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Networks are ubiquitous
Salient Features

B> Large/growing size
& Nodes have local states
B> Coupled dynamics and costs
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Networks are ubiquitous
Salient Features

&> Large/growing size
> Nodes have local states
B> Coupled dynamics and costs

Design challenges
B> Scalability of the solution
P> How to handle model uncertainty

Present a spectral decomposition method for network-coupled
subysstems which leads to scalable planning and learning
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> Network-coupled subsystems
> Agents interacting over a graph
S e B> Coupled dynamics

> Coupled costs
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> Network-coupled subsystems
> Agents interacting over a graph
B> Coupled dynamics
> Coupled costs

System Model

B> Spectral factorization

Planning solution of dynamics and cost
> Decoupled Riccati equations
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> Agents interacting over a graph
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> Coupled costs

Planning solution
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Spectral factorization
of dynamics and cost
Decoupled Riccati equations
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Spectral factorization of learning
Numerical experiments

Network-coupled subsystems-(Aditya Mahajan)




Outline

> Network-coupled subsystems
B> Agents interacting over a graph
B> Coupled dynamics
> Coupled costs
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System Model

Weighted undirected graph G

> Nodes N ={1,...,n}.
B> Symmetric matrix M = [mY] associated with G
(e.g., weighted adjacency matrix, weighted Laplacian, etc.)
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System Model

Weighted undirected graph G

> Nodes N ={1,...,n}.
B> Symmetric matrix M = [mY] associated with G
(e.g., weighted adjacency matrix, weighted Laplacian, etc.)

System Dynamics

D> A subsystem located at each node. State x! € R¢x. Control ut € R,

Xt ; =Axi+Bu;+D E mix} +E E miu) +wi
jEN jEN
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System Model

Weighted undirected graph G

> Nodes N ={1,...,n}.
> Symmetric matrix M = [mY] associated with G
(e.g., weighted adjacency matrix, weighted Laplacian, etc.)

System Dynamics

B> A subsystem located at each node. State x! € R%x. Control ul € R4,

x}C+1 = Axi +Bu; +D E m”x{ +E E m”u{ + wi
JEN jeEN

w o

Network feld of states x Network feld of control u}
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System Model (cont.)

Per-step cost
clxpyu) = Y [hd(xHTQEA) + h (uh)TQ(u))]
i,jeN
where Hy = [hiqj] and H, = [h}.j] are symmetric matrices
which have the same eigenvectors as M.
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System Model (cont.)

Per-step cost
clxpyu) = Y [hd(xHTQEA) + h (uh)TQ(u))]
i,jeN
where Hy = [hiqj] and H, = [h}.j] are symmetric matrices
which have the same eigenvectors as M.

Remark

]
For two symmetric n x n matrices M; and M, the following statements are equivalent:

B> M, and M, share the same eigenvectors.
> M; and M, communte (i.e.,, M{M;,; = M, M;)
> M; and M, are simultaneously diagonalizable.
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System Model (cont.)
Per-step cost
c(xe,uy) = ZN [h (xHTQ(}) + h (uh) TQ(u))]
i,j€
where Hy = [hiqj]] and H, = [h}.j] are symmetric matrices
which have the same eigenvectors as M.

Important special case
|

P> Captures the intuition that the per-step cost respects the graph structure.
&> Example: Hq = qol 4+ q1M + q2M? means that there is a cost coupling between the one-
and two-hop neighbors.
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An example to illustrate that nodes are not exchageable
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An example to illustrate that nodes are

Dynamical coupling
]
> Nodes are not exchageable
x0T =2x2 +1x4, X% =2x) +2%3,

x§’3:2x%—|—1x§, xf’4:1xl+1xf.
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An example to illustrate that nodes are not exchageable

Dynamical coupling a 1 e
1 2

> Nodes are not exchageable

x0T =2x2 +1x4, X% =2x) +2%3,

x§’3:2x%—|—1xﬂ, xf’4:1xl+1xf.

Cost coupling

B> Nodes are not exchageable
Suppose Hq = qol + 1M + q2M?.
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Dynamical coupling
2

> Nodes are not exchageable
1

x0T =2x2 +1x4, X% =2x) +2%3,

x§’3:2x%—|—1xﬂ, xf’4:1xl+1xf.

Cost coupling

P> Nodes are not exchageable
Suppose Hq = qol + 1M + q2M?.
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An example to illustrate that nodes are

Dynamical coupling

> Nodes are not exchageable
x0T =2x2 +1x4, X% =2x) +2%3,
x§’3:2x%—|—1xﬂ, xf’4:1xl+1xf.

Cost coupling

B> Nodes are not exchageable
Suppose Hq = qol + 1M + q2M?. Then

[qo+592 2qs 5q2 q1
29 do + 892 2q, 44>
542 24 do + 9492 qr

L 442 q do + 292 _
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Model generalizes mean-field control model

Special case

I

> Consider M = H]lTL><T1 and Hqy = H, = 1

K
Hl—i_ HM

> Network-Ffeld % Z X} =: X, is the (empirical) mean-feld.
JEN
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Model generalizes mean-field control model

Special case /| N
SN

D
1 1 LTSN
B> Consider M = T_L]I“X“ and Hy = H, = -

R

X
R
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Dynamics '!AA AN

I ‘

Xt = Ax{ + Bu} + DX + Edie + wi.
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> Network-Ffeld % Z X} =: X, is the (empirical) mean-feld.
jEN
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Per-step cost
——

c(xp,ue) = (14 k) [X{ QX¢ + U{ Rl

+ % D[ = %) TQExeE — %e) + (ub — 1) TQ(ul —Te)].
ieN
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Problem formulation

Summary of the model

B> Dynamics: xi,; = Ax{ + Bu{ + D Z mix) +E Z miu +wi
jEN jEN
D> Per-step cost: c(x¢,u¢) = Z [hiqj (x1)TQ(x)) + hY (u'{)TQ(ui)]
1,jEN

> Network structure: M, Hq, and H, have the same eigenvectors.
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Problem formulation

Summary of the model

> Dynamics: xi,; = Ax{ + Bu{ + D Z mix) +E Z miu) +wi
jEN jEN
D> Per-step cost: c(x¢,u¢) = Z [h}f (x)TQ(x)) + hY (u}[)TQ(ujt)}
,jEN

B> Network structure: M, Hq, and H, have the same eigenvectors.

Objective

Choose a policy 7t (x],...,x™) — (u

.
lim sup 1T E™ [Z c(xt, Ut):|
=1

T—oo

1 ..., ul") to minimize:
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Problem formulation

Summary of the model

& Dynamics: xi,; = Ax{ + Bu{ + D Z mix) +E Z miu) +wi
jEN jEN
D> Per-step cost: c(x¢,u) = Z [hgj (x)TQ(x)) + hY (u}[)TQ(ujt)]
1N

B> Network structure: M, Hq, and H, have the same eigenvectors.

Objective > Standard soln requires

lvi d dy Riccati E
solving nd, x nd, Riccati Eq.
Choose a policy 7t (x],...,x™) — (u vins " f

.
lim sup 1T E™ [Z c(xt, Ut):|
=1

T—oo

1 ..., ul") to minimize:

B> Complexity scales O(n3d3).
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Outline

N

\; : Planning solution
("5
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> Spectral factorization
of dynamics and cost
> Decoupled Riccati equations




Our result: Develop a decomposition which
computes the optimal policy by solving at most

N Riccati egns of dimension d, x d.

B co-author: Shuang Gao
> paper: https://arxiv.org/abs/2009.12367




Spectral decomposition

Spectral decomposition of coupling matrices
|

L
M — Z ABVZ(VB)T,
=1
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Spectral decomposition

Spectral decomposition of coupling matrices
|

L L
M= AT, Hg=qol+qr ) A (YT,
e=1

=1
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Spectral decomposition

Spectral decomposition of coupling matrices
|

L L .
M = ;Aﬁvf(vf)T, Hq = gol + q1 ;Agv(’,(\)E)T, H, = ol + 11 ;Afv“(ve)T

Spectral decomposition of dynamics

At each node i € [n]:
> For each { € [L], define eigenstates, eigencontrols, and eigennoise as

2,1 T .1 T 2,1

x = xE VO T wet =ubvt (v T, and wt =wivi(vhH .
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Spectral decomposition

Spectral decomposition of coupling matrices
|

L L .
M = ;Aﬁvf(vf)T, Hq = gol + q1 ;)\gv(’,(\)E)T' H, = ol + 11 ;Afv“(ve)T

Spectral decomposition of dynamics

At each node i € [n]:
& Foreach ¢ € [L], define eigenstates, eigencontrols, and eigennoise as

61 iyl T 61 i\ T 61 il T
Xy =xve(vi)', ug =upvi(vh), and wy =wivi(vh) .
B> Define auxiliary state, auxiliary control, auxiliary noise as
L iy L iy L iy
Xt=xt— ) x% ul=ul— ) uy, and w!:=wi— ) w "

=1
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Implication of Spectral Decomposition

Noise-coupled xit = (A+ADX" + (B + A EJuy +wy

dynamics and xi,, = Axi + Bitl +Wwi
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Implication of Spectral Decomposition

Noise-coupled xit = (A+ADX" + (B + A EJuy +wy

dynamics and xi,, = Al + Bitl +19}

Decoupled cost RAUEEREEE NS PPN uEl VSR AU

1) = ()T Qi + 2 (i) TRt

Y g). 2). z e). e’.
) = (x)TQx" + %(u;c 9TRu".
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Implication of Spectral Decomposition

Eigen-system ({,1) with £ € [L], 1 € [n]

> State x;''. Control uy*
> Dynamics: x;}; = (A +AD)xpt + (B +AE)up’ +wyt
B Per-step cost: c!(xo, upt).

Auxiliary system i with i € [n]

> State x.. Control 1ii.
> Dynamics: X!, ; = Ax! + Bul +wi
& Per-step cost: c'(xi, ).
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Implication of Spectral Decomposition

Eigen-system ({,1) with £ € [L], 1 € [n]

> State x;''. Control uy"
B> Dynamics: x2'; = (A +AD)xS! + (B 4+ AE)upyt + wit

t41
> Per-step cost: ct(x;", uyt)

Auxiliary system i with i € [n]

> State xt. Control 11l
> Dynamics: X!, ; = Ax! + Bul + Wi
B> Per-step cost: c'(xi, ).

Only coupled through the noise in the dynamics
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Implication of Spectral Decomposition

Eigen-system ({,1) with £ € [L], 1 € [n]

> State x;''. Control uy".

> Dynamics: x2' = (A +AD)xS + (B 4+ AE)ubt + wht

t+1 =
B> Per-step cost: c(xy", uit)

Auxiliary system i with i € [n] Certainty equivalence: Optimal policy of
stochastic LQ system is same as that of
B> State xi. Control . deterministic LQ system.

> Dynamics: X!, ; = Ax! + Bul + Wi

el o The deterministic system has decoupled
> Per-step cost: c* (X}, ;).

dynamics and cost!

Only coupled through the noise in the dynamics
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Implication of Spectral Decomposition

Eigen-system ({,1) with £ € [L], 1 € [n]

B> State x;''. Control uy"

D> Dynamics: fo = (A+AD)XO + (B+ AE)u }{

> Per-step cost: c!(x{upt)

Auxiliary system i with i € [n] Certainty equivalence: Optimal policy of
stochastic LQ system is same as that of

B> State xi. Control . deterministic LQ system.

B> Dynamics: xt+1 = Ax! + Bul +>i<

The deterministic system has decoupled
> Per-step cost: c!(xi, 1)

dynamics and cost!

Only coupled through the noise in the dynamics
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Main result

Under standard assumptions, the optimal control action is
given by
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Main result

Under standard assumptions, the optimal control action is
given by

> The gains G, {G"}}_, are the same at all subsystems!

B> Requires solving (L + 1) Riccati Eqn of dimension dy x d.

B> Complexity scales O(Ld3) (cf. O(n3d3) for naive solution).

Network-coupled subsystems-(Aditya Mahajan)

é“ ll,‘

=12=




Outline

H?::.f;ﬁ]\ Learning solution
f
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B> Spectral factorization of learning
> Numerical experiments




Review: LQ regulation with unknown/uncertain dynamics

Modeling
uncertainty

Model 6, = [A,, B,] € O (uncertain set)
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Review: LQ regulation with unknown/uncertain dynamics

Modeling
uncertainty

Model 6, = [A,, B,] € O (uncertain set)

Worst-case design

> Assume that nature is adversarial
> Choose a policy which minimizes worst
case performance

> Zero-sum game or robust control
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Modeling
uncertainty

Model 6, = [A,, B,] € O (uncertain set)

Worst-case design

> Assume that nature is adversarial
> Choose a policy which minimizes worst
case performance

B> Zero-sum game or robust control
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Learning solution

>

Design an adaptive policy which
asymptatically converges to the optimal
policy of the true (unknown) model.

Reinforcement learning or adaptive control




Review: LQ regulation with unknown/uncertain dynamics

Modeling
uncertainty

Model 6, = [A,, B,] € O (uncertain set)

Worst-case design Learning solution

B> Assume that nature is adversarial > Design an adaptive policy which
P> Choose a policy which minimizes worst asymptatically converges to the optimal
case performance policy of the true (unknown) model.

B> Zero-sum game or robust control > Reinforcement learning or adaptive control

Comparing learning algorithms

T
Regret(T) = Z {cost of learning algo(t) — cost of clairvoyant agent(t)}
t=1

& Large literature. Various classes of algos with different regret guarantees.
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Review: Regret for learning in LQ regulation

Bounds on Regret
> Lower bound: No algorithm can do better than Q(d9-°d,v/T).

P> Upper bound: Various classes of algorithms achieve O(d%->(dy + d.)vT).
B> Certainty equivalence; Optimisim in the face of uncertainty; Thompson sampling
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Review: Regret for learning in LQ regulation

Bounds on Regret
> Lower bound: No algorithm can do better than Q(d9-°d,v/T).

B Upper bound: Various classes of algorithms achieve O(d%->(dy + d..)v/T).
> Certainty equivalence; Optimisim in the face of uncertainty; Thompson sampling

Challenge I> Effective dimensions are nd, and nd,,
with learning > Directly using existing algos gives regret of O(n'->d%->(dy + d.)vT).

in networks B> Normalized regret per agent is O(n°°>d%->(dy + du)VT).
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Review: Regret for learning in LQ regulation

Bounds on Regret
> Lower bound: No algorithm can do better than Q(d%-°d,v/T).

> Upper bound: Various classes of algorithms achieve ©(d%->(dy + d..)v/T).
& Certainty equivalence; Optimisim in the face of uncertainty; Thompson sampling

Challenge > Effective dimensions are nd, and nd,,
WS LI ARl > Directly using existing algos gives regret of O(n'-2d%>(dx + du )VT).

in networks B> Normalized regret per agent is O(n°°>d%->(dy + du)VT).

Regret per agent grows with size of the network! !

Network-coupled subsystems-(Aditya Mahajan)




Our result: Develop a learning algorithm which
exploits the structure of the network and has a per

agent regret of O((1 + %)d,‘z'S(dX + d)VT).

> co-author: Sagar Sudhakara, Ashutosh Nayyar, Yi Ouyang
B> paper: https://arxiv.org/abs/2108.07970




Learning model

Problem setting

P> Known: Network (M, Hq, H;). Cost (Q, R).
B> Unknown: Dynamics (A, B, C, D).
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Learning model

Problem setting Modeling assumptions

> Known: Network (M, Hq, H;). Cost (Q, R). >0, =[A,,BJeO
> Unknown: Dynamics (A, B, C, D). > o' =[A, +A'D,,B, +A'E,] € O
> Bayesian prior on © and {04,
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Learning model

Problem setting Modeling assumptions

P> Known: Network (M, Hq, H;). Cost (Q, R). >0, =[A.,B,]ecO
B> Unknown: Dynamics (A, B, C, D). > 0 =[A, +A'D,,B, +A'E,] € 6
> Bayesian prior on © and {04,

L
Recall: c(x¢,u) = Y [qoé(i‘c%,ﬁi) +) q"'ce(xf",ui’l)]

Implication ieN
of Spectral Thus, for any policy 7,

" L
Decomposition J(m50.) = Z [qoji(ﬂ;é*) + Z qele’i(ﬂ;eﬁ)]
(=1

=1

ieN
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Key idea for learning

Separately learn {6}, and 0

> For learning 6¢, select an agent i¢ such that v&is + 0.

;0 - 0
Lig _ £,ig

> Learn G*(0%) using {x;""°,uy 0 b1
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Key idea for learning

Separately learn {6}, and 0

& For learning 0%, select an agent il such that v&is £ 0.
> Learn GY(6%) using {x{ 1°,uﬁ 1O}t>1

> At time t, select agent jt—1 with the “most informative obs”.

> Learn G(0.) using {X}, i)', X% 1 b1
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Key idea for learning

Separately learn {6}, and 0

B> For learning 0%, select an agent il such that viie =£ 0.
> Learn GY(6%) using {x} 1°,uf 10}91.

> At time t, select agent jt—1 with the “most informative obs”.

> Learn G(0.) using {X,, i)', X% 1 b1
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> Use variant of Thompson
sampling to learn each
component

B> The high-level idea also
applies to other learning
algos




Key idea for learning

Separately learn {6}, and 0

B> For learning 0%, select an agent i’ such that vbie =£ 0.
> Learn GY(8Y) using {x} 1°,uf 1O}t>1

> At time t, select agent jt—1 with the “most informative obs”.

B> Learn G(6.) using {X), i)', X% 1 hes1.

B> Use variant of Thompson
sampling to learn each
component

P> The high-level idea also
applies to other learning
algos

Since J(m;0,) = Z [qo]‘(n 0,) +Zq JO 92)]

Implication {ieN
of Spectral
Decomposition

=1

Thus, regret also decomposes as

ieN

L
Rm=ZFWm+Z&Wml
=1
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Bounding regret

Bounding R%*(T)

B> Since agent i} is learning in the standard manner, we have
RbIs (T) = O(WHe > (dy + du)VT).

> We show that for other agents

= O(WHd2%(dx + du)VT).
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Bounding regret

Bounding R%*(T)

Since agent i! is learning in the standard manner, we have
RbIs (T) = O(WHe > (dy + du)VT).

We show that for other agents

= O(WHd2%(dx + du)VT).

Bounding Ri(T)

Need to bound regret from Frst principles.
Using the most informative observation allows us to bound the
regret of auxiliary systems at all nodes.

Show that RY(T) = O(W'd$ (dy + du)VT).

Network-coupled subsystems-(Aditya Mahajan)




Bounding regret

Overall Regret Bound

B> Combining these, we have
R(T) = O(a9d$->(dx+dw)VT), where a9 = > 1 q'+qo(n—L).

> Regret per agent is proportional to

ocg/n:(9<1 —l—%)

Thus, regret per agent reduces with the size of the network!

Network-coupled subsystems-(Aditya Mahajan)




Some examples




Mean-field systems
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Mean-field systems
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Scaling of regret
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& Regret per-agent goes down as the network becomes larger (mean-Feld effect).
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Mean-field systems
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Scaling of regret

(1 + k)/n. Therefore, (normalized) o = (1 +

2

4.058 + 34.63/n

— = 100
n = 10

0 1000 2000 3000 4000 5000 ' 40 GO
T
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A general low-rank network

Choice of parameters

> M=M°® lnun Hg = (1-M)% and H, =1.
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A general low-rank network

Choice of parameters

o o 1
> M=M ®H]1n><nv Hgq = (I—M)?,

Scaling of regret

> A =4/2(a? +b?), ' = (1 —=AYH2, vt = 1. Therefore, (unnormalized) ¥ = 4n + 4(a? + b?).

B> Regret per-agent goes down as the network becomes larger (network-feld effect).
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A general low-rank network

b
Choice of parameters
> M=M°® Inxn, Hg = (I M)?, and H, = L.
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Scaling of regret

> AL = +/2(a? +b2), q' = (1 —AYH2, vt = 1. Therefore, (unnormalized) «¥ = 4n + 4(a? + b?).

3.720 4+ 34.286n
- (a,b) = 0.05 = 3.67T4 + 133.283n

0 2000 4000 6000 8000 10000 ' 40 60 80
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Conclusion

Presented a spectral decomposition method for network-coupled
subysstems which leads to scalable planning and learning
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Planning solution Learning solution

> Solve (L + 1) Riccati eqns of dims d, x d,. B> Regret peragent O((1 + LVT)
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Conclusion

Presented a spectral decomposition method for network-coupled
subysstems which leads to scalable planning and learning
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Planning solution Learning solution

> Solve (L + 1) Riccati eqns of dims d, x d,. & Regret per agent O((1 + LIVT)

Future Directions

]

B> Multiple types of agents

> Large networks, graphon limits?

> Other types of scalable network stuctures?

Network-coupled subsystems-(Aditya Mahajan)
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