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Mean-field interactions arise in various applications



The importance of mean-field interactions have led
to various models of mean-field games and teams.

Excellent overview in the
previous two talks in this series!
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Zt+1 = Φ(Zt, πt)

Discrete-time Fokker-Plank eqn
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Stationary mean-field equilibrium (SMFE)

Solution concept proposed by Weintraub, Benkard, and Van Roy (2005, 2008)
. . . and extended by Adlakha, Johari, and Weintraub (2010).
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Huang, Malhame, Caines (2003, 2006)
Larsy and Lions (2005)
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Stationary mean-field equilibrium (SMFE)

Solution concept proposed by Weintraub, Benkard, and Van Roy (2005, 2008)
. . . and extended by Adlakha, Johari, and Weintraub (2010).

Contemporaneous to the other “evolutive” solution concept for mean-field games
Huang, Malhame, Caines (2003, 2006)
Larsy and Lions (2005)

Interpreting SMFE

Presented as an approximation to Markov perfect equilibrium
. . . of a game where agents observe the state of all players

The equilibrium in “evolutive” mean-field game is also typically presented as
an approximation to Markov perfect equilibrium.

Solution concept



An alternative view:
SMFE is a sequential equilibrium of
a game with imprefect information.
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Nash equilibrium

Reduce the extensive form game to a normal form game.
A NE strategy of the normal form game is a NE of the
extensive form game.

Not ideal, because gives rise to equilibrium which
are based on non-credible threats.

Subgame-perfect equilibrium

A strategy profile which is a NE of every subgame
Can be solved by dynamic programming

Special case: Markov perfect equilibrium

Review: Extensive form games with perfect information
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Information sets

Nodes of a game tree which are indistinguishable to a player
Must play the same move at all nodes in an information set.

How to evaluate performance of a sub-tree?
Need to have belief on all nodes in an information set.

Sequential equilibrium (Kreps and Wilson, 1982)

A strategy profile and a belief system which satisfy:
Sequential rationality: If we evaluate performance according to beliefs, then in each
subgame, each player is playing a NE.

Consistency: The beliefs are Bayes consistent with the strategy.

Review: Extensive form games with imperfect information

DP doesn’t work!
Difficult to compute both for

finite and infinite horizon models
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Stationary mean-field equilibrium (SMFE)

A strategy profile π∶ 𝒮 → Δ(𝒜) and a mean-field belief z such that:

Consistency: z = Φ(z, π)

A squential equilibrium for mean-field game
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Stationary mean-field social-welfare optimality (SMF-SO)

Consider the setting where the players are cooperative.
Performance of a generic agent (same as before)

Vi
π,z(s) = 𝔼 Ai

t∼π(Si
t)

Si
t+1∼P(Si

t,Ai
t,z)[

∞

∑
t=0

γtr(Sit, Ai
t, z, Sit+1) |

Si0 = s]
.

Optimality

Vπ,z(s) ≥ Vπ′,z′(s) Equilibrium and social optimality are different

For equilibrium, deviation in policy does not change
the stationary mean-field (single player is deviating)

For optimality, deviation in policy changes the
stationary mean-field (entire population is deviating)

Social optimality
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Global solution
Solution concepts require global
search over all policies

Curse of
dimensionality

Verification requires computation of
value functions

Use local search over
parameterized policies

Use function
approximation

Agents with bounded rationality
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Parameterize policies: πθ where θ ∈ Θ [closed compact set] (e.g., softmax)

Local SMFE (LSMFE)

LSMFE is a pair (πθ, z) that satisfies:
Local sequential rationality:

∂Jπθ,z
∂θ = 0

Consistency: z = Φ(z, πθ)

Local SMF-SO (LSMF-SO)

LSMF-SO is a policy πθ that satisfies:
Local optimality:

dJπθ,zθ

dθ = 0
where zθ = Φ(zθ, πθ)

Local versions of the solution concepts
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dJπ,z
dθ = ∂Jπ,z∂π

∂π
∂θ +

∂Jπ,z
∂z

∂z
∂θ

Comparison of the two local solution concepts

LSMFE ≠ LSMF-SO
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Two-time scale algorithm

Update policy parameters: θk+1 = [θk + αkGθk,zk ]Θ

Update mean-field: zk+1 = zk + βk[Φ̂(zk, πθk) − zk]

Two-timescale conditions:
αk
βk

→ 0 + (standard Robbins-Monro conditions)

RL for SMFE (strategic agents)

Convergence result: Under standard technical conditions,
(θk, zk) → LSMFE
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Unrolling two timescales

It is hard to make two timescale algos work in practice.

For every iteration of the slow timescale (update of θk),
. . . run multiple rollouts of the fast timescale (update of zk).

Equivalent to estimating Φ(z, πθ) in a particle-filter like approach

Practical considerations
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Unrolling two timescales

It is hard to make two timescale algos work in practice.

For every iteration of the slow timescale (update of θk),
. . . run multiple rollouts of the fast timescale (update of zk).

Estimating gradients

Likelihood ratio based estimates

∂Jπθ,z

∂θ = 𝔼[
∞

∑
t=0

γt∇θ logπθ(Ai
t|Sit)Vπθ,z(Sit) | S0 ∼ ξ0]

Simultaneous perturbation based estimates

Gθ,z =
η
2c(Jθ+cη,z − Jθ−cη,z)

[

SPSA: ηi ∼ Unif(±1)
SFSA: ηi ∼ 𝒩(0, I) ]

Practical considerations



Similar ideas work for LSMF-SO
(except we don’t have likelihood
ratio based gradient estimates)
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or or
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r( , ) + Repair

Example 1: Malware spread in networks
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Salient features

Representative model for problems with positive externalities.

Reward: r(Si, Ai, Z) = −(k + ⟨Z⟩)Si − λAi where ⟨Z⟩ = ∫ sZ(s)ds.

Known that SMFE is unique and is a threshold-based strategy: Repair when Sit ≥ τ.

Example 1: Malware spread in networks
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Salient features

Representative model for problems with positive externalities.

Reward: r(Si, Ai, Z) = −(k + ⟨Z⟩)Si − λAi where ⟨Z⟩ = ∫ sZ(s)ds.

Known that SMFE is unique and is a threshold-based strategy: Repair when Sit ≥ τ.

Policy parameterizations

Threshold based policies with τ ∈ [0, 1]. Update τ using SPSA.
Neural network based policies. Compute gradient using REINFORCE.

Example 1: Malware spread in networks



RL in stationary MFG–(Aditya Mahajan)
17

Strategic agents

0 25 50 75 100 125 150 175 200

Iterations

−4.6

−4.4

−4.2

−4.0

−3.8

P
er
fo
rm

an
ce

SMFE (Exact)

LSMFE:Threshold

LSMFE:NN

Cooperative agents

0 25 50 75 100 125 150 175 200

Iterations

−4.6

−4.4

−4.2

−4.0

−3.8

P
er
fo
rm

an
ce

SMF-SO (Exact)

LSMF-SO:Threshold

Results: Performance



RL in stationary MFG–(Aditya Mahajan)
18
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Results: Stationary mean-fields
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Model (adapted from Weintraub, Benkard, Van Roy (2010)

Models investment decisions of firms in a fragmented market.

Each firm has p products.
State space: [0, 1]p (indicating quality of each product)
Action space: {0, 1}p (indicating investment decision in each product)

Mean-field coupled dynamics and reward models.

Example 2: Investment in product quality
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Models investment decisions of firms in a fragmented market.

Each firm has p products.
State space: [0, 1]p (indicating quality of each product)
Action space: {0, 1}p (indicating investment decision in each product)

Mean-field coupled dynamics and reward models.

Simulation details

Consider p = 3 products.
Neural networks based policy parameterization.

Cluster the tails of the trajectories

Example 2: Investment in product quality
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Model (adapted from Weintraub, Benkard, Van Roy (2010)

Models investment decisions of firms in a fragmented market.

Each firm has p products.
State space: [0, 1]p (indicating quality of each product)
Action space: {0, 1}p (indicating investment decision in each product)

Mean-field coupled dynamics and reward models.

Simulation details

Consider p = 3 products.
Neural networks based policy parameterization.

Cluster the tails of the trajectories
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Example 2: Investment in product quality
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Takeaway message: Learning in large games and
teams can be easier than small and medium ones.

Conclusion
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Provide a different view of looking at mean-field games.
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Takeaway message: Learning in large games and
teams can be easier than small and medium ones.

Stationary Mean-field games

Provide a different view of looking at mean-field games.
Arguments easily extend to heterogeneous population (agents with multiple types).

Comparison with “evolutive” mean-field games

Both planning and learning solutions have lower complexity than the “evolutive” counterpart.
But require stronger conditions for existence of equilibrium.

Conclusion
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