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Teams
All agents have common objective
Agents cooperate to minimize team cost
Agents are not strategic
Solution concepts: personbyperson optimality,
global optimality . . .

Types of multiagent decision problems
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Teams
All agents have common objective
Agents cooperate to minimize team cost
Agents are not strategic
Solution concepts: personbyperson optimality,
global optimality . . .

Games
Each agent has individual objective
Agents compete to minimize individual cost
Agents are strategic
Solution concepts: Nash equil, Bayesian Nash, Subgame
perfect, Markov perfect, Bayesian perfect, . . .

Types of multiagent decision problems
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Emerging applications

Aggregators competing in demand
response market

Ridesharing companies in a city

DARPA spectrum sharing challenge

StarCraft

Emerging applications are neither teams nor games
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Emerging applications

Aggregators competing in demand
response market

Ridesharing companies in a city

DARPA spectrum sharing challenge

StarCraft

Salient features

Multiple teams are competing in the
same environment (non zerosum).

Agents belonging to the same team are
willing to cooperate with one another.

But agents have partial information
about other members of their teams and
agents in other teams.

See Tang et al (2024) for general solution.
Are there tractable models for games among teams?

Emerging applications are neither teams nor games
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System Model

𝐾 teams, indexed by 𝒦= {1,… , 𝐾}.

Team 𝑘 has 𝑁(𝑘) agents, indexed by 𝒩(𝑘).         

Model of games among teams
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System Model

𝐾 teams, indexed by 𝒦= {1,… , 𝐾}.

Team 𝑘 has 𝑁(𝑘) agents, indexed by 𝒩(𝑘).

For agent 𝑖 in team 𝑘:
state: 𝑆𝑖𝑡 ∈ 𝒮(𝑘); action: 𝐴𝑖

𝑡 ∈ 𝒜(𝑘).

Team 𝑘:
state: 𝑆(𝑘)𝑡 = (𝑆𝑖𝑡 )𝑖∈𝒩(𝑘); action: 𝐴(𝑘)

𝑡 = (𝐴𝑖
𝑡)𝑖∈𝒩(𝑘).

For the system:
state: 𝑆𝑡 = (𝑆(1)𝑡 , … , 𝑆(𝐾)𝑡 ); action: 𝐴𝑡 = (𝐴(1)

𝑡 , … , 𝐴(𝐾)
𝑡 ).    

Model of games among teams



Meanfield games among teams–(Mahajan)
3

System Model

𝐾 teams, indexed by 𝒦= {1,… , 𝐾}.

Team 𝑘 has 𝑁(𝑘) agents, indexed by 𝒩(𝑘).
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state: 𝑆𝑖𝑡 ∈ 𝒮(𝑘); action: 𝐴𝑖

𝑡 ∈ 𝒜(𝑘).

Team 𝑘:
state: 𝑆(𝑘)𝑡 = (𝑆𝑖𝑡 )𝑖∈𝒩(𝑘); action: 𝐴(𝑘)

𝑡 = (𝐴𝑖
𝑡)𝑖∈𝒩(𝑘).

For the system:
state: 𝑆𝑡 = (𝑆(1)𝑡 , … , 𝑆(𝐾)𝑡 ); action: 𝐴𝑡 = (𝐴(1)

𝑡 , … , 𝐴(𝐾)
𝑡 ).

Dynamics: ℙ(𝑆𝑡+1 ∣ 𝑆𝑡, 𝐴𝑡).

Perstep cost for team 𝑘: 𝐶(𝑘)
𝑡 = 𝑐(𝑘)(𝑆𝑡, 𝐴𝑡).

Model of games among teams
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Information Structure

𝐼𝑖𝑡 ⊆ {𝑆1:𝑡, 𝐴1:𝑡−1}.

Model of games among teams
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Information Structure

𝐼𝑖𝑡 ⊆ {𝑆1:𝑡, 𝐴1:𝑡−1}.

Strategy profiles

Strategy of agent 𝑖: 𝐴𝑖
𝑡 ∼ 𝜋𝑖
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1 , … , 𝜋(𝑘)

𝑇 ) where 𝜋(𝑘)
𝑡 = (𝜋𝑖

𝑡 )𝑖∈𝒩(𝑘)
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Information Structure

𝐼𝑖𝑡 ⊆ {𝑆1:𝑡, 𝐴1:𝑡−1}.

Strategy profiles

Strategy of agent 𝑖: 𝐴𝑖
𝑡 ∼ 𝜋𝑖

𝑡(𝐼𝑖𝑡 ).

Strategy of team 𝑘: 𝜋(𝑘) = (𝜋(𝑘)
1 , … , 𝜋(𝑘)

𝑇 ) where 𝜋(𝑘)
𝑡 = (𝜋𝑖

𝑡 )𝑖∈𝒩(𝑘)

Strategy profile: 𝜋 = (𝜋(1), … , 𝜋(𝐾)).

Performance of team 𝑘

𝐽(𝑘)(𝜋) = 𝔼𝜋[
𝑇

∑
𝑡=1

𝐶(𝑘)
𝑡 ].

Model of games among teams
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TeamNash equilibrium (Tang et al, 2024)

A strategy profile 𝜋 is a teamNash equilibrium (TNE) if for every team 𝑘 and every alternative
policy �̃�(𝑘) for team 𝑘, we have

𝐽(𝑘)(𝜋(𝑘), 𝜋(−𝑘)) ≤ 𝐽(𝑘)(�̃�(𝑘), 𝜋(−𝑘))

Solution concept
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TeamNash equilibrium (Tang et al, 2024)

A strategy profile 𝜋 is a teamNash equilibrium (TNE) if for every team 𝑘 and every alternative
policy �̃�(𝑘) for team 𝑘, we have

𝐽(𝑘)(𝜋(𝑘), 𝜋(−𝑘)) ≤ 𝐽(𝑘)(�̃�(𝑘), 𝜋(−𝑘))

Salient features

Different from Nash equilibrium because agents of the same team can deviate together.

Agents within a team have a nonclassical information structure

Agents in different teams have asymmetric information.

Special cases

Dynamic team 𝐾 = 1 Dynamic games 𝒩(𝑘) = 1 for all 𝑘.

Solution concept



Games among teams inherit the conceptual
challenges of teams and games.

Are there tractable models
for games among teams?
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Agent 𝑖 Agent 𝑗

Action of agent 𝑖
affect obs of agent 𝑗

Signaling

Actions of agent 𝑖 can convey information to agent 𝑗.         

Why are dynamic multiagent problems hard?
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Agent 𝑖 Agent 𝑗

Action of agent 𝑖
affect obs of agent 𝑗

Signaling

Actions of agent 𝑖 can convey information to agent 𝑗.

In teams, agents can exploit signaling to inform other agents.

In games, agents can use signaling to confuse other agents.

Usually, problems with lack of signaling are tractable:

Teams: MDPs, POMDPs, partially nested teams, meanfield teams . . .

Games: Markov perfect equilibrium (MPE), some commoninfo based refinements of MPE,
meanfield games, . . .

Why are dynamic multiagent problems hard?
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Assumption

Agents in each team are exchangeable. In par
ticular, let

𝜎(𝑆𝑡) = (𝜎1(𝑆(1)𝑡 , … , 𝜎(𝐾)(𝑆(𝐾)𝑡 )

denote a permulation of agents in each team.
Then,

ℙ(𝜎(𝑆𝑡+1) ∣ 𝜎(𝑆𝑡), 𝜎(𝐴𝑡)) = ℙ(𝑆𝑡+1 ∣ 𝑆𝑡, 𝐴𝑡)

and
𝑐(𝑘)(𝜎(𝑆𝑡), 𝜎(𝐴𝑡)) = 𝑐(𝑘)(𝑆𝑡, 𝐴𝑡)

Models with exchangeable agents
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Assumption

Agents in each team are exchangeable. In par
ticular, let

𝜎(𝑆𝑡) = (𝜎1(𝑆(1)𝑡 , … , 𝜎(𝐾)(𝑆(𝐾)𝑡 )

denote a permulation of agents in each team.
Then,

ℙ(𝜎(𝑆𝑡+1) ∣ 𝜎(𝑆𝑡), 𝜎(𝐴𝑡)) = ℙ(𝑆𝑡+1 ∣ 𝑆𝑡, 𝐴𝑡)

and
𝑐(𝑘)(𝜎(𝑆𝑡), 𝜎(𝐴𝑡)) = 𝑐(𝑘)(𝑆𝑡, 𝐴𝑡)

Rationale

In many applications, dynamics and cost do
not depend on how we index agents.

E.g.: demand response, DARPA spectrum challenge, . . .

Implications

Exchangeable couplings ≡
meanfield coupling

Meanfield couplings lead to
lack of signaling

Haung, Malhame, Caines, “Large population sto
chastic dynamic games . . .”, 2006.

Arabneydi, Mahajan, “Team optimal control . . .
with mean field sharing”, 2013

Saldi, Raginsky, Başar, “MarkovNash equil in
meanfield games . . .”, 2018.

Sanjari, Saldi, Yüksel, “Optimality of . . . with
meanfield information sharing,” 2024.

Models with exchangeable agents
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Meanfield
Teams (𝒦= 1)

Common information based DP
Simplification under symmetry assumptions
Samplingbased algorithms for solving DP
Infinite population approximation

Outline of the talk



Meanfield games among teams–(Mahajan)
8

Meanfield
Teams (𝒦= 1)

Common information based DP
Simplification under symmetry assumptions
Samplingbased algorithms for solving DP
Infinite population approximation

Meanfield
Games among
Teams (𝒦> 1)

Common information based MPE
Infinite population approximation

Outline of the talk



Meanfield games among teams–(Mahajan)
9

Meanfield
Teams (𝒦= 1)

Common information based DP
Simplification under symmetry assumptions
Samplingbased algorithms for solving DP
Infinite population approximation

Meanfield
Games among
Teams (𝒦> 1)

Common information based MPE
Infinite population approximation

Outline of the talk



Meanfield games among teams–(Mahajan)
10

System Model

Only one team with 𝑁 agents indexed by 𝒩.

For agent 𝑖:
state: 𝑆𝑖𝑡 ∈ 𝒮; action: 𝐴𝑖

𝑡 ∈ 𝒜.

Notational Simplification

📰 Arabneydi, Mahajan, “Team optimal control of coupled subsystems with mean field sharing,” 2014.
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Only one team with 𝑁 agents indexed by 𝒩.

For agent 𝑖:
state: 𝑆𝑖𝑡 ∈ 𝒮; action: 𝐴𝑖

𝑡 ∈ 𝒜.

Meanfield coupled dynamics:

ℙ(𝑆𝑡+1 ∣ 𝑆𝑡, 𝐴𝑡) = ∏
𝑖∈𝒩

ℙ(𝑆𝑖𝑡+1 ∣ 𝑆𝑖𝑡, 𝐴𝑖
𝑡, 𝑍𝑡) where 𝑍𝑡 = 𝜉(𝑆𝑡) ≔

1
⁄

𝑁 ∑
𝑖∈𝒩

𝛿𝑆𝑖𝑡.

Meanfield coupled cost:

𝐶𝑡 =
1
⁄

𝑁 ∑
𝑖∈𝒩

𝑐𝑡(𝑆𝑖𝑡, 𝐴𝑖
𝑡, 𝑍𝑡).

Notational Simplification

📰 Arabneydi, Mahajan, “Team optimal control of coupled subsystems with mean field sharing,” 2014.
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Only one team with 𝑁 agents indexed by 𝒩.

For agent 𝑖:
state: 𝑆𝑖𝑡 ∈ 𝒮; action: 𝐴𝑖

𝑡 ∈ 𝒜.

Meanfield coupled dynamics:

ℙ(𝑆𝑡+1 ∣ 𝑆𝑡, 𝐴𝑡) = ∏
𝑖∈𝒩

ℙ(𝑆𝑖𝑡+1 ∣ 𝑆𝑖𝑡, 𝐴𝑖
𝑡, 𝑍𝑡) where 𝑍𝑡 = 𝜉(𝑆𝑡) ≔

1
⁄

𝑁 ∑
𝑖∈𝒩

𝛿𝑆𝑖𝑡.

Meanfield coupled cost:

𝐶𝑡 =
1
⁄

𝑁 ∑
𝑖∈𝒩

𝑐𝑡(𝑆𝑖𝑡, 𝐴𝑖
𝑡, 𝑍𝑡).

Meanfield
sharing info

structure
𝐼𝑖𝑡 = {𝑆𝑖𝑡, 𝑍1:𝑡}

Notational Simplification

📰 Arabneydi, Mahajan, “Team optimal control of coupled subsystems with mean field sharing,” 2014.
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Commoninformation based simplification

📰 Nayyar, Mahajan, Teneketzis, “Decentralized stochastic control . . .: A common info approach,” IEEE TAC 2013.
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𝐴1
𝑡

𝐴𝑖
𝑡

𝐴𝑁
𝑡

(𝑆1𝑡 , … , 𝑆𝑁𝑡 )

𝑆1𝑡 , 𝑍1:𝑡

𝑆𝑖𝑡, 𝑍1:𝑡

𝑆𝑁𝑡 , 𝑍1:𝑡

𝜋1
𝑡

𝜋𝑖
𝑡

𝜋𝑁
𝑡

Commoninformation based simplification

📰 Nayyar, Mahajan, Teneketzis, “Decentralized stochastic control . . .: A common info approach,” IEEE TAC 2013.
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𝐴1
𝑡

𝐴𝑖
𝑡

𝐴𝑁
𝑡

(𝑆1𝑡 , … , 𝑆𝑁𝑡 )

𝛾1
𝑡

𝛾𝑖
𝑡

𝛾𝑁
𝑡

𝑍1:𝑡𝜓𝑡 (𝛾1
𝑡 , … , 𝛾𝑛

𝑡 )

𝑆1𝑡

𝑆𝑖𝑡

𝑆𝑁𝑡

Extended System Coordinator

where 𝛾𝑖
𝑡∶ 𝒮 → Δ(𝒜)

Commoninformation based simplification

📰 Nayyar, Mahajan, Teneketzis, “Decentralized stochastic control . . .: A common info approach,” IEEE TAC 2013.
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System Model (from the p.o.v. of the coordinator)

Unobserved state: (𝑆1𝑡 , … , 𝑆𝑛𝑡 )

Observations: 𝑍𝑡
Control action: prescriptions 𝛾𝑡 = (𝛾1

𝑡 , … , 𝛾𝑁
𝑡 ), where 𝛾𝑖

𝑡∶ 𝒮 → Δ(𝒜).

Control law: (𝛾1
𝑡 , … , 𝛾𝑁

𝑡 ) = 𝜓𝑡(𝑍1:𝑡).

Equivalent centralized problem
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System Model (from the p.o.v. of the coordinator)

Unobserved state: (𝑆1𝑡 , … , 𝑆𝑛𝑡 )

Observations: 𝑍𝑡
Control action: prescriptions 𝛾𝑡 = (𝛾1

𝑡 , … , 𝛾𝑁
𝑡 ), where 𝛾𝑖

𝑡∶ 𝒮 → Δ(𝒜).

Control law: (𝛾1
𝑡 , … , 𝛾𝑁

𝑡 ) = 𝜓𝑡(𝑍1:𝑡).

“Standard” centralized POMDP

Info state and DP

Information state: 𝐵𝑡 = ℙ(𝑆1𝑡 , … , 𝑆𝑁𝑡 ∣ 𝑍1:𝑡, 𝛾1:𝑡−1)

Dynamic programming decomposition:

𝑉𝑡(𝑏) = min
𝛾𝑡=(𝛾1

𝑡 ,…,𝛾𝑁
𝑡 )
𝔼[𝐶𝑡 + 𝑉𝑡+1(𝐵𝑡+1) | 𝐵𝑡 = 𝑏, Γ𝑡 = 𝛾𝑡]

Equivalent centralized problem
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Computational challenges

The size of the unobserved state (𝑆1𝑡 , … , 𝑆𝑁𝑡 ) is exponential in the number of agents.

The size of the belief state 𝐵𝑡 is doubly exponential in the number of agents.

The size of the “actions” (𝛾1
𝑡 , … , 𝛾𝑁

𝑡 ) is exponential in the number of agents.

Limitations and simlifying assumption
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Computational challenges

The size of the unobserved state (𝑆1𝑡 , … , 𝑆𝑁𝑡 ) is exponential in the number of agents.

The size of the belief state 𝐵𝑡 is doubly exponential in the number of agents.

The size of the “actions” (𝛾1
𝑡 , … , 𝛾𝑁

𝑡 ) is exponential in the number of agents. 

Simplifying assumption: All agents use identical strategies

In general, entails loss of optimality.

Without loss of optimality in some settings (LQG teams, asymptotically large population)

Ensures simplicity, fairness, and robustness.

Limitations and simlifying assumption

📰 Arabneydi, Mahajan, “Team optimal control of coupled subsystems with mean field sharing,” 2014.
📰 Arabneydi, Mahajan, “Linear Quadratic Mean Field Teams: . . .”, 2016.
📰 Sanjari, Saldi, Yüksel, “Optimality of Decentralized Symmetric Policies for Stochastic Teams with MeanField Information Sharing,” 2024.



Agents using identical strategies
implies that the state process is
an exchangeable Markov process
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Definition

A random vector 𝑆 ∈ 𝒮𝑁 is called exchangeable if for any permutation 𝜎,

(𝑆1, … , 𝑆𝑁)
𝑑
= (𝑆𝜎(1), … , 𝑆𝜎(𝑁))

Exchangeable random vector
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Definition

A random vector 𝑆 ∈ 𝒮𝑁 is called exchangeable if for any permutation 𝜎,

(𝑆1, … , 𝑆𝑁)
𝑑
= (𝑆𝜎(1), … , 𝑆𝜎(𝑁))

Note

Equivalently, 𝑆 is exchangeable if for any 𝑠, 𝑠′ ∈ 𝒮𝑁 such that 𝜉(𝑠) = 𝜉(𝑠′), we have

ℙ(𝑆 = 𝑠) = ℙ(𝑆 = 𝑠′)

Example

For 𝒮 = {0, 1} and 𝑁 = 3, 𝑆 ∈ 𝒮𝑁 is exchangeable iff

𝑝(001) = 𝑝(010) = 𝑝(100) and 𝑝(011) = 𝑝(110) = 𝑝(101).

where 𝑝(𝑖𝑗𝑘) = ℙ(𝑆 = (𝑖, 𝑗, 𝑘)).

Exchangeable random vector
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Definition

A Markov chain {𝑆𝑡}𝑡≥1 defined on 𝒮𝑁 is called exchangeable if
The initial state 𝑆1 is exchangeable

The transition matrix is invariant under permutations, i.e., for any permutation 𝜎

ℙ(𝑆𝑡+1 = 𝜎(𝑠′) ∣ 𝑆𝑡 = 𝜎(𝑠)) = ℙ(𝑆𝑡+1 = 𝑠′ ∣ 𝑆𝑡 = 𝑠).

Exchangeable Markov chain
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Note

If {𝑆𝑡}𝑡≥1 is an exchangeable Markov chain, then for every 𝑡, the state 𝑆𝑡 is an exchangeable
random vector.
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Definition

A Markov chain {𝑆𝑡}𝑡≥1 defined on 𝒮𝑁 is called exchangeable if
The initial state 𝑆1 is exchangeable

The transition matrix is invariant under permutations, i.e., for any permutation 𝜎

ℙ(𝑆𝑡+1 = 𝜎(𝑠′) ∣ 𝑆𝑡 = 𝜎(𝑠)) = ℙ(𝑆𝑡+1 = 𝑠′ ∣ 𝑆𝑡 = 𝑠).

Note

If {𝑆𝑡}𝑡≥1 is an exchangeable Markov chain, then for every 𝑡, the state 𝑆𝑡 is an exchangeable
random vector.

Example

Interacting particle systems

Exchangeable Markov chain
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Definition

Let {𝑆𝑡}𝑡≥1 be an 𝒮𝑁-valued exchangeable Markov chain. Its meanfield projection is the
process {𝑍𝑡}𝑡≥1 where 𝑍𝑡 = 𝜉(𝑆𝑡).

Meanfield projection of an exchangeable Markov chain
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Let {𝑆𝑡}𝑡≥1 be an 𝒮𝑁-valued exchangeable Markov chain. Its meanfield projection is the
process {𝑍𝑡}𝑡≥1 where 𝑍𝑡 = 𝜉(𝑆𝑡).

Proposition

The meanfield projection of an exchangeable Markov chain is a Markov chain, i.e.,

ℙ(𝑍𝑡+1 = 𝑧𝑡+1 ∣ 𝑆1:𝑡 = 𝑠1:𝑡) = ℙ(𝑍𝑡+1 = 𝑧𝑡+1 ∣ 𝑍𝑡 = 𝜉(𝑠𝑡))

Meanfield projection of an exchangeable Markov chain
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Let {𝑆𝑡}𝑡≥1 be an 𝒮𝑁-valued exchangeable Markov chain. Its meanfield projection is the
process {𝑍𝑡}𝑡≥1 where 𝑍𝑡 = 𝜉(𝑆𝑡).
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The meanfield projection of an exchangeable Markov chain is a Markov chain, i.e.,

ℙ(𝑍𝑡+1 = 𝑧𝑡+1 ∣ 𝑆1:𝑡 = 𝑠1:𝑡) = ℙ(𝑍𝑡+1 = 𝑧𝑡+1 ∣ 𝑍𝑡 = 𝜉(𝑠𝑡))

Theorem

Conditioned on the meanfield, all feasible realizations are equally likely, i.e.,

ℙ(𝑆𝑡 = 𝑠𝑡 ∣ 𝑍1:𝑡 = 𝑧1:𝑡) = ℙ(𝑆𝑡 = 𝑠𝑡 ∣ 𝑍𝑡 = 𝑧𝑡) = ℙ(𝑆𝑡 = 𝜎(𝑠𝑡) ∣ 𝑍𝑡 = 𝑧𝑡)

= 𝟙{𝜉(𝑠𝑡) = 𝑧𝑡}
⁄

Ξ(𝑧𝑡)

Meanfield projection of an exchangeable Markov chain
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Intuition

When all agents use the same prescription 𝛾, the controlled process {𝑆𝑡}𝑡≥1 is an exchageable
Markov chain.

Leveraging exchageability leads to simpler info state



Meanfield games among teams–(Mahajan)
17

Intuition

When all agents use the same prescription 𝛾, the controlled process {𝑆𝑡}𝑡≥1 is an exchageable
Markov chain.

Theorem

In the meanfield teams problem, the meanfield 𝑍𝑡 = 𝜉(𝑋𝑡) is an info state for the (central
ized) coordinated system.
𝑍𝑡 is sufficient to compute belief 𝐵𝑡:

𝐵𝑡 = ℙ(𝑆𝑡 = 𝑠𝑡 ∣ 𝑍1:𝑡 = 𝑧1:𝑡, Γ1:𝑡 = 𝛾1:𝑡) = ℙ(𝑆𝑡 = 𝑠𝑡 ∣ 𝑍𝑡 = 𝑧𝑡) =
𝟙{𝜉(𝑠𝑡) = 𝑧𝑡}
⁄

Ξ(𝑧𝑡)
𝑍𝑡 evolves in a controlled Markov manner:

ℙ(𝑍𝑡+1 = 𝑧𝑡+1 ∣ 𝑍1:𝑡, Γ1:𝑡 = 𝛾1:𝑡) = ℙ(𝑍𝑡+1 = 𝑧𝑡+1 ∣ 𝑍𝑡 = 𝑧𝑡, Γ𝑡 = 𝛾𝑡).
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Intuition

When all agents use the same prescription 𝛾, the controlled process {𝑆𝑡}𝑡≥1 is an exchageable
Markov chain.

Theorem

In the meanfield teams problem, the meanfield 𝑍𝑡 = 𝜉(𝑋𝑡) is an info state for the (central
ized) coordinated system.

Dynamic program

𝑉𝑡(𝑧𝑡) = min
𝛾𝑡∶𝒮→Δ(𝒜)

𝔼[𝑐(𝑆𝑡, 𝐴𝑡) + 𝑉𝑡+1(𝑍𝑡+1) | 𝑍𝑡 = 𝑧𝑡, Γ𝑡 = 𝛾𝑡].

Dimension of state and action space doesn't increase with number of agents!

Leveraging exchageability leads to simpler info state
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Key idea: Work with counts rather than meanfield

State counts: 𝑀𝑡(𝑠) = ∑
𝑖∈𝒩

𝟙{𝑆𝑖𝑡 = 𝑠}.

Stateaction counts: ⃖�⃖�𝑡(𝑠, 𝑎) = ∑
𝑖∈𝒩

𝟙{𝑆𝑖𝑡 = 𝑠, 𝐴𝑖
𝑡 = 𝑎}.

Stateactionnextstate counts: �̂�𝑡(𝑠, 𝑎, 𝑠′) = ∑
𝑖∈𝒩

𝟙{𝑆𝑖𝑡 = 𝑠, 𝐴𝑖
𝑡 = 𝑎, 𝑆𝑖𝑡+1 = 𝑠′}.

Method 1: Samplingbased algorithms for solving DP

📰 Nguyen, Kumar, Lau, “Collective multiagent sequential decision making under uncertainty”, 2017
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ℙ( ⃖�⃖�𝑡 = ⃖�⃖�𝑡 ∣ 𝑀𝑡 = 𝑚𝑡, Γ𝑡 = 𝛾𝑡) =
𝑚𝑡(𝑠)!
⁄

∏
𝑎∈𝒜

⃖�⃖�𝑡(𝑠, 𝑎)! ∏𝑎∈𝒜
𝛾𝑡(𝑎 ∣ 𝑠) ⃖�⃖�𝑡(𝑠,𝑎) .
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𝑃(𝑠′|𝑠, 𝑎, 𝑧𝑡)�̂�𝑡(𝑠,𝑎,𝑠′) .

From stateactionstate counts to updated state counts:

𝑚𝑡+1(𝑠′) = ∑
𝑠∈𝒮

∑
𝑎∈𝒜

�̂�𝑡(𝑠, 𝑎, 𝑠′)

Method 1: Samplingbased algorithms for solving DP

📰 Nguyen, Kumar, Lau, “Collective multiagent sequential decision making under uncertainty”, 2017
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ℙ( ⃖�⃖�𝑡 = ⃖�⃖�𝑡 ∣ 𝑀𝑡 = 𝑚𝑡, Γ𝑡 = 𝛾𝑡) =
𝑚𝑡(𝑠)!
⁄

∏
𝑎∈𝒜

⃖�⃖�𝑡(𝑠, 𝑎)! ∏𝑎∈𝒜
𝛾𝑡(𝑎 ∣ 𝑠) ⃖�⃖�𝑡(𝑠,𝑎) .

From stateaction counts to stateactionstate counts:

ℙ(�̂�𝑡 = �̂�𝑡 ∣ ⃖�⃖�𝑡 = ⃖�⃖�𝑡) =
⃖�⃖�𝑡(𝑠, 𝑎)!
⁄

∏
𝑠′∈𝒮

�̂�𝑡(𝑠, 𝑎, 𝑠′)! ∏𝑠′∈𝒮
𝑃(𝑠′|𝑠, 𝑎, 𝑧𝑡)�̂�𝑡(𝑠,𝑎,𝑠′) .

From stateactionstate counts to updated state counts:

𝑚𝑡+1(𝑠′) = ∑
𝑠∈𝒮

∑
𝑎∈𝒜

�̂�𝑡(𝑠, 𝑎, 𝑠′)Can use samplingbased MDP algorithms for solve the DP!

Method 1: Samplingbased algorithms for solving DP

📰 Nguyen, Kumar, Lau, “Collective multiagent sequential decision making under uncertainty”, 2017
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True dynamics

Main Idea

Consider the infinite population limit

Emperical MF is replaced by statistical MF

Method 2: Infinite population approximation

📰 Subramanian, “RL in partially observed and multiagent environments,” 2020.
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MF approximation

Main Idea

Consider the infinite population limit

Emperical MF is replaced by statistical MF

Statistical MF evolves deterministically

Stochastic DP simplifies to deterministic DP

Infinite population dynamics

⃖�⃖�( ⃖𝑧′ ∣ ⃖𝑧, 𝛾) = 𝟙{ ⃖𝑧′ = ⃖𝑞( ⃖𝑧, 𝛾)} where ⃖𝑞( ⃖𝑧, 𝛾) (𝑠′) = ∑
𝑠∈𝒮

⃖𝑧(𝑠)𝑃(𝑠′ ∣ 𝑠, 𝛾(𝑠), ⃖𝑧)

Method 2: Infinite population approximation

📰 Subramanian, “RL in partially observed and multiagent environments,” 2020.
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MF approximation

Main Idea

Consider the infinite population limit

Emperical MF is replaced by statistical MF

Statistical MF evolves deterministically

Stochastic DP simplifies to deterministic DP

Infinite population dynamics

⃖�⃖�( ⃖𝑧′ ∣ ⃖𝑧, 𝛾) = 𝟙{ ⃖𝑧′ = ⃖𝑞( ⃖𝑧, 𝛾)} where ⃖𝑞( ⃖𝑧, 𝛾) (𝑠′) = ∑
𝑠∈𝒮

⃖𝑧(𝑠)𝑃(𝑠′ ∣ 𝑠, 𝛾(𝑠), ⃖𝑧)

Method 2: Infinite population approximation

📰 Subramanian, “RL in partially observed and multiagent environments,” 2020.

Inf pop policy is approximately
optimal for finite pop team

Let 𝜓∞ be the optimal coordination strategy of the inf population
team. Then,

𝐽𝜓∞
𝑁 ≤ 𝐽⋆𝑁 + 2

𝑇

∑
𝑡=1

𝜅ℒ𝑡
⁄

√


𝑁
where 

𝜅 is a constant that depends on the metric on 𝒮.

ℒ𝑡 is the Lipschitz constant of total cost 𝑉⋆
𝑁,𝑡.
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Meanfield
Teams (𝒦= 1)

Common information based DP
Simplification under symmetry assumptions
Samplingbased algorithms for solving DP
Infinite population approximation

Meanfield
Games among
Teams (𝒦> 1)

Common information based MPE
Infinite population approximation

Outline of the talk
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Exactly the same idea works for games among teams
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Assumptions

Meanfield sharing information structure: 𝐼𝑖𝑡 = {𝑆𝑖𝑡, 𝑍1:𝑡}, where 𝑍𝑡 = (𝑍(1)
𝑡 , … , 𝑍(𝑁)

𝑡 ).

Agents in a team use identical strategies.

Exactly the same idea works for games among teams

📰 Subramanian, Kumar, Mahajan, “Meamfield Markov perfect equilibrium for meanfield games among teams,” 2023.
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Meanfield sharing information structure: 𝐼𝑖𝑡 = {𝑆𝑖𝑡, 𝑍1:𝑡}, where 𝑍𝑡 = (𝑍(1)
𝑡 , … , 𝑍(𝑁)

𝑡 ).

Agents in a team use identical strategies.

Common info based Markov perfect equilibrium

Adapt the idea of Nayyar et al (2014) to construct an equivalent game.

There is a virtual player associated with each team.

Virtual player 𝑘 observes 𝑍𝑡, chooses 𝛾(𝑘)
𝑡 ∶ 𝒮(𝑘) → Δ(𝒜(𝑘)), and incurs cost

ℓ(𝑘)𝑡 (𝑍𝑡, 𝛾(𝑘)
𝑡 ) = 𝔼[𝐶(𝑘)

𝑡 ∣ 𝑍𝑡, 𝛾(𝑘)
𝑡 ]

Exactly the same idea works for games among teams

📰 Subramanian, Kumar, Mahajan, “Meamfield Markov perfect equilibrium for meanfield games among teams,” 2023.
📰 Nayyar, Gupta, Langbort, Başar, “Common info based MPE for stochastic games in asymmetric info . . .”, 2014.
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𝑡 ]

Strategy of
virtual player 𝑘:

𝜓(𝑘) = (𝜓(𝑘)
𝑡 , … , 𝜓(𝑘)

𝑇 ), where 𝛾(𝑘)
𝑡 ∼ 𝜓(𝑘)

𝑡 (𝑍𝑡)

Exactly the same idea works for games among teams

📰 Subramanian, Kumar, Mahajan, “Meamfield Markov perfect equilibrium for meanfield games among teams,” 2023.
📰 Nayyar, Gupta, Langbort, Başar, “Common info based MPE for stochastic games in asymmetric info . . .”, 2014.
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𝑡 , … , 𝑍(𝑁)

𝑡 ).

Agents in a team use identical strategies.

Common info based Markov perfect equilibrium

Adapt the idea of Nayyar et al (2014) to construct an equivalent game.

There is a virtual player associated with each team.

Virtual player 𝑘 observes 𝑍𝑡, chooses 𝛾(𝑘)
𝑡 ∶ 𝒮(𝑘) → Δ(𝒜(𝑘)), and incurs cost

ℓ(𝑘)𝑡 (𝑍𝑡, 𝛾(𝑘)
𝑡 ) = 𝔼[𝐶(𝑘)

𝑡 ∣ 𝑍𝑡, 𝛾(𝑘)
𝑡 ]

Strategy of
virtual player 𝑘:

𝜓(𝑘) = (𝜓(𝑘)
𝑡 , … , 𝜓(𝑘)

𝑇 ), where 𝛾(𝑘)
𝑡 ∼ 𝜓(𝑘)

𝑡 (𝑍𝑡)

Exactly the same idea works for games among teams

📰 Subramanian, Kumar, Mahajan, “Meamfield Markov perfect equilibrium for meanfield games among teams,” 2023.
📰 Nayyar, Gupta, Langbort, Başar, “Common info based MPE for stochastic games in asymmetric info . . .”, 2014.

Equivalence of the two models

For every TeamNash equilibrium of the original game there exists
an equivalent Nash equilibrium of the virtual game.

For every Nash equilibrium of the virtual game there exists an
equivalent TeamNash equilibrium of the original game.
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Since the virtual game is a game with perfect information, we
can identify a Markov perfect equilibrium (MPE) via DP.

How to solve the virtual game

📰 Maskin and Tirole, “A theory of dynamic oligopoly, i: Overview and quantity competition with large fixed costs”, Econometrica, 1988.
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Since the virtual game is a game with perfect information, we
can identify a Markov perfect equilibrium (MPE) via DP.

Dynamic programming decomposition

A Markov strategy 𝜓 = (𝜓(𝑘))𝑘∈𝒦 is a MPE of the virtual game

if and only if

for each 𝑘 ∈𝒦, there exist a sequence of value functions {𝑉(𝑘)
𝑡 }𝑇+1

𝑡=1 such that 𝑉(𝑘)
𝑇+1 ≡ 0 and

𝑉(𝑘)
𝑡 (𝑧𝑡) = min

𝛾(𝑘)
𝑡

{ℓ(𝑘)𝑡 (𝑧𝑡, 𝛾(𝑘)
𝑡 ) + 𝔼[𝑉(𝑘)

𝑡+1(𝑍𝑡+1) | 𝑧𝑡, 𝛾(𝑘)
𝑡 , 𝜋(−𝑘)

𝑡 ]}

where all pure strategies in supp(𝜓(𝑘)
𝑡 (𝑧𝑡)) are minimizers of the right hand side.

How to solve the virtual game

📰 Maskin and Tirole, “A theory of dynamic oligopoly, i: Overview and quantity competition with large fixed costs”, Econometrica, 1988.
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Dynamic programming decomposition

A Markov strategy 𝜓 = (𝜓(𝑘))𝑘∈𝒦 is a MPE of the virtual game

if and only if

for each 𝑘 ∈𝒦, there exist a sequence of value functions {𝑉(𝑘)
𝑡 }𝑇+1

𝑡=1 such that 𝑉(𝑘)
𝑇+1 ≡ 0 and

𝑉(𝑘)
𝑡 (𝑧𝑡) = min

𝛾(𝑘)
𝑡

{ℓ(𝑘)𝑡 (𝑧𝑡, 𝛾(𝑘)
𝑡 ) + 𝔼[𝑉(𝑘)

𝑡+1(𝑍𝑡+1) | 𝑧𝑡, 𝛾(𝑘)
𝑡 , 𝜋(−𝑘)

𝑡 ]}

where all pure strategies in supp(𝜓(𝑘)
𝑡 (𝑧𝑡)) are minimizers of the right hand side.

How to solve the virtual game

📰 Maskin and Tirole, “A theory of dynamic oligopoly, i: Overview and quantity competition with large fixed costs”, Econometrica, 1988.

Meanfield Markov Perfect Equilibrium

Recall that MPE is a refinement of NE (of the virtual game)

There is an equivalent TNE of the original game among teams.

We call it MFMPE (MeanField Markov Perfect Equilibrium)
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Conceptual challenges

The state space 𝒵∗ = ∏𝑘∈𝒦𝒵(𝑘) is the space of all MFs.

|𝒵∗| ≤ ∏𝑘∈𝒦(𝑁(𝑘) + 1)|𝒮
(𝑘) | curse of dimensionality   

Solving the DP
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Conceptual challenges

The state space 𝒵∗ = ∏𝑘∈𝒦𝒵(𝑘) is the space of all MFs.

|𝒵∗| ≤ ∏𝑘∈𝒦(𝑁(𝑘) + 1)|𝒮
(𝑘) | curse of dimensionality

Action space is ℝ|𝒜(𝑘)|×|𝒵∗| curse of decentralization

Efficiently solving the DP

Using samplingbased algorithms with counts (instead of MF)

Approx. finite population model with infinite population limit (similar approx bounds hold)

Solving the DP
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Multiple types of agents

Types can simply be encoded as part of
state space

Even allows for the possibility of agents
changing types

Generalizations and Discussions
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Multiple types of agents

Types can simply be encoded as part of
state space

Even allows for the possibility of agents
changing types

Some small and some large teams

Simply take the MF limit of large teams.

If number of agents in a team are not
known, simply use an estimate! 

Closed loop vs open loop control

Even for inf pop limit, it is assumed that MF
is observed ⟹ closed loop implementation

Openloop implementation (MF not ob
served) leads to an additional error which
can be bounded using mixing properties of
Markov chains 

Stability of approximate strategies

Results generalize to cts compact state
spaces.

More nuanced analysis needed for non
compact state spaces with unbounded
cost.

Generalizations and Discussions
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Exchangeability of agents (or MF coupling)
and observation of MF

⟹ lack of signaling in teams,
games, and games among teams.

Exact DP population is possible (but
computationally challenging) for finite population

Is well approximated by infinite population
limit (but still computationally challenging)

Key Messages



email: aditya.mahajan@mcgill.ca
web: https://adityam.github.io
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