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Common theme: multi-stage multi-agent
decision making under uncertainty
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Networked control systems

Challenges

Signals sent over wireless channels (packet drops)

Different vehicles have different information
Decentralized control
Decentralized estimation
Decentralized learning
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Teams

All agents have common objective

Agents cooperate to minimize team cost

Agents are not strategic

Solution concepts: person-by-person
optimality, global optimality . . .

Games

Each agent has individual objective

Agents compete to minimize individual
cost

Agents are strategic

Solution concepts: Nash equilibrium,
Bayesian Nash, Subgame perfect equi-
librium, Markov perfect equilibrium,
Bayesian perfect equilibrium, . . .

In many engineering problems, game theory is used as an algorithmic
toolbox to provide distributed solutions to static problems.

We are interested in finding globally optimal solution to
problems where agents have decentralized information.

Teams vs Games



Teams have a reputation of
being notoriously difficult . . .
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Some historical context

S&C until the 1960s
About 300 years of knowledge in designing LTI systems

Good “intuitive” understanding of frequency domain methods
•Root locus •Bode plots •Nyquist plots •Loop shaping

Advances in 1960s
Emergence of state space methods for filtering and control

Could be implemented in digital computers (of that time!)

State Space Deisgn

Linearize the system dynamics

Design optimal control assuming full state feedback (LQR)
control action(t) = −gain(t) ⋅ state(t)

Estimate the state using noisy measurements (Kalman filtering)
state estimate(t) = Function(estimate(t-1),measurement(t).

Optimal controller:
control action(t) = −gain(t) ⋅ state estimate(t)
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Conceptual difficulties in team problems

Witsenhausen
Counterexample

A two step dynamical system with two controllers
Linear dynamics, quadratic cost, and Gaussian disturbance
Non-linear controllers outperform linear control strategies . . .

. . . cannot use Kalman filtering + Riccati equations

Newspaper Witsenhausen, “A counterexample in stochastic optimum control,” SICON 1968.
Newspaper Whittle and Rudge, “The optimal linear solution of a symmetric team control problem,” App. Prob. 1974.
Newspaper Bernstein, et al, “The complexity of decentralized control of Markov decision processes,” MOR 2002.
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Witsenhausen
Counterexample

A two step dynamical system with two controllers
Linear dynamics, quadratic cost, and Gaussian disturbance
Non-linear controllers outperform linear control strategies . . .

. . . cannot use Kalman filtering + Riccati equations

Whittle and Rudge
Example

Infinite horizon dynamical system with two symmetric controllers
Linear dynamics, quadratic cost, and Gaussian disturbance
A priori restrict attention to linear controllers
Best linear controllers don’t have finite dimensional representation

Complexity analysis
All random variables are finite valued
Finite horizon setup
The problem of finding the best control strategy is in NEXP

Newspaper Witsenhausen, “A counterexample in stochastic optimum control,” SICON 1968.
Newspaper Whittle and Rudge, “The optimal linear solution of a symmetric team control problem,” App. Prob. 1974.
Newspaper Bernstein, et al, “The complexity of decentralized control of Markov decision processes,” MOR 2002.
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Why are team problems hard?

Why are single agent problems easy?
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S = 0 S = 1 S = 2 S = 3

A = 0 0.5 0.2 1.2 0.5

A = 1 1.2 0.5 0.2 0.3

Y = 0 Y = 1

min
π:𝒴→𝒜

𝔼[c(S, π(Y))]

for each y, min
a∈𝒜

𝔼[c(S, a) ∣ Y = y]

Static stochastic optimization problems

This is a functional optimization problem.

Search complexity |𝒜||𝒴|.

Each sub-problem is a parameter optimization problem.

Search complexity |𝒜| ⋅ |𝒴|.
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Environment

Controller

At Yt

Dyanmics St+1 = ft(St, At,Wt)

Observations Yt = hit(St, Nt)

Control law At = πt(Y1:t, A1:t−1)

Objective

Choose control strategy π =
(π1, ..., πT) to minimize

J(π) = 𝔼[
T
∑
t=1

ct(St, At)]

Dynamic stochastic optimization problems

Dynamic
programming

solution

Define belief state bt = P(St|Y1:t, A1:t−1).

Write a DP in terms of the belief state bt.

Solution complexity: T ⋅ |𝒜| ⋅ |𝒵|.



Why don't these simplifications
work for teams?
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Consider a network with coupled dynamics.
Information exchange between nodes with
unit delay.

Fix the strategy of all but two subsystems
which are k-hop apart. What is the best
response strategy at these two nodes?

Proposed byWitsenhausen in a seminal pa-
per.
Allows to smoothly transition between cen-
tralized (k = 0) and completely decentral-
ized (k = ∞).

k-step delayed sharing information structure

Newspaper Witsenhausen, “Separation of Esitmation and Control for Discrete-Time Systems,” Proc. IEEE, 1971.
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Environment

C1 C2

A1
t Y1t A2

t Y2t

Dyanmics St+1 = ft(St, A1
t , A2

t ,Wt)

Observations Yit = hit(St, Ni
t)

Information
Structure

Iit = {Yi1:t, A
i
1:t−1Y

−i
1:t−k, A

−i
1:t−k}

Control law Ai
t = πit(Iit)

Objective

Choose control strategies (π1, π2) to
minimize

J(π1, π2) = 𝔼[
T
∑
t=1

ct(St, A1
t , A2

t )]

System Model
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History of the problem

Witsenhausen’s
Assertion

Let Ct = {Y1:t−k, A1:t−k} and Lit = {Yit−k+1:t, A
i
t−k+1:t−1}.

Then ℙ(St−k ∣ Ct) is a sufficient statistic for Ct.

Rationale: ℙ(St−k|Y1:t−k, A1:t−k) is policy independent.

Newspaper Witsenhausen, “Separation of Esitmation and Control for Discrete-Time Systems,” Proc. IEEE, 1971.
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i
t−k+1:t−1}.

Then ℙ(St−k ∣ Ct) is a sufficient statistic for Ct.

Rationale: ℙ(St−k|Y1:t−k, A1:t−k) is policy independent.

Follow-up
Literature

Assertion true for 𝐤 = 𝟏
[Sandell, Athans, 1974], [Kurtaran, 1976]

Assertion false for 𝐤 > 𝟏
[Varaiya, Walrand 1979], [Yoshikawa, Kobayashi, 1978]

No subsequent positive result!
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History of the problem

Witsenhausen’s
Assertion

Let Ct = {Y1:t−k, A1:t−k} and Lit = {Yit−k+1:t, A
i
t−k+1:t−1}.

Then ℙ(St−k ∣ Ct) is a sufficient statistic for Ct.

Rationale: ℙ(St−k|Y1:t−k, A1:t−k) is policy independent.

Follow-up
Literature

Assertion true for 𝐤 = 𝟏
[Sandell, Athans, 1974], [Kurtaran, 1976]

Assertion false for 𝐤 > 𝟏
[Varaiya, Walrand 1979], [Yoshikawa, Kobayashi, 1978]

No subsequent positive result!

Are there sufficient statistics or information states for Ct?

Newspaper Witsenhausen, “Separation of Esitmation and Control for Discrete-Time Systems,” Proc. IEEE, 1971.
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Importance of the problem

Applications
(of one-step

delay sharing)

Power systems: Altman et al, 2009
Queueing theory: Kuri and Kumar, 1995
Communication networks: Grizzle et al, 1982
Stochastic games: Papavassilopoulos, 1982; Chang and Cruz, ’83
Economics: Li and Wu, 1991.

Conceptual
Significance

Understanding the design of networked control systems
Bridge between centralized and decentralized systems
Insights for the design of general decentralized systems.



Common information approach for teams
[Nayyar, Mahajan, Teneketzis (2011, 2013)]
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Agent 1 Agent 2 Common knowledge

Split Y1 = (L1, C) and Y2 = (L2, C).

for all c, min
γ1,γ2

𝔼[c(S, γ1(L1), γ2(L2))) ∣ C = c]

Reduction in complexity: |𝒜|8 ⋅ |𝒜|8 to 4|𝒜|2 ⋅ |𝒜|2

Key idea: exploit common knowledge
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A2
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Ct ψt
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t
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Original System

L1t , Ct

L2t , Ct

St

A1
t

A2
t

π1t

π2t

Virtual Coordinated System

L1t

L2t

St

A1
t

A2
t

Ct ψt

γ1t ∶ L1t ↦ A1
t

γ2t ∶ L2t ↦ A2
t

Information split

Common information: Ct = I1t ∩ I2t = {Y1:t−k, A1:t−k}

Local information: Lit = Iit ∖ Ct = {Yit−k+1:t, Ai
t−k+1:t−1}.

Prescription: γit∶ Lit ↦ Ai
t.

Common-info approach for k-step delay sharing



Multi-agent Teams–(Mahajan)
16

Common-info approach for k-step delay sharing

Main Result

The virtual coordinator is a single agent stochastic ctrl problem.

Information state: for Ct: bt = ℙ(St, L1t , L2t ∣
Ct, γ11:t−1, γ

2
1:t−1).

Dynamic program: VT+1(b) = 0 and
Vt(bt) = min

γ1
t ,γ2

t

{𝔼[ct(St, A1
t , A2

t ) + Vt+1(B+) ∣ bt, γ1t , `γ2t ]}.

Each step of the DP is a functional optimization problem.



Common-info approach for k-step delay sharing

Main Result

The virtual coordinator is a single agent stochastic ctrl problem.

Information state: for Ct: bt = ℙ(St, L1t , L2t ∣
Ct, γ11:t−1, γ

2
1:t−1).

Dynamic program: VT+1(b) = 0 and
Vt(bt) = min

γ1
t ,γ2

t

{𝔼[ct(St, A1
t , A2

t ) + Vt+1(B+) ∣ bt, γ1t , `γ2t ]}.

Each step of the DP is a functional optimization problem.

Salient Features

The virtual coordinator is purely for conceptual clarity as it al-
lows us to view the original problem from the p.o.v. of a “higher
authority”. The presence of the coordinator is not necessary.

The common information is known to both controllers and there-
fore both of them can carry out the calculations to solve the DP
on their own.
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Partial history
sharing

|Lit| is uniformly bounded.

ℙψ(Ct+1 ∖ Ct ∣ Ct, γ1t , γ2t )
doesn’t depend on ψ.

The general common-info approach

Main Result

Information state: for Ct: bt = ℙ(St, L1t , L2t ∣
Ct, γ11:t−1, γ

2
1:t−1).

Dynamic program: VT+1(π) = 0 and
Vt(b) = min

γ1
t ,γ2

t

{𝔼[ct(St, A1
t , A2

t ) + Vt+1(B+) ∣ bt, γ1t , γ2t ]}.

Implications and impact

Subsumes many existing results ( . . . )

New results on sufficient statistics and DP for specific models
(control sharing, mean-field sharing, NCS, and others)

Common-information based refinements of Nash equilibrium in
dynamic games with asymmetric information



Common information resolves conceptual
difficulties in decentralized control.



Common information resolves conceptual
difficulties in decentralized control.

Hey, but this is an RL workshop!
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Implications of
common-info

approach

Converts planning in multi-agent teams to a POMDP

In the learning setting, use your favorite RL algo for POMDP at the
coordinator (offline traning) or each agent’s local copy of the coordi-
nator (online training)

Beautiful theory ... doesn’t work in practice.
Too complicated. The action space is too large.
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Learning in dynamic teams

Implications of
common-info

approach

Converts planning in multi-agent teams to a POMDP

In the learning setting, use your favorite RL algo for POMDP at the
coordinator (offline traning) or each agent’s local copy of the coordi-
nator (online training)

Beautiful theory ... doesn’t work in practice.
Too complicated. The action space is too large.

Practical MARL
algorithms

Many SOTA MARL algos build on the common-info approach

BAD (Bayesian action decoder), SOTA on Hannabi
CAPI (cooperative approximate policy iteration), SOTA on Tiny-Bridge
. . .

But no theory! How do we develop RL theory MARL?
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We have recent results that resolve key conceptual challenges

Could generalize to MARL using common-info approach
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Tentative Roadmap for MARL Theory

Step 1
RL for POMDPs

Simplest “MARL” environment. Theory still lacking.

We have recent results that resolve key conceptual challenges

Could generalize to MARL using common-info approach

Step 2
Centralized vs
decentralized

training

Most MARL algos use centralized training.

Some recent preliminary results for analysis of centralized training.

Some empirical results on decentralized training.

Next Steps
Credit assignment (among agents)
Agents helping each other to learning



How are we doing on time?



Approximate Information States for POMDPs



Multi-agent Teams–(Mahajan)
19

Key solution concept: Information state

Informally, an information state is a compression
of information which is sufficient for

performance evaluation and predicting itself.
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Key solution concept: Information state

Informally, an information state is a compression
of information which is sufficient for

performance evaluation and predicting itself.

Historical overview

Old concept. May be viewed as as generalization of the notion of state (Nerode, 1958).
Informal definitions given in Kwakernaak (1965), Bohlin (1970), Davis and Varaiya (1972), Kumar
and Varaiya (1986) but no formal analysis.

Related to but different from concepts such bisimulation, predictive state representations (PSR),
and ε-machines.
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Given a state space 𝒵, an INFORMATION STATE GENERATOR is a tuple of

history compression functions {σt∶ℋt → 𝒵}t≥1

reward function r̂ : 𝒵 × 𝒜 → ℝ

transition kernel P̂ : 𝒵 × 𝒜 → Δ(𝒵)
which satisfies two properties:

Information state: Definition
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Given a state space 𝒵, an INFORMATION STATE GENERATOR is a tuple of

history compression functions {σt∶ℋt → 𝒵}t≥1

reward function r̂ : 𝒵 × 𝒜 → ℝ

transition kernel P̂ : 𝒵 × 𝒜 → Δ(𝒵)
which satisfies two properties:

(P1) The reward function �̂� is sufficient for performance evaluation:

𝔼[Rt ∣ Ht = ht, At = at] = r̂(σt(ht), at).

(P2) The transition kernel �̂� is sufficient for predicting the info state:

ℙ(Zt+1 ∈ B ∣ Ht = ht, At = at) = P̂(B ∣ σt(ht), at).

Information state: Definition



Multi-agent Teams–(Mahajan)
21

Information state: Key result

An information state always leads to a
dynamic programming decomposition.
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Let {Zt}t≥1 be any information state process. Let V̂ be the fixed point of:

V̂(z) = max
a∈𝒜

{r̂(z, a) + γ∫
𝒵
V̂(z+)P̂(dz+|z, a)}

Let π∗(z) denote the arg max of the RHS. Then, the policy 𝛑 = (𝛑𝐭)𝐭≥𝟏 given
by 𝛑𝐭 = 𝛑∗ ∘ σ𝐭 is optimal.

Information state: Key result

An information state always leads to a
dynamic programming decomposition.
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POMDP

Belief state is an info state
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Markov decision processes (MDP)

Current state St is an info state

MDP with delayed observations

(St−δ+1, At−δ+1:t−1) is an info state

POMDP

Belief state is an info state

POMDP with delayed observations

(ℙ(St−δ|Y1:t−δ, A1:t−δ), At−δ+1:t−1)
is info state

Linear Quadratic Gaussian (LQG)

The state estimate 𝔼[St|Ht] is an info state

Machine Maintenance

(τ, S+τ ) is info state,
where τ is the time of last maintenance

Examples of information state
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Main idea

Info state is defined in terms of two properties (P1) & (P2).
An AIS is a process which safisfies these approximately

And now to Approximate Information States . . .
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Main idea

Info state is defined in terms of two properties (P1) & (P2).
An AIS is a process which safisfies these approximately

Show that AIS always leads to approx. DP
Recover (and improve up on) many existing results

And now to Approximate Information States . . .
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An (ε, δ)-APPROXIMATE INFORMATION STATE (AIS) generator is a tuple
(σt, r̂, P̂) which approximately satisfies (P1) and (P2):

Approximate Information state: Definition
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An (ε, δ)-APPROXIMATE INFORMATION STATE (AIS) generator is a tuple
(σt, r̂, P̂) which approximately satisfies (P1) and (P2):

(AP1) �̂� is sufficient for approximate performance evaluation:

|𝔼[Rt ∣ Ht = ht, At = at] − r̂(σt(ht), at)| ≤ ε

(AP2) �̂� is sufficient for approximately predicting next AIS:

d𝔉(ℙ(Zt+1 = ⋅ ∣ Ht = ht, At = at), P̂(⋅ |σt(ht), at)) ≤ δ

Results depend on the choice of metric on probability spaces

Approximate Information state: Definition



Examples of AIS
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(P, r) (P̂, r̂)(P, r) (P̂, r̂)
Real-world
model

Simulation
model

What is the loss in performance if we
choose a policy using the simulation
model and use it in the real world?

Example 1: Robustness to model mismatch in MDPs
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d𝔉 is total variation

V(s) − Vπ(s) ≤ 2ε
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γδ span(r)
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Recover bounds of Müller (1997).
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Model mismatch as an AIS

(Identity, P̂, r̂) is an (ε, δ)-AIS with ε = sup
s,a

|r(s, a) − r̂(s, a)| and δ𝔉 = sup
s,a

d𝔉(P(⋅ |s, a), P̂(⋅ |s, a)).

Newspaper Müller, “How does the value function of a Markov deci-
sion process depend on the transition probabilities?” MOR
1997.
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(P, r) (P̂, r̂)(P, r) (P̂, r̂)
Real-world
model

Simulation
model

What is the loss in performance if we
choose a policy using the simulation
model and use it in the real world?

d𝔉 is total variation

V(s) − Vπ(s) ≤ 2ε
1 − γ +

γδ span(r)
(1 − γ)2

Recover bounds of Müller (1997).

Example 1: Robustness to model mismatch in MDPs

Model mismatch as an AIS

(Identity, P̂, r̂) is an (ε, δ)-AIS with ε = sup
s,a

|r(s, a) − r̂(s, a)| and δ𝔉 = sup
s,a

d𝔉(P(⋅ |s, a), P̂(⋅ |s, a)).

Newspaper Müller, “How does the value function of a Markov deci-
sion process depend on the transition probabilities?” MOR
1997.

Newspaper Asadi, Misra, Littman, “Lipscitz continuity in model-based
reinfocement learning,” ICML 2018.

d𝔉 is Wasserstein distance

V(s) − Vπ(s) ≤ 2ε
1 − γ +

2γδLr
(1 − γ)(1 − γLp)

Recover bounds of Asadi, Misra, Littman (2018).
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𝒮 �̂�

φ

(P̂, r̂) is determined from (P, r) using φ

What is the loss in performance if we
choose a policy using the abstract model

and use it in the original model?

Example 2: Feature abstraction in MDPs
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φ

(P̂, r̂) is determined from (P, r) using φ

What is the loss in performance if we
choose a policy using the abstract model

and use it in the original model?

Example 2: Feature abstraction in MDPs

Feature abstraction as AIS

(φ, P̂, r̂) is an (ε, δ)-AIS with ε = sup
s,a

|r(s, a) − r̂(φ(s), a)|

and δ𝔉 = sup
s,a

d𝔉(P(φ−1(⋅)|s, a), P̂(⋅ |φ(s), a).
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φ

(P̂, r̂) is determined from (P, r) using φ

What is the loss in performance if we
choose a policy using the abstract model

and use it in the original model?

d𝔉 is total variation

V(s) − Vπ(s) ≤ 2ε
1 − γ +

γδ𝔉 span(r)
(1 − γ)2

Improve bounds of Abel et al. (2016)

Example 2: Feature abstraction in MDPs

Feature abstraction as AIS

(φ, P̂, r̂) is an (ε, δ)-AIS with ε = sup
s,a

|r(s, a) − r̂(φ(s), a)|

and δ𝔉 = sup
s,a

d𝔉(P(φ−1(⋅)|s, a), P̂(⋅ |φ(s), a).

Newspaper Abel, Hershkowitz, Littman, “Near optimal behavior via
approximate state abstraction,” ICML 2016.
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(P̂, r̂) is determined from (P, r) using φ

What is the loss in performance if we
choose a policy using the abstract model

and use it in the original model?

d𝔉 is total variation

V(s) − Vπ(s) ≤ 2ε
1 − γ +

γδ𝔉 span(r)
(1 − γ)2

Improve bounds of Abel et al. (2016)

Example 2: Feature abstraction in MDPs

Feature abstraction as AIS

(φ, P̂, r̂) is an (ε, δ)-AIS with ε = sup
s,a

|r(s, a) − r̂(φ(s), a)|

and δ𝔉 = sup
s,a

d𝔉(P(φ−1(⋅)|s, a), P̂(⋅ |φ(s), a).

Newspaper Abel, Hershkowitz, Littman, “Near optimal behavior via
approximate state abstraction,” ICML 2016.

Newspaper Gelada, Kumar, Buckman, Nachum, Bellemare, “DeepMDP:
Learning continuous latent space models for representa-
tion learning,” ICML 2019.

d𝔉 is Wasserstein distance

V(s) − Vπ(s) ≤ 2ε
1 − γ +

2γδ𝔉‖V̂‖Lip
(1 − γ)2

Recover bounds of Gelada et al. (2019).
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Belief space Quantized beliefs

What is the loss in performance if we
choose a policy using the approximate
beliefs and use it in the original model?

Example 3: Belief approximation in POMDPs
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Belief space Quantized beliefs

What is the loss in performance if we
choose a policy using the approximate
beliefs and use it in the original model?

V(s) − Vπ(s) ≤ 2ε‖r‖∞
1 − γ + 6γε‖r‖∞

(1 − γ)2

Improve bounds of Francois Lavet et al. (2019) by a factor of 1/(1 − γ).

Example 3: Belief approximation in POMDPs

Belief approximation in POMDPs

Quantized cells of radius ε (in terms of total variation) are (ε‖r‖∞, 3ε)-AIS.

Newspaper Francois-Lavet, Rabusseau, Pineau, Ernst, Fonteneau, “On
overfitting and asymptotic bias in batch reinforcement
learning with partial observability,” JAIR 2019.



Thus, the notion of AIS unifies many
of the approximation results in the

literature, both for MDPs and POMDPs.



Hey, this is an RL workshop remember
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Main idea

AIS is defined in terms of two losses ε and δ.
Minimizing ε and δ will minimize the AIS approximation loss.

From approximation bounds to reinforcement learning . . .
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Main idea

AIS is defined in terms of two losses ε and δ.
Minimizing ε and δ will minimize the AIS approximation loss.

Use λε2 + (1 − λ)δ2 as surrogate loss for the AIS generator
. . . and combine it with standard actor-critic algorithm
using multi-timescale stochastic approximation.

From approximation bounds to reinforcement learning . . .
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AIS Generator

Use LSTM for σt∶ℋt → 𝒵 and
a NN for functions r̂ and P̂.

Use λ(R̃t−Rt)2+(1−λ)d𝔉(μt, νt)2 as surrogate loss.

We show that ∇d𝔉(μt, νt)2 can be computed effi-
ciently for Wasserstein distance and MMD.

Reinforcement learning setup
AIS

Encoder
AIS

Decoder

Zt

AIS Generator
At

At−1

Yt−1

R̃t

νt
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AIS Generator

Use LSTM for σt∶ℋt → 𝒵 and
a NN for functions r̂ and P̂.

Use λ(R̃t−Rt)2+(1−λ)d𝔉(μt, νt)2 as surrogate loss.

We show that ∇d𝔉(μt, νt)2 can be computed effi-
ciently for Wasserstein distance and MMD.

Value approximator

Use a NN to approx. action-value function
Q∶𝒵 × 𝒜 → ℝ.

Update the parameters to minimize tem-
poral difference loss

Policy approximator

Use a NN to approx. policy π∶ 𝒵 → Δ(𝒜).

Use policy gradient theorem to efficiently
compute ∇J(π).

Reinforcement learning setup
AIS

Encoder
AIS

Decoder

Zt

AIS Generator
At

At−1

Yt−1

R̃t

νt

Value
approx.

Critic

AtPolicy
approx.

Actor


