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Common theme: multistage multiagent
decision making under uncertainty
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Networked control systems

Challenges

Signals sent over wireless channels (packet drops)

Different vehicles have different information
Decentralized control
Decentralized estimation
Decentralized learning
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Teams
All agents have common objective
Agents cooperate to min team cost
Agents are not strategic
Solution concepts: person-by-per
son optimality, global optimality . . .

Games
Each agent has individual objective
Agents compete to minimize individual cost
Agents are strategic
Solution concepts: Nash equil, Bayesian Nash, Sub
game perfect, Markov perfect, Bayesian perfect, . . .In many engineering problems, game theory is used as an algorithmic

toolbox to provide distributed solutions to static problems.

We are interested in finding globally optimal solution to
problems where agents have decentralized information.

Teams vs Games



Teams have a reputation of
being notoriously difficult . . .



Multiagent Teams–(Mahajan)
7

Some historical context



Multiagent Teams–(Mahajan)
7

Some historical context

S&C until the 1960s
About 300 years of knowledge in designing LTI systems

Good “intuitive” understanding of frequency domain methods
•Root locus  •Bode plots  •Nyquist plots  •Loop shaping



Multiagent Teams–(Mahajan)
7

Some historical context

S&C until the 1960s
About 300 years of knowledge in designing LTI systems

Good “intuitive” understanding of frequency domain methods
•Root locus  •Bode plots  •Nyquist plots  •Loop shaping

Advances in 1960s
Emergence of state space methods for filtering and control

Could be implemented in digital computers (of that time!)



Multiagent Teams–(Mahajan)
7

Some historical context

S&C until the 1960s
About 300 years of knowledge in designing LTI systems

Good “intuitive” understanding of frequency domain methods
•Root locus  •Bode plots  •Nyquist plots  •Loop shaping

Advances in 1960s
Emergence of state space methods for filtering and control

Could be implemented in digital computers (of that time!)

State Space Deisgn

Linearize the system dynamics

Design optimal control assuming full state feedback (LQR)
control action(t) = −gain(t) ⋅ state(t)

Estimate the state using noisy measurements (Kalman filtering)
state estimate(t) = Function(estimate(t-1),measurement(t).

Optimal controller:
control action(t) = −gain(t) ⋅ state estimate(t)
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Conceptual difficulties in team problems

Witsenhausen
Counterexample

(1968)

A two step dynamical system with two controllers
Linear dynamics, quadratic cost, and Gaussian disturbance
Nonlinear controllers outperform linear control strategies . . .

. . . cannot use Kalman filtering + Riccati equations
Later papers: Nonlinear can perform arbitrarily well compared to linear.

📰 Witsenhausen, “A counterexample in stochastic optimum control,” SICON 1968.
📰 Whittle and Rudge, “The optimal linear solution of a symmetric team control problem,” App. Prob. 1974.
📰 Bernstein, et al, “The complexity of decentralized control of Markov decision processes,” MOR 2002.
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Witsenhausen
Counterexample

(1968)

A two step dynamical system with two controllers
Linear dynamics, quadratic cost, and Gaussian disturbance
Nonlinear controllers outperform linear control strategies . . .

. . . cannot use Kalman filtering + Riccati equations
Later papers: Nonlinear can perform arbitrarily well compared to linear.

Whittle and Rudge
Example (1974)

Infinite horizon dynamical system with two symmetric controllers
Linear dynamics, quadratic cost, and Gaussian disturbance
A priori restrict attention to linear controllers
Best linear controllers don't have finite dimensional representation

Complexity analysis
All random variables are finite valued
Finite horizon setup
The problem of finding the best control strategy is in NEXP

📰 Witsenhausen, “A counterexample in stochastic optimum control,” SICON 1968.
📰 Whittle and Rudge, “The optimal linear solution of a symmetric team control problem,” App. Prob. 1974.
📰 Bernstein, et al, “The complexity of decentralized control of Markov decision processes,” MOR 2002.
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Why are team problems hard?

Why are single agent problems easy?
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X = 0 X = 1 X = 2 X = 3

U = 0 0.5 0.2 1.2 0.5

U = 1 1.2 0.5 0.2 0.3

Y = 0 Y = 1

min
g:𝒴→𝒰

𝔼[c(X, g(Y))]

for each y, min
u∈𝒰

𝔼[c(X, u) ∣ Y = y]

Static stochastic optimization problems

This is a functional optimization problem.

Search complexity |𝒰||𝒴|.

Each subproblem is a parameter optimization problem.

Search complexity |𝒰| ⋅ |𝒴|.
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Dynamic stochastic optimization problems

Environment

Controller

Ut Yt

Dyanmics Xt+1 = ft(Xt, Ut, Wt)

Observations Yt = hit(Xt, Nt)

Control law Ut = gt(Y1:t, U1:t−1)
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Objective
Choose control strategy g = (g1, … , gT ) to minimize

J(g) = 𝔼[
T
∑
t=1

ct(Xt, Ut)]

Dynamic stochastic optimization problems

Environment

Controller

Ut Yt

Dyanmics Xt+1 = ft(Xt, Ut, Wt)

Observations Yt = hit(Xt, Nt)

Control law Ut = gt(Y1:t, U1:t−1)

Dynamic
programming

solution

Define belief state bt = P(Xt|Y1:t, U1:t−1).

Write a DP in terms of the belief state bt.

Solution complexity: T ⋅ |𝒰| ⋅ |𝒵|.



Why don't these simplifications
work for teams?
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There are additional challenges
in dynamic problems
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Consider a network with coupled dynamics.
Information exchange between nodes with
unit delay. 

Fix the strategy of all but two subsystems
which are k-hop apart. What is the best
response strategy at these two nodes?  

Proposed by Witsenhausen in a seminal paper.
Allows to smoothly transition between centralized (k = 0)
and completely decentralized (k = ∞). 

k-step delayed sharing information structure

📰 Witsenhausen, “Separation of Esitmation and Control for DiscreteTime Systems,” Proc. IEEE, 1971.
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Environment

C1 C2

U1t Y1t U2t Y2t

Dyanmics Xt+1 = ft(Xt, U1t, U2t, Wt)

Observations Yit = hit(Xt, Nit)

Information
Structure

Iit = {Yi1:t, U
i
1:t−1Y

−i
1:t−k, U

−i
1:t−k}

Control law Uit = git(Iit)

Objective
Choose control strategies (g1, g2) to minimize

J(g1, g2) = 𝔼[
T
∑
t=1

ct(Xt, U1t, U2t )]

System Model
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History of the problem

Witsenhausen's
Assertion

Let Ct = {Y1:t−k, U1:t−k} and Lit = {Yit−k+1:t, u
i
t−k+1:t−1}.

Then ℙ(Xt−k ∣ Ct) is a sufficient statistic for Ct.

Rationale: ℙ(Xt−k|Y1:t−k, U1:t−k) is policy independent.

📰 Witsenhausen, “Separation of Esitmation and Control for DiscreteTime Systems,” Proc. IEEE, 1971.
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Witsenhausen's
Assertion

Let Ct = {Y1:t−k, U1:t−k} and Lit = {Yit−k+1:t, u
i
t−k+1:t−1}.

Then ℙ(Xt−k ∣ Ct) is a sufficient statistic for Ct.

Rationale: ℙ(Xt−k|Y1:t−k, U1:t−k) is policy independent.

Follow-up
Literature

Assertion true for 𝐤=𝟏
[Sandell, Athans, 1974], [Kurtaran, 1976]

Assertion false for 𝐤>𝟏
[Varaiya, Walrand 1979], [Yoshikawa, Kobayashi, 1978]

No subsequent positive result!

Are there sufficient statistics or information states for Ct?

📰 Witsenhausen, “Separation of Esitmation and Control for DiscreteTime Systems,” Proc. IEEE, 1971.
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(of onestep

delay sharing)

Power systems: Altman et al, 2009
Queueing theory: Kuri and Kumar, 1995
Communication networks: Grizzle et al, 1982
Stochastic games: Papavassilopoulos, 1982; Chang and Cruz, '83
Economics: Li and Wu, 1991.
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Importance of the problem

Applications
(of onestep

delay sharing)

Power systems: Altman et al, 2009
Queueing theory: Kuri and Kumar, 1995
Communication networks: Grizzle et al, 1982
Stochastic games: Papavassilopoulos, 1982; Chang and Cruz, '83
Economics: Li and Wu, 1991.

Conceptual
Significance

Understanding the design of networked control systems
Bridge between centralized and decentralized systems
Insights for the design of general decentralized systems.



Common information approach for teams
[Nayyar, Mahajan, Teneketzis (TAC 2011, 2013)]
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Agent 1 Agent 2 Common knowledge

Split Y1 = (L1, C) and Y2 = (L2, C).

for all c, min
γ1,γ2

𝔼[c(X, γ1(L1), γ2(L2))) ∣ C = c]

Reduction in complexity: |𝒰|8 ⋅ |𝒰|8 to 4|𝒰|2 ⋅ |𝒰|2

Key idea: exploit common knowledge
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Xt
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u2t

g1t

g2t

Commoninfo approach for k-step delay sharing
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Original System

L1t, Ct

L2t, Ct

Xt

u1t

u2t

g1t

g2t

Virtual Coordinated System

L1t

L2t

Xt

u1t

u2t

Ct ψt

γ1t∶ L1t ↦ u1t

γ2t∶ L2t ↦ u2t

Information split

Common information: Ct = I1t ∩ I2t = {Y1:t−k, U1:t−k}

Local information: Lit = Iit ∖ Ct = {Yit−k+1:t, uit−k+1:t−1}.

Prescription: γit∶ Lit ↦ uit.

Commoninfo approach for k-step delay sharing
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Commoninfo approach for k-step delay sharing

Main Result

The virtual coordinator is a single agent stochastic ctrl problem.

Information state: for Ct: bt = ℙ(Xt, L1t, L2t ∣ Ct, γ11:t−1, γ
2
1:t−1).

Dynamic program: VT+1(b) = 0 and

Vt(bt) = min
γ1t,γ2t

{𝔼[ct(Xt, u1t, u2t ) + Vt+1(B+) ∣ bt, γ1t, ‵γ2t ]}.

Each step of the DP is a functional optimization problem.



Commoninfo approach for k-step delay sharing

Main Result

The virtual coordinator is a single agent stochastic ctrl problem.

Information state: for Ct: bt = ℙ(Xt, L1t, L2t ∣ Ct, γ11:t−1, γ
2
1:t−1).

Dynamic program: VT+1(b) = 0 and

Vt(bt) = min
γ1t,γ2t

{𝔼[ct(Xt, u1t, u2t ) + Vt+1(B+) ∣ bt, γ1t, ‵γ2t ]}.

Each step of the DP is a functional optimization problem.

Salient Features

The virtual coordinator is purely for conceptual clarity as it al
lows us to view the original problem from the p.o.v. of a “higher
authority”. The presence of the coordinator is not necessary.

The common information is known to both controllers and there
fore both of them can carry out the calculations to solve the DP
on their own.
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C1 C2

U1t Y1t U2t Y2t

n controllers with general info structure {Iit}ni=1.

Information
Split

Common information:

Ct = ⋂
s≥t

n
⋂
i=1

Iis.

Local information: Lit = Iit ∖ Ct.

Partial history
sharing

|Lit| is uniformly bounded.

ℙψ(Ct+1 ∖ Ct ∣ Ct, γ1t, γ2t )
doesn't depend on ψ.

The general commoninfo approach

Main Result

Information state: for Ct: bt = ℙ(Xt, L1t, L2t ∣ Ct, γ11:t−1, γ
2
1:t−1).

Dynamic program: VT+1(g) = 0 and

Vt(b) = min
γ1t,γ2t

{𝔼[ct(Xt, u1t, u2t ) + Vt+1(B+) ∣ bt, γ1t, γ2t ]}.

Implications and impact

Subsumes many existing results ( . . . )

New results on sufficient statistics and DP for specific models
(control sharing, meanfield sharing, NCS, and others)

Commoninformation based refinements of Nash equilibrium in
dynamic games with asymmetric information



Some examples
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Dynamics Xit+1 = f
i(Xit, 𝐔t, Wi

t) Info structure Iit = {Xi1:t, 𝐔1:t}

Control sharing information structure

📰 Sandell and Athans, “Solution of some nonclassical LQG decision problems,” TAC 1974.
📰 Mahajan, “Optimal decentralized control of coupled subsystems with control sharing,” TAC 2013.
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i(Xit, 𝐔t, Wi

t) Info structure Iit = {Xi1:t, 𝐔1:t}

Step 1: Using person-by-person approach

Show that: X11:t ⊥ X
2
1:t ⊥ ⋯ ⊥ X

n
1:t ∣ 𝐔1:t

Implies no loss of optimality in shedding Xi1:t−1 at agent i.

Step 2: Use common information approach

Commoninfo based belief simplies due to the conditional independence (see step 1)

Suff statistic for 𝐔1:t = (ℙ(X1t ∣ 𝐔1:t), … , ℙ(Xnt ∣ 𝐔1:t))

Control sharing information structure

📰 Sandell and Athans, “Solution of some nonclassical LQG decision problems,” TAC 1974.
📰 Mahajan, “Optimal decentralized control of coupled subsystems with control sharing,” TAC 2013.
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Dynamics Xit+1 = f
i(Xit, Uit, Zt, Wi

t) Info structure Iit = {Xit, Z1:t }

Meanfield Zt =
1
n

n
∑
i=1

δXit

Meanfield teams

📰 Arabneydi and Mahajan, “Team optimal control of coupled subsystems with mean field sharing,” CDC 2013.
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1
n

n
∑
i=1

δXit

Interesting model for applications with large population of a few types of agents
Smart grids, IoT, . . .

Meanfield teams

📰 Arabneydi and Mahajan, “Team optimal control of coupled subsystems with mean field sharing,” CDC 2013.
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Dynamics Xit+1 = f
i(Xit, Uit, Zt, Wi

t) Info structure Iit = {Xit, Z1:t }

Meanfield Zt =
1
n

n
∑
i=1

δXit

Interesting model for applications with large population of a few types of agents
Smart grids, IoT, . . .

Use common information approach

Using ideas from exchangeable Markov chains show that

Suff statistic for Z1:t = Zt

Meanfield teams

📰 Arabneydi and Mahajan, “Team optimal control of coupled subsystems with mean field sharing,” CDC 2013.
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Plant Sensor Channel Controller

Dyanmics xt+1 = Axt + But + wt

Wireless
Channel

yt = {
xt w.p. 1 − q(pt)

𝔈 w.p. q(pt)

Information
Structure

Ist = {x1:t, y1:t−1, u1:t−1}
Ict = {y1:t, u1:t−1}

Decision
strategies

pt = ft(Ist ), ut = gt(Ict ).

Perstep cost x⊺tQxt + u
⊺
tRut + λ(pt)

Control cost + comm. cost

Objective J(f, g) = 𝔼[
T
∑
t=1

c(xt, ut, pt)]

Networked control over wireless channels
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Conceptual difficulties

Packetdrop is a nonlinearlity
The closed loop system is nonlinear. Choice of optimal control strategy is not obvious.
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Conceptual difficulties

Packetdrop is a nonlinearlity
The closed loop system is nonlinear. Choice of optimal control strategy is not obvious.

Dual effect of control
For a fixed transmission strategy, the innovation at the controller depends on
controller's strategy.
Not obvious if there is separation of estimation and control.

Sensor can use powerlevels to signal information
As an example, suppose 𝒫 = {0, 1}, with q(0) = 1 and q(1) = 0. If the controller doesn't receive
a packet, it knows that the state lied in the set where the transmitter chooses p = 0.
Related to realtime communication (a notoriously difficult problem).
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Commoninfo based solutions to NCS

Large literature on these models

Using the commoninfo based dynamic program, prove that there are optimal transmis
sion strategies that don't depend on the control strategy.

Highly nontrivial because the state space of the DP is belief valued; the action space is
function valued.

Implication: there is no dual effect and there is separation of estimation and control.

Note that there is no contradiction. Under an arbitrary policy, control has a dual effect;
under the optimal policy it doesn't.

📰 Rabi, Moustakides, and Baras, “Adaptive sampling for linear state estimation,” SICON 2012.
📰 Lipsa and Martins, “Remote state estimation with communication costs for first order LTI systems,” TAC 2011.
📰 Molin and Hirsche, “Event triggered state estimation: An iterative algorithm and optimality properties,” TAC 2017.
📰 Chakravorty and Mahajan, “Remote estimation over a packetdrop channel with Markovian state” TAC 2020.
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LQ system
Linear dynamics and
quadratic cost

PHS Info
structure

Iit = {Ct, Lit}

Common information based approach to linear systems

📰 Mahajan and Nayyar, “Sufficient statistics for linear control strategies in decentralized systems with partial history sharing”, TAC 2015
📰 Afshari and Mahajan, “Decentralized linear quadratic systems with major and minor agents and nonGaussian noise”, TAC 2023
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LQ system
Linear dynamics and
quadratic cost

PHS Info
structure

Iit = {Ct, Lit}

Structure
of optimal
strategies

Uit = Kct ̂St|c + KitLit
where ̂St|c = 𝔼[Xt, L1t, L2t ∣ Ct, γ11:t−1, γ

2
1:t−1].

How to compute
optimal gains?

Framework based on fundamental ideas of linear systems:
•State splitting •Completion of squares
•Orthogonal projection •Conditional independence

Noise need not be Gaussian. Identify optimal (possibly nonlinear)
controllers or best linear controllers.

Common information based approach to linear systems

📰 Mahajan and Nayyar, “Sufficient statistics for linear control strategies in decentralized systems with partial history sharing”, TAC 2015
📰 Afshari and Mahajan, “Decentralized linear quadratic systems with major and minor agents and nonGaussian noise”, TAC 2023
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But, this is a workshop on learning and control
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Implications of
commoninfo

approach

Converts planning in multiagent teams to a POMDP

In the learning setting, use your favorite RL algo for POMDP at the
coordinator (offline traning) or each agent's local copy of the coordi
nator (online training)

Beautiful theory ... doesn't work in practice.
Too complicated. The action space is too large.
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Learning in dynamic teams

Implications of
commoninfo

approach

Converts planning in multiagent teams to a POMDP

In the learning setting, use your favorite RL algo for POMDP at the
coordinator (offline traning) or each agent's local copy of the coordi
nator (online training)

Beautiful theory ... doesn't work in practice.
Too complicated. The action space is too large.

Practical MARL
algorithms

Many SOTA MARL algos build on the commoninfo approach

BAD (Bayesian action decoder), SOTA on Hannabi
CAPI (cooperative approximate policy iteration), SOTA on TinyBridge
. . .

But no theory! How do we develop RL theory MARL?
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Tentative Roadmap for MARL Theory

Step 1
RL for POMDPs

Simplest “MARL” environment. Theory still lacking.

Our recent results (AIS theory) that resolve key conceptual challenges

Generalizes to MARL seeting using commoninfo approach but . . .

Step 2
Centralized vs
decentralized

training

Most MARL algos use centralized training.

Some recent preliminary results for analysis of centralized training.

Some empirical results on decentralized training. 

Next Steps
Credit assignment (among agents)
Agents helping each other to learning



email: aditya.mahajan@mcgill.ca
web: https://adityam.github.io

Thank you


