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Networks are ubiquitous

Energy network

Salient Features
Large/growing size
Nodes have local states
Coupled dynamics and costs

Design challenges
Scalability of the solution
How to handle model uncertainty

Present a spectral decomposition method for network-coupled
subysstems which leads to scalable planning and learning
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Weighted undirected graph 𝓖

Nodes N = {1, . . . , n}.
Symmetric matrixM = [mij] associated with 𝒢
(e.g., weighted adjacency matrix, weighted Laplacian, etc.)

System Dynamics

A subsystem located at each node. State xit ∈ ℝdx . Control ui
t ∈ ℝdu .

xit+1 = Axit + Bui
t +D∑

j∈N
mijxjt + E∑

j∈N
mijuj

t +wi
t

Network field of states x𝒢,𝒾t Network field of control u𝒢,𝒾
t

System Model
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Per-step cost

c(xt, ut) = ∑
i,j∈N

[h
ij
q (xit)⊺Q(x

j
t) + h

ij
r (ui

t)⊺Q(u
j
t)]

where Hq = [hijq ] and Hr = [hijr ] are symmetric matrices
which have the same eigenvectors as 𝐌.

System Model (cont.)
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Per-step cost

c(xt, ut) = ∑
i,j∈N

[h
ij
q (xit)⊺Q(x

j
t) + h

ij
r (ui

t)⊺Q(u
j
t)]

where Hq = [hijq ] and Hr = [hijr ] are symmetric matrices
which have the same eigenvectors as 𝐌.

Remark

For two symmetric n × n matricesM1 andM2, the following statements are equivalent:
M1 andM2 share the same eigenvectors.
M1 andM2 communte (i.e.,M1M2 = M2M1)
M1 andM2 are simultaneously diagonalizable.

System Model (cont.)
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Per-step cost

c(xt, ut) = ∑
i,j∈N

[h
ij
q (xit)⊺Q(x

j
t) + h

ij
r (ui

t)⊺Q(u
j
t)]

where Hq = [hijq ] and Hr = [hijr ] are symmetric matrices
which have the same eigenvectors as 𝐌.

Important special case

Hq =
Kq

∑
k=0

qkMk and Hr =
Kr

∑
k=0

rkMk.

Captures the intuition that the per-step cost respects the graph structure.
Example: Hq = q0I + q1M+ q2M2 means that there is a cost coupling between the one-
and two-hop neighbors.

System Model (cont.)
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A graph 𝒢

Dynamical coupling

Nodes are not exchageable

x𝒢,1t = 2x2t + 1x4t , x𝒢,2t = 2x1t + 2x3t ,

x𝒢,3t = 2x2t + 1x4t , x𝒢,4t = 1x1t + 1x3t .

Cost coupling

Nodes are not exchageable
Suppose Hq = q0I + q1M+q2M2. Then

Hq =
⎡⎢⎢⎢

⎣

q0 + 5q2 2q1 5q2 q1
2q1 q0 + 8q2 2q1 4q2
5q2 2q1 q0 + 5q2 q1
q1 4q2 q1 q0 + 2q2

⎤⎥⎥⎥

⎦

1 2

34

5 4

5 8

52

Two-hop neighborhood

An example to illustrate that nodes are not exchageable
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Special case

ConsiderM = 1
n𝟙n×n and Hq = Hr = 1

nI +
κ
nM.

Network-field
1
n∑j∈N

xjt ≕ x̄t is the (empirical) mean-field.

Model generalizes mean-field control model
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Special case

ConsiderM = 1
n𝟙n×n and Hq = Hr = 1

nI +
κ
nM.

Network-field
1
n∑j∈N

xjt ≕ x̄t is the (empirical) mean-field.

Dynamics

xit+1 = Axit + Bui
t +Dx̄t + Eūt +wi

t.

Per-step cost

c(xt, ut) = (1 + κ)[x̄⊺
t Qx̄t + ū⊺

t Rūt]

+ 1
n ∑i∈N

[(xit − x̄t)⊺Q(xit − x̄t) + (ui
t − ūt)⊺Q(ui

t − ūt)].

Model generalizes mean-field control model



Network-coupled subsystems–(Aditya Mahajan)
7

Summary of the model

Dynamics: xit+1 = Axit + Bui
t +D∑

j∈N
mijxjt + E∑

j∈N
mijuj

t +wi
t

Per-step cost: c(xt, ut) = ∑
i,j∈N

[h
ij
q (xit)⊺Q(x

j
t) + h

ij
r (ui

t)⊺Q(u
j
t)]

Network structure: M, Hq, and Hr have the same eigenvectors.

Problem formulation



Network-coupled subsystems–(Aditya Mahajan)
7

Summary of the model

Dynamics: xit+1 = Axit + Bui
t +D∑

j∈N
mijxjt + E∑

j∈N
mijuj

t +wi
t

Per-step cost: c(xt, ut) = ∑
i,j∈N

[h
ij
q (xit)⊺Q(x

j
t) + h

ij
r (ui

t)⊺Q(u
j
t)]

Network structure: M, Hq, and Hr have the same eigenvectors.

Objective

Choose a policy π∶ (x1t , . . . , xn) → (u1
t , . . . , un

t ) to minimize:

lim sup
T→∞

1
T 𝔼π

[

T

∑
t=1

c(xt, ut)]

Problem formulation



Network-coupled subsystems–(Aditya Mahajan)
7

Summary of the model

Dynamics: xit+1 = Axit + Bui
t +D∑

j∈N
mijxjt + E∑
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mijuj

t +wi
t

Per-step cost: c(xt, ut) = ∑
i,j∈N

[h
ij
q (xit)⊺Q(x

j
t) + h

ij
r (ui

t)⊺Q(u
j
t)]

Network structure: M, Hq, and Hr have the same eigenvectors.

Objective

Choose a policy π∶ (x1t , . . . , xn) → (u1
t , . . . , un

t ) to minimize:

lim sup
T→∞

1
T 𝔼π

[

T

∑
t=1

c(xt, ut)]

Standard soln requires
solving ndx × ndx Riccati Eq.

Complexity scales 𝒪(n3d3x).

Problem formulation
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co-author: Shuang Gao
paper: https://arxiv.org/abs/2009.12367

Our result: Develop a decomposition which
computes the optimal policy by solving at most

𝐧 Riccati eqns of dimension 𝐝𝐱 × 𝐝𝐱.
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Spectral decomposition of coupling matrices
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L
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L

∑
ℓ=1

λℓqvℓ(vℓ)⊺, Hr = r0I + r1
L

∑
ℓ=1

λℓrvℓ(vℓ)⊺

Spectral decomposition of dynamics

At each node i ∈ [n]:
For each ℓ ∈ [L], define eigenstates, eigencontrols, and eigennoise as

xℓ,it = xitvℓ(vℓ)⊺, uℓ,i
t = ui

tvℓ(vℓ)⊺, and wℓ,i
t = wi

tvℓ(vℓ)⊺.

Define auxiliary state, auxiliary control, auxiliary noise as

x̆it = xit −
L

∑
ℓ=1

xℓ,it , ŭi
t = ui

t −
L

∑
ℓ=1

uℓ,i
t , and w̆i

t = wi
t −

L

∑
ℓ=1

wℓ,i
t .

Spectral decomposition
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Implication of Spectral Decomposition

Noise-coupled
dynamics

xℓ,it+1 = (A + λℓD)x
ℓ,i
t + (B + λℓE)uℓ,i

t +wℓ,i
t

and x̆it+1 = Ax̆it + Bŭi
t + w̆i

t
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Implication of Spectral Decomposition

Noise-coupled
dynamics

xℓ,it+1 = (A + λℓD)x
ℓ,i
t + (B + λℓE)uℓ,i

t +wℓ,i
t

and x̆it+1 = Ax̆it + Bŭi
t + w̆i

t

Decoupled cost

c(xt, ut) = ∑
i∈N[

q0c̆(x̆it, ŭi
t) +

L

∑
ℓ=1

qℓcℓ(xℓ,it , u
ℓ,i
t )]

where qℓ = q0 + q1λℓq, rℓ = r0 + r1λℓr, and

c̆(x̆it, ŭi
t) = (x̆it)⊺Qx̆it + r0

q0
(ŭi

t)⊺Rŭi
t

cℓ(xℓ,it , u
ℓ,i
t ) = (x

ℓ,i
t )⊺Qx

ℓ,i
t + rℓ

qℓ (uℓ,i
t )⊺Ru

ℓ,i
t .
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Eigen-system (ℓ, 𝐢) with ℓ ∈ [𝐋], 𝐢 ∈ [𝐧]

State xℓ,it . Control uℓ,i
t .

Dynamics: xℓ,it+1 = (A + λℓD)x
ℓ,i
t + (B + λℓE)uℓ,i

t +wℓ,i
t

Per-step cost: cℓ(xℓ,it , u
ℓ,i
t ).

Auxiliary system 𝐢 with 𝐢 ∈ [𝐧]

State x̆it. Control ŭi
t.

Dynamics: x̆it+1 = Ax̆it + Bŭi
t + w̆i

t
Per-step cost: cℓ(x̆it, ŭi

t).

Implication of Spectral Decomposition
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t.

Dynamics: x̆it+1 = Ax̆it + Bŭi
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t + w̆i

t
Per-step cost: cℓ(x̆it, ŭi
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Under standard assumptions, the optimal control action is
given by

ui
t = ŭi

t +
L

∑
ℓ=1

uℓ,i
t = Ğx̆it +

L

∑
ℓ=1

Gℓxℓ,it

where

Ğ = Gain(A,B,Q,
r0
q0
R)

Gℓ = Gain(A + λ
ℓD,B + λℓE,Q, r

ℓ

qℓR)

Main result
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Under standard assumptions, the optimal control action is
given by

ui
t = ŭi

t +
L

∑
ℓ=1

uℓ,i
t = Ğx̆it +

L

∑
ℓ=1

Gℓxℓ,it

where

Ğ = Gain(A,B,Q,
r0
q0
R)

Gℓ = Gain(A + λ
ℓD,B + λℓE,Q, r

ℓ

qℓR)

The gains Ğ, {Gℓ}Lℓ=1 are the same at all subsystems!

Requires solving (L + 1) Riccati Eqn of dimension dx × dx.

Complexity scales 𝒪(Ld3x) (cf. 𝒪(n3d3x) for naive solution).

Main result
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Review: LQ regulation with unknown/uncertain dynamics
Modeling

uncertainty
Model θ⋆ = [A⋆, B⋆] ∈ Θ (uncertain set)
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Worst-case design

Assume that nature is adversarial
Choose a policy which minimizes worst
case performance

Zero-sum game or robust control

Learning solution

Design an adaptive policy which
asymptotically converges to the optimal
policy of the true (unknown) model.

Reinforcement learning or adaptive control

Comparing learning algorithms

Regret(T) =
T

∑
t=1
[cost of learning algo(t) − cost of clairvoyant agent(t)]

Large literature. Various classes of algos with different regret guarantees.

Review: LQ regulation with unknown/uncertain dynamics
Modeling

uncertainty
Model θ⋆ = [A⋆, B⋆] ∈ Θ (uncertain set)
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Bounds on Regret

Lower bound: No algorithm can do better than Ω̃(d0.5x du√T).

Upper bound: Various classes of algorithms achieve 𝒪̃(d0.5x (dx + du)√T).
Certainty equivalence; Optimisim in the face of uncertainty; Thompson sampling

Review: Regret for learning in LQ regulation
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Bounds on Regret

Lower bound: No algorithm can do better than Ω̃(d0.5x du√T).

Upper bound: Various classes of algorithms achieve 𝒪̃(d0.5x (dx + du)√T).
Certainty equivalence; Optimisim in the face of uncertainty; Thompson sampling

Challenge
with learning
in networks

Effective dimensions are ndx and ndu
Directly using existing algos gives regret of 𝒪̃(n1.5d0.5x (dx + du)√T).

Normalized regret per agent is 𝒪̃(n0.5d0.5x (dx + du)√T).

Review: Regret for learning in LQ regulation

Regret per agent grows with size of the network!



co-author: Sagar Sudhakara, Ashutosh Nayyar, Yi Ouyang
paper: https://arxiv.org/abs/2108.07970

Our result: Develop a learning algorithm which
exploits the structure of the network and has a per
agent regret of 𝓞̃((𝟏 + 𝟏

𝐧)𝐝
𝟎.𝟓
𝐱 (𝐝𝐱 + 𝐝𝐮)√𝐓).
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θℓ = [A⋆ + λℓD⋆, B⋆ + λℓE⋆] ∈ Θℓ

Bayesian prior on Θ̆ and {Θℓ}Lℓ=1.

Learning model



Network-coupled subsystems–(Aditya Mahajan)
16

Problem setting

Known: Network (M, Hq, Hr). Cost (Q, R).
Unknown: Dynamics (A, B, C, D).

Modeling assumptions

θ̆⋆ = [A⋆, B⋆] ∈ Θ̆
θℓ = [A⋆ + λℓD⋆, B⋆ + λℓE⋆] ∈ Θℓ

Bayesian prior on Θ̆ and {Θℓ}Lℓ=1.

Implication
of Spectral

Decomposition

Recall: c(xt, ut) = ∑
i∈N[

q0c̆(x̆it, ŭi
t) +

L

∑
ℓ=1

qℓcℓ(xℓ,it , u
ℓ,i
t )]

Thus, for any policy π,

J(π; θ⋆) = ∑
i∈N[

q0J̆i(π; θ̆⋆) +
L

∑
ℓ=1

qℓJℓ,i(π; θℓ⋆)]
.

Learning model
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Separately learn {θℓ}𝐋ℓ=𝟏 and θ̆

For learning θℓ⋆, select an agent iℓ∘ such that vℓ,iℓ∘ ≠ 0.
Learn Gℓ(θℓ⋆) using {x

ℓ,iℓ∘
t , uℓ,iℓ∘

t }t≥1.

Key idea for learning
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jt
t , x̆

jt
t+1}t≥1.

Use variant of Thompson
sampling to learn each
component

The high-level idea also
applies to other learning
algos

Implication
of Spectral

Decomposition

Since J(π; θ⋆) = ∑
i∈N[

q0J̆i(π; θ̆⋆) +
L

∑
ℓ=1

qℓJℓ,i(π; θℓ⋆)]
.

Thus, regret also decomposes as

R(T) = ∑
i∈N[

q0R̆i(T) +
L

∑
ℓ=1

qℓRℓ,i(T)
]
.

Key idea for learning



Network-coupled subsystems–(Aditya Mahajan)
18

Bounding 𝐑ℓ,𝐢(𝐓)

Since agent iℓ∘ is learning in the standard manner, we have

Rℓ,iℓ∘(T) = 𝒪̃(Wℓ,iℓ∘d0.5x (dx + du)√T).

We show that for other agents

Rℓ,i(T) =
(

vℓ,i

vℓ,iℓ∘)

2

Rℓ,iℓ∘(T) = 𝒪̃(Wℓ,id0.5x (dx + du)√T).

Bounding regret
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Show that R̆i(T) = 𝒪̃(W̆id0.5x (dx + du)√T).

Bounding regret

Overall Regret Bound

Combining these, we have

R(T) = 𝒪̃(α𝒢d0.5x (dx+du)√T), where α𝒢 = ∑
L
ℓ=1 qℓ+q0(n−L).

Regret per agent is proportional to

α𝒢/n = 𝒪
(
1 + Ln)

.

Thus, regret per agent reduces with the size of the network!



Some examples



Network-coupled subsystems–(Aditya Mahajan)
19

Choice of parameters

M = 1
n𝟙n×n and Hq = Hr = 1

nI +
κ
nM.

Mean-field systems
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M = 1
n𝟙n×n and Hq = Hr = 1

nI +
κ
nM.

Scaling of regret
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κ
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Mean-field systems

R(T)/√T vs T R(T)/√T vs n
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b ⊗Choice of parameters

M =M∘ ⊗ 1
n𝟙n×n, Hq = (I −M)2, and Hr = I.

A general low-rank network
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Conclusion

Presented a spectral decomposition method for network-coupled
subysstems which leads to scalable planning and learning
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Planning solution

Solve (L + 1) Riccati eqns of dims dx × dx.

Learning solution

Regret per agent 𝒪̃((1 + 1
n)√T)

Conclusion
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Planning solution

Solve (L + 1) Riccati eqns of dims dx × dx.

Learning solution

Regret per agent 𝒪̃((1 + 1
n)√T)

Future Directions

Multiple types of agents
Large networks, graphon limits?
Other types of scalable network stuctures?

Conclusion

Presented a spectral decomposition method for network-coupled
subysstems which leads to scalable planning and learning
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