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The importance of mean-field interactions have led
to various models of mean-field games and teams.

Excellent overview in the
previous two talks in this series!
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System Model

Population of homogeneous agents
|

B> n homogeneous agents.
P> State space §; action space A.

> (St Al) € 8§ x A. State and action of agent i at time t.
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System Model

Population of homogeneous agents
________________________________________________________________|]

B> n homogeneous agents.
P> State space §; action space A.

D> (Si,Al) € 8 x A. State and action of agent i at time t.

Mean-field coupling Utility of each agent

> Mean-field: Z,(s) = > 1St =s). B> Utiliy of agent i
" ien Vi E . tRi | st
> Dynamics: St , ~ P(S}, Al Zy) (s) = L;)V t |90 = 5]-

t+1

> Per-step reward: R} =r(S},Al, Z, St ;).
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System Model

Population of homogeneous agents
________________________________________________________________|]
> n homogeneous agents.

D> State space §; action space A.

> (Si,Al) € § x A. State and action of agent 1 at time t.
— —

Mean-field coupling Utility of each agent
> Mean-feld: Z(s Z 1St = s}, B> Utility of agent 1

1€N 5 s .
i oad \'%A s):IE[ YRy | S§ =
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B> Per-step reward: Rt = (St AL Z S

B> Dynamics: S!

)
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P> n homogeneous agents.
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1EN . s .
s Vi(s) =E { E YR
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> Per-step reward: Rl = (S, Al Z,,S

D> Dynamics: Si

)

B Ifall agents play a Markov policy m:8 — A(A):
Ziya(s Z Z Zi(s)me(als)P(s']s, a, Zt)
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Ziy1 = D(Zy, )

Discrete-time Fokker-Plank egn




Solution concept

Stationary mean-field equilibrium (SMFE)

B> Solution concept proposed by Weintraub, Benkard, and Van Roy (2005, 2008)
... and extended by Adlakha, Johari, and Weintraub (2010).

> Contemporaneous to the other “evolutive” solution concept for mean-feld games
> Huang, Malhame, Caines (2003, 2006)
P> Larsy and Lions (2005)
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Stationary mean-field equilibrium (SMFE)

P Solution concept proposed by Weintraub, Benkard, and Van Roy (2005, 2008)
... and extended by Adlakha, Johari, and Weintraub (2010).

> Contemporaneous to the other “evolutive” solution concept for mean-Ffeld games
B> Huang, Malhame, Caines (2003, 2006)
> Larsy and Lions (2005)

Interpreting SMFE
B> Presented as an approximation to Markov perfect equilibrium
. of a game where agents observe the state of all players

B> The equilibrium in “evolutive” mean-feld game is also typically presented as
an approximation to Markov perfect equilibrium.
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An alternative view:
SMFE is a sequential equilibrium of

a game with imprefect information.




Review: Extensive form games with perfect information
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Review: Extensive form games with perfect information

Nash equilibrium

> Reduce the extensive form game to a normal form game.
B> A NE strategy of the normal form game is a NE of the
extensive form game.
&> Not ideal, because gives rise to equilibrium which
are based on non-credible threats.

Normal-form reduction
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Review: Extensive form games with perfect information

Nash equilibrium

B> Reduce the extensive form game to a normal form game.
1 > A NE strategy of the normal form game is a NE of the
extensive form game.
B> Not ideal, because gives rise to equilibrium which
are based on non-credible threats.

Subgame-perfect equilibrium

B> A strategy profile which is a NE of every subgame
& Can be solved by dynamic programming

B> Special case: Markov perfect equilibrium
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Review: Extensive form games with imperfect information
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Review: Extensive form games with imperfect information

Information sets

B> Nodes of a game tree which are indistinguishable to a player
1 D Must play the same move at all nodes in an information set.
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Review: Extensive form games with imperfect information

Information sets

B> Nodes of a game tree which are indistinguishable to a player
1 B Must play the same move at all nodes in an information set.
B> How to evaluate performance of a sub-tree?
Need to have belief on all nodes in an information set.

Sequential equilibrium (Kreps and Wilson, 1982)

A strategy profile and a belief system which satisfy:
B> Sequential rationality: IF we evaluate performance according to beliefs, then in each
subgame, each player is playing a NE.

> Consistency: The beliefs are Bayes consistent with the strategy.
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Review: Extensive form games with imperfect information

DP doesn’t work!
Difficult to compute both for
Anite and inAnite horizon models
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A squential equilibrium for mean-field game

Stationary mean-field equilibrium (SMFE)

B> A strategy profile =8 — A(A) and a mean-feld belief z such that:
> Consistency: Z — (D(Z, 7'()
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A squential equilibrium for mean-field game

Stationary mean-field equilibrium (SMFE)

> A strategy profile : 8 — A(A) and a mean-Ffeld belief z such that:
> Consistency: Z — CD(Z, 7'()

B> Evaluation of performance (same for all 1)

v}T’Z(S) =E Al~7t(S}) [Z‘Ytr(SLA}c)Z)S‘iﬁ]) S}) - S] :

Si

t+1NP(S}L)A1)Z) t=0
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A squential equilibrium for mean-field game

Stationary mean-field equilibrium (SMFE)

B> A strategy profile =8 — A(A) and a mean-feld belief z such that:
> Consistency: Z — (D(Z, 7'()

D Evaluation of performance (same for all 1)

v;t>z(s) =E A~7t(S}) [Z ’Ytr(S}c)A‘ic)Z)SLH) S(l) - S] :

St ~P(St,Al,z) Lt=0
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Stationarity of beliefs

Evaluate performance
according to belief




A squential equilibrium for mean-field game

Stationary mean-field equilibrium (SMFE)

B> A strategy profile :8 — A(A) and a mean-feld belief z such that:

Stationarity of beliefs
> Consistency: Z — (D(Z, 7'() ’

B> Evaluation of performance (same for all 1)

_ o0 o _ _ Evaluate performance
Vi (8)=E A st [Z Yr(St, A 2,8t 1) | S = S]- according to belief

St ~P(St,Al,z) Lt=0

> Sequential rationality: For any other strategy

Vr,z(s) Z Vi 2(s)
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Social optimality

Stationary mean-field social-welfare optimality (SMF-SO)

B> Consider the setting where the players are cooperative.
B> Performance of a generic agent (same as before)

V}T’Z(s) =E Al~7(S}) [Z YtT(S}[)A%)Z, Si+1) | S(i) - S] -
)

St ~P(S},Al,z) Lt=0
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Social optimality

Stationary mean-field social-welfare optimality (SMF-SO)

B> Consider the setting where the players are cooperative.
B> Performance of a generic agent (same as before)

(@]
VE(S)=E ainsy [Zytr(S{,A{,z,S{H)‘S})—s}.
St ,~P(Si,Al,z) Lt=0

> Optimality

VT[,Z(S) 2 VTC’,Z’(S)
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Social optimality

Stationary mean-field social-welfare optimality (SMF-SO)

B> Consider the setting where the players are cooperative.
> Performance of a generic agent (same as before)

o0
VE(S)=E ainsy [Zytr(S{,A{,z,S{H)|S})—s}.
St ,~P(Si,Al,z) Lt=0

> Optimality

\'2

(s
v

z = ®(z,m) z'

z’(S)
\

d(z, )

) 2 Vr,
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Social optimality

Stationary mean-field social-welfare optimality (SMF-SO)

B> Consider the setting where the players are cooperative.
&> Performance of a generic agent (same as before)

V;[’Z( )=E A}~7(S}) [Z ytr(s‘iwAihZ)SiJﬂ) | S(l) - 3:| .

St ,~P(Si,Al,z) Lt=0

> Optimality
Vi,

(s
\

z = ®(z,m) z = ®(z,m)

) 2 V. ',z’(s)
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Equilibrium and social optimality are different

B> For equilibrium, deviation in policy does not change
the stationary mean-Feld (single player is deviating)

B> For optimality, deviation in policy changes the
stationary mean-Ffeld (entire population is deviating)




Agents with bounded rationality

Global solution  |Eo Uz Cemesrls e e skl
search over all policies
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Global solution sl Concepts_ "_eqUi"B global
search over all policies

Use local search over
parameterized policies

Curse of Verification requires computation of
(I 1[4V value functions
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Use function
approximation
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Local versions of the solution concepts

Preliminaries

B> Scalarize returns: Assume s} ~ &, (start state distribution, independent across agents)
IT[,Z — ]ESO~£[VW,Z(SO)]

> Parameterize policies: g where 6 € © [closed compact set] (e.g., softmax)
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Local versions of the solution concepts

Preliminaries

& Scalarize returns: Assume s} ~ & (start state distribution, independent across agents)
]7T,Z — IESO~E,[VW,Z(SO)]

> Parameterize policies: 719 where 6 € O [closed compact set] (e.g., softmax)

Local SMFE (LSMFE)

LSMFE is a pair (g, z) that satisfes:
> Local sequential rationality:

a]ﬁey’é .
38—V

> Consistency: Z — (D(Z, 7'[9)
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Local versions of the solution concepts

Preliminaries

> Scalarize returns: Assume s} ~ &, (start state distribution, independent across agents)
]T[,Z — ]ESO~E,[V7T,Z(SO)]

P> Parameterize policies: g where 6 € O [closed compact set] (e.g., softmax)

Local SMFE (LSMFE) Local SMF-SO (LSMF-S0)

LSMFE is a pair (71, z) that satisfes: LSMF-SO0 is a policy mg that satisfes:
B> Local sequential rationality: B> Local optimality:

a]T[ yZ d]T[ yZ L
—o0 ¢ a ~°

> Consistency: Z — ) (Z, 7'(9) where Zg — b (Ze, 7'(9)
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Comparison of the two local solution concepts

dIT[,Z . a]n,z 07t | a]T[,Z 0z
d0 =~ Oom 00 ' 0z 99
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Comparison of the two local solution concepts
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Comparison of the two local solution concepts
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Comparison of the two local solution concepts
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Comparison of the two local solution concepts

LSMFE + LSMF-SO

RL in stationary MFG-(Aditya Mahajan)




Outline

H‘. ! > RL for SMFE
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RL for SMFE (strategic agents)

Two-time scale algorithm

> Update policy parameters: 9k+1 — [ek + (X’kGek>Zk]@
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RL for SMFE (strategic agents)

Two-time scale algorithm

Unbiased estimator

> Update policy parameters: 9k+1 = [Gk -+ (XkGek,Zk]@ of 0o.,/00

A

A
> Update mean-feld: Zx 41 = Zk + ﬁk[q) (Zk, 7Tek) — Zk]
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RL for SMFE (strategic agents)

Two-time scale algorithm

Unbiased estimator

& Update policy parameters: 9k+1 — [Gk -+ (XkGek,Zk]@ of 0o.,/00

Unbiased est.

A
> Update mean-feld: Zx 41 = Zk + [Sk[q)(Zk, 7T9k) — Zk] of ®(zy, 7o, )
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RL for SMFE (strategic agents)

Two-time scale algorithm

P> Update policy parameters: 9k+1 — [ek + (XkGek,Zk]@

A
> Update mean-feld: Zx 41 = Zk + ﬁk[q) (Zk, T(ek) — Zk]

> Two-timescale conditions: —tk — O + (standard Robbins-Monro conditions)

k
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RL for SMFE (strategic agents)

Two-time scale algorithm

B> Update policy parameters: 9k+1 — [ek + OCkGek,zk]@

/\
B> Update mean-field: Zi+1 — Zk -+ Bk[q)(zk) 7T9k) _

Slower timescale

yi

- Faster timescale
i

&> Two-timescale conditions: L — O + (standard Robbins-Monro conditions)

k
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RL for SMFE (strategic agents)

Convergence result: Under standard technical conditions,
(Gk,zk) — LSMFE

RL in stationary MFG-(Aditya Mahajan)




Practical considerations

Unrolling two timescales

B It is hard to make two timescale algos work in practice.

B> For every iteration of the slow timescale (update of 6y),
. run multiple rollouts of the fast timescale (update of zy).

& Equivalent to estimating ®(z, ¢ ) in a particle-flter like approach
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Practical considerations

Unrolling two timescales

B It is hard to make two timescale algos work in practice.

B> For every iteration of the slow timescale (update of 0y),
. run multiple rollouts of the fast timescale (update of zy).

Estimating gradients

> Likelihood ratio based estimates

5 _— 00 .. :
L E[;)ytve 08 7o (ALS) Vi, 2(S1) | So ~ o]
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Practical considerations

Unrolling two timescales

B> It is hard to make two timescale algos work in practice.

> For every iteration of the slow timescale (update of 6y),
. run multiple rollouts of the fast timescale (update of zy).

Estimating gradients

P> Likelihood ratio based estimates

3 - 00 . :
Ia—d =E LZO‘YtVe l0g o (AL[S})Virg 2 (1) | So ~ &

P> Simultaneous perturbation based estimates

| SPSA:n; ~ Unif(+1)
G ~n . i1
0,z ZCUe+cn,z Jo—emz)loreni ~ oD
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Similar ideas work for LSMF-SO
(except we don’t have likelihood

ratio based gradient estimates)
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B> Malware spread in networks




Example 1: Malware spread in networks

Healthy (0)
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Example 1: Malware spread in networks

ﬁ w e ?#i;iﬁﬂ

Healthy (0 P> Non-healthy (1)

Action - O (Do nothing) Action - 1 (Repair)

\
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Example 1: Malware spread in networks

ﬁ w e ?#i;iﬁﬂ

Healthy (0 P> Non-healthy (1)

Action - O (Do nothing) Action - 1 (Repair)

B> fofeq Refoa—> R

(o SRR (o SHERY) +
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Example 1: Malware spread in networks

Salient features

B> Representative model for problems with positive externalities.
> Reward: r(S', A, Z) =—(k+ (Z))S* — AA! where (Z) = [ sZ(s)ds.

B Known that SMFE is unique and is a threshold-based strategy: Repair when S} > t.
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Example 1: Malware spread in networks

Salient features

> Representative model for problems with positive externalities.
D> Reward: r(S', A Z) =—(k+ (Z))S' — AA! where (Z) = [ sZ(s)ds.

& Known that SMFE is unique and is a threshold-based strategy: Repair when S} > t.

Policy parameterizations
|

B> Threshold based policies with T € [0, 1]. Update T using SPSA.
P> Neural network based policies. Compute gradient using REINFORCE.
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Results: Performance

Strategic agents Cooperative agents

[,

|
W
o

|
=~
o

|
=~
b

|
=
b

Performance
Performance

|
B
B

|
B
o

—— SMFE (Exact)
—— LSMFE:Threshold —— SMF-SO (Exact)
—— LSMFE:NN —— LSMF-SO:Threshold

|
rj;
D

25 50 75 100 125 150 175 200 75 100 125 150 175 200
Iterations Iterations

o
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Results: Thresholds

Strategic agents Cooperative agents

0.8 0.8
—— SMFE (Exact) —— SMF-SO (Exact)

0.7 —  LSMFE:Threshold 0.7 —  LSMF-SO:Threshold
0.6 0.6

0.5 0.5
S8 SS

0.4 0.4

0.3 0.3

0.2 0.2

0.1 0.1
0 2550 75 100 125 150 175 200 0 75 100 125 150

Iterations Iterations
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Results: Stationary mean-fields

Strategic agents Cooperative agents

0.50 0.50
—— SMFE (Exact) —— SMF-SO (Exact)
0.45 —— LSMFE:Threshold 0.45 —— LSMF-SO:Threshold

—— LSMFE:NN
0.40 0.40

§O.35 30.35
0.30 0.30

0.25 0.25

0.20 0.20
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Iterations Iterations
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Example 2: Investment in product quality

Model (adapted from Weintraub, Benkard, Van Roy (2010)

B> Models investment decisions of firms in a fragmented market.

> Each firm has p products.
B State space: [0, 1]P (indicating quality of each product)
B> Action space: {0, 1}P (indicating investment decision in each product)

> Mean-feld coupled dynamics and reward models.
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Example 2: Investment in product quality

Model (adapted from Weintraub, Benkard, Van Roy (2010)

& Models investment decisions of firms in a fragmented market.

B> Each fArm has p products.
> State space: [0, 1]P (indicating quality of each product)
B> Action space: {0, 1}P (indicating investment decision in each product)

> Mean-feld coupled dynamics and reward models.

Simulation details

|
B> Consider p = 3 products.
> Neural networks based policy parameterization.

& Cluster the tails of the trajectories
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Example 2: Investment in product quality

Model (adapte Strategic agents

> Models invest

B> Each frm has
D> State space:
P> Action space:

> Mean-feld co

Performance

Simulation det

> Considerp =
> Neural netwo

—— LSMFE:NN-C1 (52%)
—— LSMFE:NN-C2 (42%)

B> Cluster the ta 0 5000 10000 15000 20000 25000 30000 35000 40000
Steps

\
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Conclusion

F

Takeaway message: Learning in large games and
teams can be easier than small and medium ones.
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Conclusion

Takeaway message: Learning in large games and
teams can be easier than small and medium ones.

|

Stationary Mean-field games

B> Provide a different view of looking at mean-Ffeld games.
B> Arguments easily extend to heterogeneous population (agents with multiple types).
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Conclusion

Takeaway message: Learning in large games and
teams can be easier than small and medium ones.

L

Stationary Mean-field games

B Provide a different view of looking at mean-Ffeld games.
> Arguments easily extend to heterogeneous population (agents with multiple types).

Comparison with “evolutive” mean-field games

B> Both planning and learning solutions have lower complexity than the “evolutive” counterpart.
> But require stronger conditions for existence of equilibrium.

RL in stationary MFG-(Aditya Mahajan)




email: aditya.mahajan@mcgill.ca
web: http://cim.mcgill.ca/~adityam
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