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There is a need to revisit rate distortion

theory to take network access into account.
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B> The transmitter decides whether or not to transmit the current state

> The transmitted symbol is sent over an erasure channel (with acknowledgments)
B> The receiver generates an estimate based on received symbol
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> First order time-homogeneous Markov process
B> The transmitter decides whether or not to transmit the current state
> The transmitted symbol is sent over an erasure channel (with acknowledgments)

D> The receiver generates an estimate based on received symbol
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Communication Strategies
B> Transmission strategy f = {f}2 .

P> Estimation strategy g ={g¢}{2,.
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Discounted setup, p € (0,
Dy (f,9) = (1— B) E"’ L Nalf,g)=(1—BIES | ) Biu]

t=0

. Average cost setup, B =1
T-1 R T—1
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Optimization problems

Constrai

Our result: Provide computable expressions for these trade-offs
and identify optimal strategies that achieve them.

=Ca(I, gL A = E) IDp(T, 9] T ANG(T,gJ)

o
D’f3 is cts, dec, and convex C}g is cts, inc, and concave
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Comparison to Information Theory
B> Costly communication is analogous to communication under power constraint.
B> Constrained communication is analogous to distortion-rate function.
So, we call it distortion-transmission function.

P> Due to zero-delay reconstruction, information theoretic approaches do not apply.

Previous work on remote-state estimation
P> [Marshak 1954] Static (one-shot) problem with arbitrary source distribution
B> [Kushner 1964] Off-line choice of measurement times
B> [Astrom Bernhardsson 2002] Lebesque sampling (or event-based sampling)

Other related work
P> Event-based estimation . . . B> Sensor sleep scheduling . . .
P> Censoring sensors . . . B> Age of Information . . .
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An illustrative example




Xit1 = X¢ + Wy, Wi ~N(0,1). Perfect channel
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Xit1 = X¢ + Wy, Wi ~N(0,1). Perfect channel
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Distortion-transmission trade-off: Perfect channel

Randomized transmission strategy
Periodic transmission strategy
Optimal strategy
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What'’s the conceptual difficulty?




Static (one-shot) problem

X
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* :X:
8§ C X is the silence set
X is the estimate when no packet is received

Total expected cost
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Static (one-shot) problem

Cost when x € § Cost when x ¢ 8
e N ——— ) d(x —R) A+ ed(x —R)
8§ C X is the silence set
X is the estimate when no packet is received

Total expected cost

c(%,8) =AP(X¢8) +¢e) P(X=x)d(x—
XES

Choose (X, 8) to minimize c(X, 8).
Set-valued (or combinatorial) optimization problem.
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Dynamic problem

* :X:
8] C X is the silence set
X1 is the estimate when no packet is received
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Dynamic problem

If a packet is received
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Dynamic problem
If a packet is received

e ) N —— )

81(x1) C X is the silence set

%) is the estimate when no packet is received
e ——
8] C X is the silence set

X1 is the estimate when no packet is received . .
! P If a packet is not received

) € X is the silence set
) is the estimate when no packet is received

Sequential optimization problem where the optimization problem
at each step is a set-valued optimization problem that depends
on a history of previously chosen sets!.

| X|
Exhaustive search complexity: (DC\ZDC')(Z R

1
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Distortion transmission function for auto-regressive sources

Source model Xi11 = aX¢+Wy,  where W, has symmetric and unimodal distribution. X; € Z/R.
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Distortion transmission function for auto-regressive sources

Source model Xi11 = aX¢+Wy,  where W, has symmetric and unimodal distribution. X; € Z/R.

Optimal transmission strategy Optimal estimation strategy

1, iFXe —aXe1l >k 5 X1, IFYy=¢
Uy = : Xi = )
0, otherwise Yi, iFY, # ¢

Salient features
B> The transmitter does not try to send information
through timing events.

D> The estimation strategy is the same to the one for
intermittent observations and does not depend on
the choice of the threshold
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Distortion transmission function for auto-regressive sources

Source model Xi11 = aX¢+Wy,  where W, has symmetric and unimodal distribution. X; € Z/R.

Optimal transmission strategy Optimal estimation strategy

1, iFIXe—aXe gl >k 5 aXiq, iFY,=¢
Uy = : Xi = )
0, otherwise Yi, iFY, #¢

Performance of threshold based strategies
> Kg‘): Expected discounted number of transmissions until first successful reception.

> Lg‘): Expected discounted distortion until Arst successful reception.
> ng: Expected discounted time until Arst successful reception.

o _ L
Then, DB ES M—(ﬁk)
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Distortion transmission function for auto-regressive sources

a modal AVA AVARNTIAY.V/ P | V7 /2 | N | : Aol o ib

A

D}; is cts, dec, and convex
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Identify strategies that achieve the optimal trade-off
Simple and intuitive threshold based strategies are optimal.

Provide computable expressions for distortion-transmission function
Based on simple matrix calculations for discrete Markov processes

Based on solving Fredholm integral equations for continuous Markov processes

Provide simulation-based algorithms to compute optimal thresholds
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Identify strategies that achieve the optimal trade-off
Simple and intuitive threshold based strategies are optimal.

Provide computable expressions for distortion-transmission function
Based on simple matrix calculations for discrete Markov processes

Based on solving Fredholm integral equations for continuous Markov processes

Provide simulation-based algorithms to compute optimal thresholds

Beautiful example of stochastics and optimization
Decentralized stochastic control (or team theory) and POMDPs

Stochastic orders and majorization
Markov chain analysis, stopping times, and renewal theory
Constrained MDPs and Lagrangian relaxations

Stochastic approximation and simulation based optimization
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Solution methodology

Standard technique B> Achievability: Identify a good strategy and evaluate its performance.
B> Converse: Determine a lower bound on distortion.
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Solution methodology

Standard technique P> Achievability: Identify a good strategy and evaluate its performance.
B> Converse: Determine a lower bound on distortion.
B> Hope: The two curves match

Converse bounds are hard! Especially for sequential models.

Our approach P> Model the optimization problem as a decentralized stochastic control problem.

[Witsenhausen 1979, Walrand-Varaiya 1983, Teneketzis 2006, Mahajan-Teneketzis 2008,
Kaspi-Merhav 2012, Asnani-Weissman 2013, Yiksel 2013 . . .]

P> The system has two decision makers: the transmitter and the estimator, that
have access to different information.
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Solution methodology

Standard technique B> Achievability: Identify a good strategy and evaluate its performance.
B> Converse: Determine a lower bound on distortion.
B> Hope: The two curves match

Converse bounds are hard! Especially for sequential models.

Our approach B> Model the optimization problem as a decentralized stochastic control problem.

[Witsenhausen 1979, Walrand-Varaiya 1983, Teneketzis 2006, Mahajan-Teneketzis 2008,
Kaspi-Merhav 2012, Asnani-Weissman 2013, Yiksel 2013 . . .]

B> The system has two decision makers: the transmitter and the estimator, that
have access to different information.

P> Identify qualitative properties of optimal strategies
P> Identify a dynamic programming decompaosition
> Determine optimal strategies based on the dynamic program.
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Decentralized stochastic control

AL
So how do we start? %




Dealing with non-classical information structure

—

=

= _J

Classical info. struct.
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The common information approach (Nayyar, Mahajan, Teneketzis 2013)
Original system
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P Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information approach,” IEEE TAC 2013.
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The common information approach (Nayyar, Mahajan, Teneketzis 2013)
Original system

Coordinated system

ht

Yo:t—1

((pta >/<\t—1 )

Ficticious coordinator

X1

D Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information approach,” IEEE TAC 2013.
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The common information approach (Nayyar, Mahajan, Teneketzis 2013)

Original system

Coordinated system

Ny Yo:t—1 (@1, >/<\t—1 )

Ficticious coordinator

Yore—1 | X Xi—1

> The coordinated system is equivalent to the original system.
fe(%, Yo:e—1) = h{ (Yoe—1)(x).
B> The coordinated system is centralized.  Belief state P(X; | Yo.t_1).

P Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information approach,” IEEE TAC 2013
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Information states and dynamic program
Information states

Pre-transmission belief

: ﬂtltfl (x) =P(X¢ =x| Yo:e—1).
Post-transmission belief : TTy ¢ (x) = P(X¢ = x| Yo:t).

Remote state estimation-(Mahajan)
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Information states

Pre-transmission belief

@ @ @
‘ M0 M ‘ Ty T2
©1,Y1

Information states and dynamic program

: ﬂt|t71( ) =P(
Post-transmission belief : TT; ¢ (x) = P(

©2,Y2
Information C

> T4t = Q(Tfﬂt)-
state update B> 7ty = Q7ee—1, @ty Yt).

In particular, 7ty (x) =

1 (%) [e@e(X) + (1 — @i (X))

dyes
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Information states and dynamic program
Information states

Pre-transmission belief

: ﬂt|t71( ) =P(
Post-transmission belief : TT; ¢ (x) = P(

@ L @
‘ M0 M ‘ Ty T2
©1,Y1

©2,Y2
Structural results

There is no loss of optimality in using

Uy = fe(X¢, Mye—1) and Xe = gt (TTeje).
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Information states and dynamic program
Information states

Pre-transmission belief

: ﬂt|t71( ) =P(
Post-transmission belief : TT; ¢ (x) = P(

@ @ @
‘ M0 M ‘ Ty T2
©1,Y1

©2,Y2
Structural results

There is no loss of optimality in using

Uy = fe(X¢, Mye—1) and Xe = gt (TTeje).
Dynamic Program

Vrig(n) =0, andfort=T,...,0

Vi () = Lnelgfg E[d(X¢ —X) + Vip11e(TTepr) | Ty = 7,
X
tht—1 (1) =
@:X—{0,1}
Remote state estimation-(Mahajan)

min

EA@(Xe) + Vie (M) [ Tepe—1 =71, @ = @]

-
vl

m

N

I\




Information states and dynamic program
Information s

“Standard” POMDP. Optimal strategies can

be computed numerically (at least, in principle).
= T o

1122 | 1132 133
©2,Y2

©3,Y3
Structural results

There is no loss of optimality in using
Uy = fe(X¢, Mye—1) and Xe = gt (TTeje).
Dynamic Program

Vrig(n) =0, andfort=T,...,0

tht—1 (1) =
@:X—{0,1}
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Vi () = Lnelgfg E[d(X¢ —X) + Vip11e(TTepr) | Ty = 7,

min

EA@(Xe) + Vie (M) [ Tepe—1 =71, @ = @]

[
N\

m




Can we use the DP to say something

more about the optimal strategy?




Simplifying modeling assumptions

Markov process Xip1 = aXy + Wy
D Discrete state process: X, a, Wy € Z
D> Continuous state process: X¢, a, Wy € R

Noise Distribution Unimodal and symmetric

Distortion function Even and increasing
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Simplifying modeling assumptions

Markov process

Noise Distribution

Distortion function

Proof outline

Xip1 = aXy + Wy
D> Discrete state process: Xi, a, Wy € Z
P> Continuous state process: X¢, a, Wy € R

Unimodal and symmetric

Even and increasing

Show that threshold-based strategies are optimal

Find performance of arbitrary threshold based strategies
Solution to the costly communication problem

s[4 28 Solution to the constrained communication problem

Remote state estimation-(Mahajan)




Preliminaries: Change of variables

Definition Let o denote the last time a packet was received successfully. Define
Ee = X¢ — a® X,

/E\t = )?t — aG*tXG
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Preliminaries: Change of variables

Definition Let o denote the last time a packet was received successfully. Define

£ =2 — @D

/E\t = )?t — aG*tXG

Note that E. is a regenerative process:

{ Qb+ W, ifY,=¢
Et+1 =

W, iFY, £ &
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Preliminaries: Change of variables

Definition Let o denote the last time a packet was received successfully. Define
Ee = X¢ — a® X,

/E\t = )?t — aG*tXG

Note that E. is a regenerative process:

{ Qb+ W, ifY,=¢
Et+1 =

d d(E,—F) =d(X,—X
W, iFYt#G an (E¢ t) (Xt t)

We work with {E¢}t>0 rather than {X;}¢>0
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Preliminaries: Change of variables

Information states Pre-transmission belief : TTy_1(e) = P(Ey =x | Yo.t_1).
Post-transmission belief : TT;;(e) = P(E¢ = e | Yo.t).

‘ 0 ”:n ‘ T T2

®1,Y1 ©2,Y2

Information D> e = Qmye).
state update P 7y = Q7Tee—1, @ty Yt).
Tyi—1(€ )[ﬁ(Pt( )+ (1 — (e }
Z Tt — 1( E(Pt( )+ (1 — @€ ))})

e’'eX
60) let 75 ¢

In particular, 7ty j¢(e) =

Note that we can write 7y = Q(7yt—1, @, Nt), Where hy = uy sy
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Preliminaries: Change of variables

Information states Pre-transmission belief : TTy_1(e) = P(Ey =x | Yo.t_1).
Post-transmission belief : TT;;(e) = P(E¢ = e | Yo.t).

Dynamic Program Remains same as before
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Preliminaries: Majorization
[Hajek Mitzel Yang 2008, Lipsa Martins 2011, Nayyar et. al. 2013]

Almost uniform and
unimodal (ASU) Mo 3 Tlopq = Moy 2 Tons = -
distribution about ¢ ? T T ?

©
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Preliminaries: Majorization
[Hajek Mitzel Yang 2008, Lipsa Martins 2011, Nayyar et. al. 2013]
Almost uniform and
Uitk (G510 Mo 2 Moyt 2 Mot 2 Moys 27
distribution about ¢ ? T ?

©

ASU Rearrangement TTT ‘fh — TTTTT?

7T T
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Preliminaries: Majorization
[Hajek Mitzel Yang 2008, Lipsa Martins 2011, Nayyar et. al. 2013]
Almost uniform and
unimodal (ASU) Mo 3 Mot 2 Mot 2 Mo 20
distribution about ¢ ? T I T ?

©

ASU Rearrangement TTT ‘fh — TTTTT?

s

Majorization & >m miff

n

i & > Z 7 and

i=—mn i=—mn

Invariant to permutations.
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Majorization E>m miff
n+1 n+1

i &j)li 7 and Z 5?2_2 e

1="n 1" 1="n 1"

Invariant to permutations.
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Preliminaries: Majorization

Majorization E>m miff
n+1 n+1

i &j)li 7 and Z 5?2_2 e

1="n 1" 1="n 1"

Invariant to permutations.

ASU Majorization E>.miffEisASUand & >, 7
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Properties of majorization

Threshold based Let F(c) denote the class of all threshold based strategies around c, i.e.,

strategies 1 ifle—acl >k

0 otherwise

@ eFlc) iFIkst @le) = {
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Properties of majorization

Threshold based Let F(c) denote the class of all threshold based strategies around c, i.e.,

strategies 1 ifle—acl >k

0 otherwise

@) iFikst @le) = {

Property 1 Forany & >, mwhere & is ASU(c),
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Properties of majorization

Threshold based
strategies

@) iFikst @le) = {

Property 1 Forany & >, mwhere & is ASU(c),

and any o,

Remote state estimation-(Mahajan)

Let F(c) denote the class of all threshold based strategies around c, i.e.,

1 ifle—acl >k
0 otherwise




Properties of majorization

Threshold based Let F(c) denote the class of all threshold based strategies around c, i.e.,

strategies 1 ifle—acl >k

F if 9k s.t. =
¢ €3 i ° ole) {0 otherwise

Property 1 Forany & >, mwhere & is ASU(c),

&

and any o, there exists a 0 € F(c) s.t/\

(¢
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Properties of majorization

Threshold based Let F(c) denote the class of all threshold based strategies around c, i.e.,

strategies 1 ifle—acl >k

0 otherwise

@) iFikst @le) = {

Property 1 Forany & >, mwhere & is ASU(c),

and any o, there exists a 0 € JF(c) s.t.

D 0(e)é(e) =) ole)nle). a M
ecX ecX
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Properties of majorization

Threshold based Let F(c) denote the class of all threshold based strategies around c, i.e.,

strategies 1 ifle—acl >k

0 otherwise

@) iFikst @le) = {

Property 1 Forany & >, mwhere & is ASU(c),

and any o, there exists a 0 € JF(c) s.t.

Y ee)Ele) =Y ole)n(e). a M
ecX ecX

Moreover, for h € {0,1} (recall h =+ s), Q(&,0,h) >4 Q(m, @, h).
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Properties of majorization

Property 2 IF7is ASU(c), then ¢ € argmin ¥  d(e — &)m(e)
eeX

Remote state estimation-(Mahajan)
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Properties of majorization

Property 2 IF 7t is ASU(c), then ¢ € arg mln Z d(e —@)m(e) J\
eex

¢

Property 3 if & >, m then

mande—e >m|nZde—e7r+ >m|nZd

ecXx ceX ecXx ceX ecXx ccX
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Properties of majorization

Property 2 IF 7t is ASU(c), then ¢ € arg mln Z d(e —@)m(e) J\
eex

¢

Property 3 if & >, m then

mande—e >m|nZde—e7r+ >m|nZd

ecXx ceX ecXx ceX ecXx ccX

Property 4 iF& >4 7 then Q(&) >4 Q(m)
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An interchange argument to identify optimal strategies
Main theorem

Et)

The optimal estimation strategy is given as follows: Eo=0andfort > 1
ﬁt{m ifY, = ¢

iFY, £ ¢

In addition, there exist thresholds {k{};>0 such that the following transmission
strategy is optimal

ut_{u FIE > ke

0, otherwise

Remote state estimation-(Mahajan)
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An interchange argument to identify optimal strategies
Main theorem

The optimal estimation strategy is given as follows: Eo=0andfort > 1
e _ {o, ifY, = ¢

By, IfFY,#¢

In addition, there exist thresholds {k{};>0 such that the following transmission
strategy is optimal

ut_{u FIE > ke

0, otherwise
Proof by contradiction

Suppose t is the first time when @ ¢ F(0). Note that 7t is ASU(0).
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An interchange argument to identify optimal strategies
Main theorem

The optimal estimation strategy is given as follows: Eo=0andfort > 1
e _ {o, ifY, = ¢

By, IfFY,#¢

In addition, there exist thresholds {k{};>0 such that the following transmission
strategy is optimal

ut—{;’ FIE > ke

otherwise
Proof by contradiction

Suppose t is the first time when @ ¢ F(0). Note that 7t is ASU(0).

Since 711 >4 Tjt—1, by Property 1, there is a 6, € F(0) s.t. that doesn't affect
the communication cost at t and . . .
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An interchange argument to identify optimal strategies

Main theorem

Proof by contradiction

The optimal estimation strategy is given as follows: Eo=0andfort > 1

~ [0, ifY,=¢
Ey = .
Et) |FYt 7é ¢

In addition, there exist thresholds {k{};>0 such that the following transmission
strategy is optimal

ut_{u FIE > ke

0, otherwise

Suppose t is the first time when @ ¢ F(0). Note that 7t is ASU(0).

Since 711 >4 Tjt—1, by Property 1, there is a 6, € F(0) s.t. that doesn't affect
the communication cost at t and . . .

Pty Dt Tt
TC|t—1 Al

Gt, at\t
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An interchange argument to identify optimal strategies

Main theorem

Proof by contradiction

The optimal estimation strategy is given as follows: Eo=0andfort > 1

~ [0, ifY,=¢
Ey = .
Et) |FYt 7é ¢

In addition, there exist thresholds {k{};>0 such that the following transmission
strategy is optimal

ut_{u FIE > ke

0, otherwise

Suppose t is the first time when @ ¢ F(0). Note that 7t is ASU(0).

Since 711 >4 Tjt—1, by Property 1, there is a 6, € F(0) s.t. that doesn't affect
the communication cost at t and . . .

O, Dx Tt 41t
Tl t—1 Al Al

Ot, it Etrllt
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An interchange argument to identify optimal strategies

Main theorem

Proof by contradiction

The optimal estimation strategy is given as follows: Eo=0andfort > 1

~ [0, ifY,=¢
Ey = .
Et) |FYt 7é ¢

In addition, there exist thresholds {k{};>0 such that the following transmission
strategy is optimal

ut_{u FIE > ke

0, otherwise

Suppose t is the first time when @ ¢ F(0). Note that 7t is ASU(0).

Since 711 >4 Tjt—1, by Property 1, there is a 6, € F(0) s.t. that doesn't affect
the communication cost at t and . . .

O, Dx Tt T 1t —
Tl t—1 Al Al

9t> at\t ‘itﬂlt =
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For infinite-horizon setup time-homogeneous
threshold-based strategies are optimal.

How do we find the optimal threshold-based strategy?




NN Performance of threshold-based strategies

Consider a threshold-based strategy
) (g { iflel > k

0 otherwise

@m@

Remote state estimation-(Mahajan)




NN Performance of threshold-based strategies
Consider a threshold-based strategy

Let t(K)
) (g { iFlel > k

(starting at Ep = 0)
0 otherwise

@m@

Remote state estimation-(Mahajan)

denote the stopping time of first reception
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NN Performance of threshold-based strategies
Consider a threshold-based strategy

£ (e) — { 1 iflel > k

0 otherwise

Let t'%) denote the stopping time of first reception
(starting at Ey = 0).

Remote state estimation-(Mahajan)
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Performance of threshold-based strategies

Proposition {E¢}g2, Is a regenerative process. By renewal relationships, we have:
Ly (0)
D(k) —D (f(k) *) = B
B B y 9 Mék) (O)
K(k)(o)
N(k) — N (f(k) *) — B
8] B » 9 Mg() (O)
()1
Define L{(e)=E [ Y Ba(E[Eo = e].
t=0
(k)1
ML (e) = E [ Y e —e].
0570
K (e) = E [ Y BtUE. = e].
t=0

Remote state estimation-(Mahajan)
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Performance of threshold-based strategies

Proposition {E¢}g2, Is a regenerative process. By renewal relationships, we have:
L(k)(o)
D(k) —D (f(k) 9*) _ _B
T MP)
K(k)(o)
N(k) — N (f(k) *) — B
8] B » 9 Mék) (O)
()1
Define L) =E[ ¥ BtdEEo =e.
Computing Lg‘), Mg‘), K}sk) is sufficient to compute
the performance of () (i.e., to compute Dg‘) and Ng‘)).
K (e) =E { > BUE. = eJ.
t=0

Remote state estimation-(Mahajan)
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Computing L

Remote state estimation-(Mahajan)

M

, and K

e)+PB > Pnacl k)(n%

nez

- The discrete case

ifle] <k

eldle)+B X pnacly’(m)], iflel >k

nez

1+ Z pn—aeMEgk)(n%
nez

e[T+B Y Pnae

nez

B Y PnacKi' (),

nez

1+eB ¥ PnaecMy’(n),
nez

ifle] < k

MY ()], iFlel >k

ifle] <k

ifle] >k




Computing L
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M

, and K - The discrete case

e)+PB X Pn-acl k)(n% iflel <k
nez

e)+B ¥ Pnoaclz ()], iflel>k

nez

148 Y pnaeMiz’(m),  iflel<k
nez

~T1 0 2 o Aa(K) T iFlal ~ |

N




Computing L M , and K : The discrete case

e)+PB X Pn-acl k)(n% iflel <k
nez

LY =[1-phM oP-"hW o d

where h® oPis substochastic. [ )+ B D Pn—ce k)(n)], ifle] >k
nez

148 ¥ prnaeMy’(n),  iflel <k
nez

[ +B X Pnae (k)(n)}) ifle] > k
nez

B Y PnacKi' (), ife] <k
nez

1+eB Y PnaecMi’(m), iflel >k

nez .
Iy,
25%
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Computing L M , and K : The discrete case

e)+PB X Pn-acl k)(n% iflel <k
nez

Ly =1—-ph® oP"hiM od

where h!®) ® P is substochastic. eld(e)+B X Pn—ae k)(n)]> iFlel >k
nez

148 ¥ PnoacMi(m),  iFlel<k
nez

[ +B X Pnae (k)(n)}) ifle] > k
nez

B Y PnacKi' (), ife] <k
nez

1+eB Y PnaeMi’(m), iflel >k

nez .
Iy,
25ff-
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Computing L

Ly =1—-ph® oP"hiM od
where h{¥) © P is substochastic.

Kék) = [I — ph¥) @ P]~Th(K)

Remote state estimation-(Mahajan)

M

, and K

&)+ B Y Prnoacly’(n),

nez

- The discrete case

ifle] <k

e)+B ¥ Pnoaclz ()], iflel>k

nez

1+ Z pn—aeMEgk)(n%
nez

[+szn ae

nez

B Y PnacKi' (),

nez

1+eB ¥ PnaecMy’(n),
nez

ifle] < k

MY ()], iFlel >k

iflel <k

ifle] >k
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Computing L M

, and K - The discrete case

()

+rs Y Pn-aell’(n),
g =I—phteoPI=Th® od

ifle] <k
nez
where h'¥) © P is substochastic

) and N ) can be computed
usmg these expressions.

CT

I 1
TP Z_ Pn—ae’vtg Uty TIor Zore
nez

B Y PnacKi' (),

nez

iflel <k

1+ ¢p Z pn—aeM(k)(n)>
Remote state estimation-(Mahajan)
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Computing L M , and K : The continuous case

B> The expressions are similar to the discrete case.
P> h(®) © P is a contraction operator

&> The equations for Lg‘), etc. are Fredholm integral equations of the second kind.
Numerical solution can be obtained by using Picard’s iteration and Nystrom
interpolation.

We will later provide a simulation based approach to
compute C’é(?\) and D’E(oc) that does not need an exact
computation oFL[(Sk), etc.

Remote state estimation-(Mahajan)




Optimal trade-offs for costly and constrained

communication for discrete sources




N JER Solution to costly optimization problem

Proposition B> C3Y(A) =Dy + AN is submodularin (k, A).
> H ' K5 (A) . (k) . . .
ence B( ) =arg gg CB (A) is increasing in A

lll/,é

)

2
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N JER Solution to costly optimization problem

Proposition > C3Y(A) =Dy + AN is submodularin (k,A).
> H ,k* A) — . (k) .. . .
ence B( ) =arg gg CB (A) is increasing in A

(K) (4 (K)y _ ~(k1)
Cog (Mg ) =Cp m,

L . S27g
Remote state estimation-(Mahajan) %
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N JER Solution to costly optimization problem

(K) (k) — c(k+1)
C[3 (7\B )—C[5

Remote state estimation-(Mahajan)
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N JER Solution to costly optimization problem

(K) (k) — c(k+1)
C[3 (7\B )—C[5

Remote state estimation-(Mahajan)

lll/,é

z
N

=
KN




N JER Solution to costly optimization problem

(K) (k) — c(k+1)
C[3 (7\B )—C[5
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N JER Solution to costly optimization problem

SCoocooooooooooooocoooooss

(K) (k) — c(k+1)
C[3 (7\B )—C[5
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N JER Solution to costly optimization problem

(K) (k) — c(k+1)
C[3 (7\B )—C[5

Remote state estimation-(Mahajan)

lll/,é

z
N

=
KN




N JER Solution to costly optimization problem
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JJER Solution to costly optimization problem

Dékﬂ) E
D |
0 (k+1>\(k1+1) =
}\B /\(3 B
Theorem Strategy f(**1) is optimal for A € (Af, AZ" ]

Ch(A) = minkez,, Cg‘) is piecewise linear, continuous, concave, and increasing
function of A.

q q q ;25\5
Remote state estimation-(Mahajan) 2




N{J Wl Solution to constrained communication problem

Sufficient condition for optimality

A strategy (f°, g°) is optimal for the constrained problem if
(C1) Ng(f°,g°) =«

(C2) There exists A° > 0 such that (f°, g°) is optimal for the Lagrange relaxation with parameter A°.

Remote state estimation-(Mahajan)




N{J Wl Solution to constrained communication problem

Sufficient condition for optimality

A strategy (f°, g°) is optimal for the constrained problem if
(C1) Ng(f°,g°) =«

(C2) There exists A° > 0 such that (f°, g°) is optimal for the Lagrange relaxation with parameter A°.

Let k’é be such that

K K 41
Néﬁ)>oc>Né‘5+)
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N{J Wl Solution to constrained communication problem
Sufficient condition for optimality

A strategy (f°, g°) is optimal for the constrained problem if
(C1) Ng(f°,g°) =«

(C2) There exists A° > 0 such that (f°, g°) is optimal for the Lagrange relaxation with parameter A°.

Let k’é be such that

K K 41
Néﬁ)>oc>Né‘5+)

]
]
]
:
]
k) optimail

|
|
|
|
Y

A LK)

n
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N{J Wl Solution to constrained communication problem
Sufficient condition for optimality

A strategy (f°, g°) is optimal for the constrained problem if
(C1) Ng(f°,g°) =«

(C2) There exists A° > 0 such that (f°, g°) is optimal for the Lagrange relaxation with parameter A°.

/f“‘*” optimal Let kf, be such that

K K 41
Néﬁ)>oc>Né‘5+)

]
]
]
:
]
k) optimail

|
|
|
|
Y

A LK)

n
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N{J Wl Solution to constrained communication problem
Sufficient condition for optimality

A strategy (f°, g°) is optimal for the constrained problem if
(C1) Ng(f°,g°) =«

(C2) There exists A° > 0 such that (f°, g°) is optimal for the Lagrange relaxation with parameter A°.

L

O*NL + (1 -0 )N(k+” =«

such that
k’fer]
Randomized strategy (0%, f'%), f**+1) is optimal where
B &

Remote state estimation-(Mahajan)




N{J Wl Solution to constrained communication problem

Sufficient_condition for optimality

A strate
(C
(Ca

1

rameter A°.
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N{J Wl Solution to constrained communication problem

Sufficient_condition for optimality

A strate
(C
(Ca

Xc 1
X

D’E is PWL, dec, and convex

rameter A°.
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Felul 8 Symmetric birth-death Markov chain

P, iFm| =1,
pn=1 1—2p, ifn=0; where p € (0 %),
0, otherwise,

1—2p 1—2p 1—2p 1—2p 1—2p
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EWDIE Symmetric birth-death Markov chain (p = 0.3, 3 = 0.9)

A
2315
N

0.1 0.2 0.3
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EWDIE Symmetric birth-death Markov chain (p = 0.3, 3 = 0.9)

A
2315
N

0.1 0.2 0.3
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EWDIE Symmetric birth-death Markov chain (p = 0.3, 3 = 0.9)

A
2315
N

0.1 0.2 0.3
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Optimal trade-offs for costly and constrained

communication for continuous sources




N JER Solution to costly optimization problem

As in the case of discrete sources:

Proposition
> Cfgk)(%) = Dék) + AN g‘) is submodularin (k, A).
o L . (k) . . .
> Hence, kﬁU\) = arg |]'<n2u(')1 Cp (A) is increasing in A

a\'é”’é

Remote state estimation-(Mahajan)

2548
KN



N JER Solution to costly optimization problem

Proposition As in the case of discrete sources
> CS”(?\) = D}Sk) + AN g‘) is submodularin (k,A)
> Hence, k’E(?\) = arg |]'<n>u(')1 C,"’(A) is increasing in A
IF the pair (A, k) satisfes
—0)

Theorem
d D(k)
y B~ (ie, 0kD + AN
0kNg
g*) is optimal for the costly communication with cost A

then the strategy (
The optimal performance C7 (A) is continuous, concave and increasing function of A

Remote state estimation-(Mahajan)
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N JER Solution to costly optimization problem

Proposition As in the case of discrete sources
> CS”(?\) = D}Sk) + AN g‘) is submodularin (k,A)
> Hence, k’E(?\) = arg |]'<n>u(')1 C,"’(A) is increasing in A
IF the pair (A, k) satisfes
—0)

Theorem
DY
y B~ (ie, 0kD + AN
0kNg
g*) is optimal for the costly communication with cost A

then the strategy (
The optimal performance C% (A) is continuous, concave and increasing function of A

Scaling with variance for Gaussian noise
1

Remote state estimation-(Mahajan)
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N( Wl Solution to constrained optimization problem

Theorem Forany B € (0,1] and « € (0, 1), let kj (o) be such that

(K5 ()
N[3 = X.

Such a | (o) always exists and we have the following:
D> The strategy (f(¥&(*)) g*) is optimal for the constrained optimization problem
with constraint

P> The distortion transmission function D§ («) is continuous, convex, and decreasing
in o and is given by

(k% (e0))
Dj(o) =D

Remote state estimation-(Mahajan)




N( Wl Solution to constrained optimization problem

Theorem Forany B € (0,1] and « € (0, 1), let kj (o) be such that

(K5 ()
N[3 = X.

Such a | (o) always exists and we have the following:

B> The strategy (f(*8(*)) g*) is optimal for the constrained optimization problem
with constraint o

> The distortion transmission function D§ («) is continuous, convex, and decreasing
in o and is given by

(k% (e0))
Dj(o) =D

Scaling with variance for Gaussian noise

K o () = K% 4 (o) and D (&) = 02D}, ().

Remote state estimation-(Mahajan)




Computation of optimal thresholds

Costly communication  Given A, find k such that 3, (D} +AN§) = 0.

Constrained Given «, And k such that Ng‘) — .
communication
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Computation of optimal thresholds

Costly communication  Given A, find k such that 3, (D} +AN§) = 0.

Constrained Given «, And k such that Ng‘) — .
communication

Main idea B> Pick a threshold k and use strategy f'*) until Arst successful reception.
P> The sample path values of L, M, and K may be viewed as a “noisy” observation
of true Lg‘), Mék), and Kg‘).
B> Use stochastic approximation to find optimal thresholds.

e

342
U
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Computation of optimal thresholds

Costly communication

Constrained
communication

Main idea

Remote state estimation-(Mahajan)

. . Kiefer-Wolfowitz Algorithm
Given A, Aind k such that ak(D% ) —|—7\N§3 N =o.

Given «, find k such that Ng‘) = . Robbins-Monro Algorithm

B> Pick a threshold k and use strategy (%) until first successful reception.
P> The sample path values of L, M, and K may be viewed as a “noisy” observation

(k) (k) (k)
of true L[3 , I\/lB , and K(3 .

> Use stochastic approximation to And optimal thresholds.

e

2345
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Computation of optimal thresholds

T

Costly communi:ﬁ(

Constrai

communical

Main !

Remote state estim

threshold

10 £

A =500

2.000 4,000 6,000 8000 10,000

iterations

Costly communication (f = 0.9, ¢ = 0.3)

S

IFowitz Algorithm

Monro Algorithm

|

reception.
oisy” observation

_

ny,
S
I\\\\\§

R
S W
7

7\




Computation of optimal thresholds

— ———

IFowitz Algorithm

Costly communig

Constrai

nro Algorithm
communicaj

Main il

eption.
y” observation

threshold

100 150
iterations

Constrained communication (f = 0.9, e = 0.3)

Remote state estim



Distortion transmission fn for Gauss-Markov process (o
0.9)

4_-

0.1 0,2 0.3
Remote state estimation-(Mahajan)

N

2355
KN




Distortion transmission fn for Gauss-Markov process (o
0.9)

4_-

0.1 0,2 0.3
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Distortion transmission fn for Gauss-Markov process (o
0.9)

4_-

0.1 0,2 0.3
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Summary
r Y

Y o Xt, IFUt = ] and St = ON
‘“le iU, =00rS, = OFF

P(S, = OFF) =
Ut = e (Xowty Yort—1) R = g¢(Yo:t)

irel
Markov | X; Wireless . A

Transmitter Erasure v Receiver —=>X,
Process
Channel

ACK/NACK Distortion
d(Xe — Xy)
. Discounted setup, [3 € (0,1)

Ds(f,9) = (1 - [i L Nplhg)=(1-pESY [Y ptuy
t=0 t=0

. Average cost setup, p =1

. 1 T—1 N ) 1 T-1
D](f) g) = lim SUPT]E(()f’gJ |:Z d(Xt 7Xt):|) N](f,g) = llmsup?r]E(()f’g) [Zut]
T—o0 t=0 T—oo t=0

‘ Remote state estimation-(Mahajan)
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Summary

rmptimization problems

Constrained communication

Costly communication (Lagrange relaxation)

ForA € R, C’é(?\) = Cp(f*, g% A) :

Forae (0,1), Df(x) = (LnF) {Dg(f,g) : Ng(f,g) < «}
»9

— inf {Dg(f, ANG (f,
('{‘g){ s(f,g) +ANg(f,g)}

o2
D}g is cts, dec, and convex

R
LL&emote state estimation-(Mahajan)
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Summary
r

iDistortion transmission function for auto-regressive sources

Source model Xep1 = aXe+Wy,  where W, has symmetric and unimodal distribution. X; € Z/R.

Optimal transmission strategy Optimal estimation strategy

1, iFlXe—aXeql >k o aXeq, IfY,=¢
Ut = . Xt = 5
0, otherwise Yi, iFYy # €&

Performance of threshold based strategies

> Kg‘): Expected discounted number of transmissions until Arst successful reception.
> L}ak): Expected discounted distortion until Arst successful reception.

> Mg‘): Expected discounted time until first successful reception.

(k) K ()

(k) _ =B (k) _ B
Then, Dy 7M7(6k]andNB 7Mék)'

A

‘ Remote state estimation-(Mahajan)
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Summary

rr...

=

YO:t—]

Xi—1

\

‘ Remote state estimation-(Mahajan)

> The coordinated system is equivalent to the original system.
fe(%,Yo:r—1) = hl (Yo:t—1)(x).

B> The coordinated system is centralized.

B Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information approach,” IEEE TAC 2013

iThe common information approach (Nayyar, Mahajan, Teneketzis 2013) !
Original system

Coordinated system

—

he

Yo:t—1

(¢t)>A<t—1)

Ficticious coordinator

Xi1

Belief state P(X; | Yo.t—1).

-
S S
N
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Summary

TEimplifying modelin:g assumptions

Markov process Xit1 = aXy + Wy
> Discrete state process: Xi, a, W; € Z
P> Continuous state process: Xy, a, W, € R

Noise Distribution Unimodal and symmetric

Distortion function Even and increasing

Proof outline Show that threshold-based strategies are optimal
Find performance of arbitrary threshold based strategies

Solution to the costly communication problem

S{4=s 28 Solution to the constrained communication problem

_.
oS
N

U

N Remote state estimation-(Mahajan)
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Summary

..r e —ze

fComputation of optimal thresholds

Costly communication

Kiefer-Wolfowitz Algorithm
Given A, And k such that ak(Dék) + AN g‘)) =0

Constrained
communication

Given «, fAind k such that Ng‘) = Q.

Robbins-Monro Algorithm

Main idea D> Pick a threshold k and use strategy f(*) until Arst successful reception.

P> The sample path values of L, M, and K may be viewed as a “noisy” observation
of true Lék), Mg‘), and Kg‘).

P> Use stochastic approximation to Aind optimal thresholds.

\!
Remote state estimation-(Mahajan)
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Concluding Remarks

Generalization to vector sources
B> Difficulty: IF X is ASU, is AX; + W, also ASU?

> Even if threshold policies are not optimal, the tools developed may be useful to identify
best threshold-based strategy.

Nee
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Concluding Remarks

Generalization to vector sources
B> Difficulty: IF X is ASU, is AX + W, also ASU?

P> Even if threshold policies are not optimal, the tools developed may be useful to identify
best threshold-based strategy.

Results are derived under idealized assumptions

Future directions
> Power or rate control . . .
B> Markovian or burst erasures . . .
P> Scheduling multiple sources . . .
P> Model network delays . . .

Remote state estimation-(Mahajan)




References

Jhelum Chakravorty and Aditya Mahajan, “Fundamental limits of remote estimation of autoregressive
Markov processes under communication constraints,” |IEEE TAC, Sep 2017 (to appear).

Jhelum Chakravorty and Aditya Mahajan, “Remote-state estimation with packet drop,” IFAC Conference
on Networked Control Systems (NecSys), Aug 2016. (Best Student Paper Award)

Jhelum Chakravorty, Jayakumar Subramanian, and Aditya Mahajan, “Stochastic approximation based
methods for computing the optimal thresholds in remote-state estimation with packet drops,” ACC
2017 (submitted)

. . . ;37$
Remote state estimation-(Mahajan) N




Xoy
Y.:{@:

Wireless

Markov
Process

Erasure
Channel

iFU, =1and S, = ON
iFU, =0 0r S, = OFF

Ri = gi(You)

Distortion
aXe =Xy
1. Discounted setup, p € (0,1)
D(fg)=(1=BIESY [ 3 pax—R)|  Nalhg)=(1-B)ES? [ ptuy
= =
2. Average cost setup, B =1

s A ! -
Di(f,0) =tmsup 1B [ Yt~ R Ni(f,0) =imsup 2B [ 3 ]
Tooo T = Toco T =

\ Remote state estimation-(Mahajan)

Source model

uli{l, iFXe — aRe| 2 k

" 10, otherwise

Xeor = aXe+ W,

Optimal transmission strategy

Distortion transmission function for auto-regressive sources

where W, has symmetric and unimodal distribution. X; € Z/R.

Optimal estimation strategy

A Ry, FY =€
Ri= :
Yy, ifY, £ ¢

Performance of threshold based strategies
number of tr

until first succe:

B K{: Expected

B M{: Expected discounted

B L: Expected discounted distortion until first successful reception.

time until first successful reception.

)

3
Then, D) = Lﬂm
MB

()
and N =

S
MB

Remote state estimation~(Mahajan)

ful reception.

Simplifying modeling assumptions

Markov process X1 = aXe + Wy
D> Discrete state process: X, a, Wy € Z
B Continuous state process: Xy, a, W € R

Noise Distribution Unimodal and symmetric

Distortion function Even and increasing

Proof outline

A
1~

Show that threshold-based strategies are optimal

Find performance of arbitrary threshold based strategies

Solution to the costly communication problem

EIZE Solution to the constrained communication problem

Remote state estimation-(Mahajan)

Threshold based
strategies

Property 1

cex

3 .
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@eFlc) Fikst. ole)= {

> ole)

ion

W Properties of majorizat

Let F(c) denote the class of all threshold based strategies around c, i.e..

1 ifle—ac/ =k
0 otherwise

Forany & >q 7 where & is ASU(c),

£
and any ¢, there exists a 0 € F(c) s.t.
Ele) =Y ole)nle). Za
& ] ™~
3

s

A

Moreover, for h € {0, 1} (recall h = u - s), Q(£,8,h) >, Q(m, @, h)

NGJEY Solution to costly optimization problem

2)
Dy

)
Dy

D

(0 AT TR T T)
A AGTIAR

Define A :={A € Ruo : ki (A) =k}

>0 : kg G
=g

% PE——
GO =)
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W Solution to constrained communication problem

Sufﬁc'\elmﬂmmjon for
A strat

rameter A°.

o
’[‘5 is PWL, dec, and convex
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The common information approach (Nayyar, Mahajan, Teneketzis 2013)

Ficticious coordinator
X X1

B The coordinated system is equivalent to the original system.
b you—1) = 1 (You-1)(x)
B The coordinated system is centralized.

Belief state P(Xq | Yo.e—1).

B Nayyar, Mehajan and Teneketzis, D with

h Remote state estimation-(Mahajan)

AN T TR

’ﬁﬁ Performance of threshold-based strategies

Lett*) denote the stopping time of first reception
(starting at Eo =0).

Consider a threshold-based strategy

£ e) = {(1) iFlel >k

otherwise
N IOROROR NN
N
3 >

*

LF(e) = E [Tz
b

1

Define Bd(E)

Eo=]

\ Remote state estimation-(Mahajan)
’Computation of optimal thresholds

Costly communication

Given A, find k such that 3y (D) +AN()

Constrained
communication

Given a, find k such that N = . Robbins-Monro Algorithm

\
=)
Kiefer-Wolfowitz Algorithm

B> Pick a threshold k and use strategy (¥ until first successful reception.

P> The sample path values of L, M, and K may be viewed as a “noisy” observation
oftrue L, M), and ki)

B> Use stochastic approximation to find optimal thresholds.

Main idea

Remote state estimation-(Mahajan)




