t}, \hat{x}_{t|t-1}) = \pi_t^{\mathcal{M}_X}(\hat{x}_{t|t}).$

Sub-optimality bound

- $ightharpoonup \mathbb{E}[d_{S}(S_{t},\mathcal{E}_{t}(h_{t})) \mid h_{t}] \leqslant r.$ Thus, $\eta_{t} \leqslant r.$
- ► Hence,

$$\epsilon_{t} \leqslant F_{t}^{c}(r)$$
 and $\delta_{t} \leqslant F_{t}^{P}(r) + r$

Example 6: Non-homogeneous multi-particle systems

System Model

- \triangleright n particles, state of particle $X_t^i \in \mathcal{X}$
- ▶ Global state $X_t = (X_t^1, ..., X_t^n)$
- \triangleright Global observation $Y_t = X_t + N_t$
- ▶ Weighted mean-field: $M_t = \sum_{i=1}^n \alpha^i X_t^i$
- ▶ Dynamics: $X_{t+1}^{i} = \bar{f}(M_t, A_t, W_t) + f^{i}(X_t, A_t, W_t)$
- ► Cost: $c(X_t, A_t) = \bar{\ell}(M_t, A_t) + \sum_{i=1}^n \alpha^i \ell^i(X_t, A_t)$

Example 6: Non-homogeneous multi-particle systems

System Model

- ightharpoonup n particles, state of particle $X_t^i \in \mathcal{X}$
- ▶ Global state $X_t = (X_t^1, ..., X_t^n)$
- \triangleright Global observation $Y_t = X_t + N_t$
- ▶ Weighted mean-field: $M_t = \sum_{i=1}^n \alpha^i X_t^i$
- ▶ Dynamics: $X_{t+1}^{i} = \bar{f}(M_t, A_t, W_t) + f^{i}(X_t, A_t, W_t)$
- ► Cost: $c(X_t, A_t) = \bar{\ell}(M_t, A_t) + \sum_{i=1}^n \alpha^i \ell^i(X_t, A_t)$

Assumptions

- ightharpoonup \bar{f} and $\bar{\ell}$ are Lipschitz continuous.
- ightharpoonup fⁱ and ℓ ⁱ are small (in sup-norm)

Example 6: Non-homogeneous multi-particle systems

Assumptions

ightharpoonup ightharpoonup and ightharpoonup are Lipschitz continuous.

 \triangleright fⁱ and ℓ^i are small (in sup-norm)

System Model

- \triangleright n particles, state of particle $X_t^i \in \mathcal{X}$
- ightharpoonup Global state $X_t = (X_t^1, ..., X_t^n)$
- ▶ Global observation $Y_t = X_t + N_t$
- ▶ Weighted mean-field: $M_t = \sum_{i=1}^n \alpha^i X_t^i$
- ▶ Dynamics: $X_{t+1}^{i} = \bar{f}(M_t, A_t, W_t) + f^{i}(X_t, A_t, W_t)$
- ► Cost: $c(X_t, A_t) = \overline{\ell}(M_t, A_t) + \sum_{i=1}^n \alpha^i \ell^i(X_t, A_t)$

Certainty equivalent policy and sub-optimality bounds

$$\triangleright \ \mathcal{E}_t(h_t) = \sum_{i=1}^n \alpha^i Y_t^i \quad \triangleright \mu_t^{\mathcal{E}}(h_t) = \pi_t^{\mathcal{M}}(\mathcal{E}_t(h_t))$$

$$\tilde{\epsilon}_t \leqslant L^{\bar{\ell}} \sum_{i=1}^{i=1} {}^n \alpha^i r^i + 2\beta \text{ and } \tilde{\delta}_t \leqslant L^{\bar{f}} \sum_{i=1}^{i=1} {}^n \alpha^i r^i + 2\sum_{i=1}^n \alpha^i \gamma^i$$

Proof Outline

Approximate Information State

Given a sequence $\varepsilon = (\varepsilon_1, ..., \varepsilon_T)$ and $\delta = (\delta_1, ..., \delta_T)$, a process $\{Z_t\}_{t=1}^T$ is an (ε, δ) -approximate information state (AIS) if there exists

- ightharpoonup History compression functions $\sigma_{t}^{AIS}:\mathcal{H}_{t}\to\mathcal{Z}$
- ightharpoonup Cost approximation functions $c_{+}^{\mathsf{AIS}}: \mathcal{Z} \times \mathcal{A} \to \mathbb{R}$
- ightharpoonup Dynamics approximation functions P_t^{AIS} : $\mathcal{Z} \times \mathcal{A} \to \mathcal{Z}$

Approximate Information State

Given a sequence $\varepsilon = (\varepsilon_1, ..., \varepsilon_T)$ and $\delta = (\delta_1, ..., \delta_T)$, a process $\{Z_t\}_{t=1}^T$ is an (ε, δ) -approximate information state (AIS) if there exists

- ightharpoonup History compression functions $\sigma_t^{AIS}:\mathcal{H}_t\to\mathcal{Z}$
- ightharpoonup Cost approximation functions $c_{+}^{\mathsf{AIS}}: \mathcal{Z} \times \mathcal{A} \to \mathbb{R}$
- ightharpoonup Dynamics approximation functions P_t^{AIS} : $\mathcal{Z} \times \mathcal{A} \to \mathcal{Z}$

such that

- $\triangleright |\mathbb{E}[c_t(S_t, a_t)|h_t] c_t^{AIS}(\sigma_t^{AIS}(h_t), a_t)| \leq \varepsilon_t$
- \blacktriangleright d_{Was} $(\nu_t(\cdot|h_t, a_t), P_t^{AlS}(\cdot|z_t, a_t)) \leq \delta_t$, where $\nu_t(M_Z|h_t, a_t) = \mathbb{P}(Z_{t+1} \in M_Z|h_t, a_t)$.
- \triangleright MDP $\langle \mathcal{Z}, \mathcal{A}, \mathcal{P}^{AlS}, \mathcal{C}^{AlS} \rangle$ satisfies measurable selection.

AIS Approximation Bound

AIS Dynamic Program

Let $\{Z_t\}_{t=1}^T$ be an (ε, δ) -AIS. Define:

$$V_{t}^{\mathsf{AIS}}(z_{t}) = \min_{\alpha \in \mathcal{A}} \left\{ c_{t}^{\mathsf{AIS}}(z_{t}, \alpha) + \int_{\mathcal{I}_{t}} P_{t}^{\mathsf{AIS}}(\,\mathrm{d}z'|z_{t}, \alpha) \, V_{t+1}^{\mathsf{AIS}}(z') \right\}.$$

Let μ_{t}^{AIS} be the corresponding arg min policy.

AIS Approximation Bound

AIS Dynamic Program

Let $\{Z_t\}_{t=1}^T$ be an (ε, δ) -AIS. Define:

$$V_{t}^{\mathsf{AIS}}(z_{t}) = \min_{\alpha \in \mathcal{A}} \left\{ c_{t}^{\mathsf{AIS}}(z_{t}, \alpha) + \int_{\mathcal{I}} P_{t}^{\mathsf{AIS}}(dz'|z_{t}, \alpha) V_{t+1}^{\mathsf{AIS}}(z') \right\}.$$

Let μ_{+}^{AIS} be the corresponding arg min policy.

AIS Policy

Define the policy μ^{AIS} for POMDP \mathcal{P} as

$$\mu_t^{\mathsf{AIS}}(\mathsf{h}_t) = \pi_t^{\mathsf{AIS}}(\sigma_t^{\mathsf{AIS}}(\mathsf{h}_t))$$

AIS Approximation Bound

AIS Dynamic Program

Let $\{Z_t\}_{t=1}^T$ be an (ε, δ) -AIS. Define:

$$V_{t}^{\mathsf{AIS}}(z_{t}) = \min_{\alpha \in \mathcal{A}} \left\{ c_{t}^{\mathsf{AIS}}(z_{t}, \alpha) + \int_{\mathcal{T}} P_{t}^{\mathsf{AIS}}(dz'|z_{t}, \alpha) V_{t+1}^{\mathsf{AIS}}(z') \right\}.$$

Let μ_{+}^{AIS} be the corresponding arg min policy.

AIS Policy

Define the policy μ^{AIS} for POMDP \mathcal{P} as

$$\mu_t^{\mathsf{AIS}}(h_t) = \pi_t^{\mathsf{AIS}}(\sigma_t^{\mathsf{AIS}}(h_t))$$

AIS Approximation Bound

$$W_{\mathsf{t}}^{\mathcal{P},\,\mu^{\mathsf{AIS}}}(\mathsf{h}_{\mathsf{t}}) - W_{\mathsf{t}}^{\mathcal{P}}(\mathsf{h}_{\mathsf{t}}) \leqslant 2\alpha$$

where

$$\alpha_{t} = \varepsilon_{t} + \sum_{\tau=t}^{T-1} \left[\delta_{\tau} Lip(V_{\tau+1}^{AIS}) + \varepsilon_{\tau+1} \right]$$

Subramanian, Sinha, Seraj, Mahajan, "Approximate Information State for approximate planning and learning ...", JMLR 2022.

Proof Outline

Show that CE policy is an AIS

Under smoothness assumptions:

- $\triangleright \left| \mathbb{E}[c_t(S_t, a_t) | h_t] \tilde{c}_t(\mathcal{E}_t(h_t), a_t) \right| \leqslant F_t^c(\eta_t).$

where

$$\begin{split} \widehat{\psi}_{t}(M_{\tilde{S}}|h_{t},\alpha_{t}) &= \mathbb{P}(\mathcal{E}_{t+1}(H_{t+1}) \in M_{\tilde{S}}|h_{t},\alpha_{t}) \\ \widetilde{P}_{t}(M_{\tilde{S}}|\tilde{s}_{t},\alpha_{t}) &= \mathbb{P}(\tilde{S}_{t+1} \in M_{\tilde{S}}|\tilde{s}_{t},\alpha_{t}) \end{split}$$

▶ The main result (Theorem 2) follows from the AIS bounds.

Conclusion

- ▶ CE policies are practical and attractive for non-LQG settings.
- ▶ Results agree with engineering intuition: the sub-optimality of CE policies depends on the quality of the estimator and smoothness of the model.
- ▶ The approximation bounds are based on AIS theory.
- ▶ CE policies are not appropriate for all models: for instance, if the agent has an option to pay a cost to sense the true state of the MDP, a CE policy will never choose the sensing action.

- email: aditya.mahajan@mcgill.ca
- ▶ web: https://adityam.github.io

Thank you