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There is a need to revisit rate-distortion

theory to take network access into account.




Remote state estimation-(Mahajan)

Many applications require:
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Communication system

Source model {Xith=0, Xt € X, is a first-order Markov process.
For some results, we restrict to autoregressive model: X, 1 = aX{+W4, X; € Z/R.

Channel model Gilbert-Elliot channel (at the packet level). Transition matrix Q.

When S; = 1 (Channel is ON) When S; = 0 (Channel is OFF)
channel output = channel input channel output = noise

Formal definition Input alphabet X =X U{¢}  Output alphabet Y =X U{&, &;}.

Channel input/output relationship

P(Yt | XO:t)SO:t) - ]P)(Yt | Xtast)-

¢;, iFXy=¢andS¢=1 (No received energy)
. . Déo . X =4 €, IFS;=0 (Received energy)
Gl € X¢, iFX¢ € Xand Sy =1 (Packet can be decoded)
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Communication system (cont.)

Markov _ Erasure _
Transmitter — T Receiver
Process Uy Channel

ACK/NACK and channel state

Feedback The receiver sends two bits of feedback: ACK/NACK and channel state.
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Communication system (cont.)

Markov Erasure

Transmitter — T Receiver
Process Uy Channel

ACK/NACK and channel state

Feedback The receiver sends two bits of feedback: ACK/NACK and channel state.

Transmitter Decides whether to transmit or not. Denoted by U, € {0, 1}.
|FU.t :O, >_<t ZG |FUt :1;>_<t:Xt-
ut = ft(X1 ity Y1 t—1y S1:t—1 )

Receiver Chooses an estimate X; € X
>/Zt — gt(Y1:t)S1:t)
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Performance metrics Distortion D and Number of transmissions N

1. Discounted setup, p € (0,1)
Dg(f,0) = (1-BYEL"® |3 BtaXo,Ri]s  Ng(f,9)=(—-BES [ peu]
t=0

t=0

2. Average cost setup, [3 =1
T—1

T-1
D; (f,g)_llmsup IE f9) [ZdXt,Xt] N (f, g)_llmsup ]E f9) [Zut}
t=0

T—ooo t— T—oo
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Optimization problems

Constrained communication

Our result: Provide computable expressions for these

trade-offs and identify optimal strategies that achieve them.
Costly

= FOT A € Ko, LE(/\) =LCpl1" g A) = (lfng) ety g) + BTy

x A
D’f3 is cts, dec, and convex C}g is cts, inc, and concave
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Comparison to Information Theory
P> Costly communication is analogous to communication under power constraint.
P> Constrained communication is analogous to distortion-rate function.
So, we call it distortion-transmission function.

B> Due to zero-delay reconstruction, information theoretic approaches do not apply.
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B Costly communication is analogous to communication under power constraint.
P> Constrained communication is analogous to distortion-rate function.
So, we call it distortion-transmission function.

P> Due to zero-delay reconstruction, information theoretic approaches do not apply.

Previous work on remote-state estimation
P> [Marshak 1954] Static (one-shot) problem with arbitrary source distribution
B> [Kushner 1964] Off-line choice of measurement times
> [Astrom Bernhardsson 2002] Lebesque sampling (or event-based sampling)
P> many others . . .

Other related work
> Event-based estimation . . . P> Sensor sleep scheduling . . .
B> Censoring sensors . . . P> Age of Information . ..
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A networked control motivation
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Erasure

‘ Plant Sensor / Channel Controller
with ACK

Model Xep1 = AX¢+BU +W,, X, €{Xy, €, Ug=gYs). Min. quadratic cost

Separation of estimation and control
B> Consider the innovation process:  Z = X; — X, where X; = > !Z1 At=s—1BU,
B> There is no loss of optimality in deciding to transmit based on Z;.
P> Certainty equivalent controller is optimal: Uy = Kt(zt + X¢)

D> Yiksel, “Jointly Optimal LQG Quantization and Control Policies for Multi-Dimensional Systems,” TAC 2014
> Rabi, Ramesh, and Johansson, “Separated design of encoder and controller for networked linear quadratic optimal control,” SICON 2016
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Erasure

‘ Plant Sensor / Channel Controller
with ACK

Model Xep1 = AX¢+BU +W,, X, €{Xy, €, Ug=gYs). Min. quadratic cost

Separation of estimation and control
B> Consider the innovation process:  Z = X; — X, where X; = > !Z1 At=s—1BU,
B> There is no loss of optimality in deciding to transmit based on Z;.
P> Certainty equivalent controller is optimal: Uy = Kt(zt + X¢)

P> Innovations do not depend on control Z;,; = AZ; + W;

D> Yiksel, “Jointly Optimal LQG Quantization and Control Policies for Multi-Dimensional Systems,” TAC 2014
> Rabi, Ramesh, and Johansson, “Separated design of encoder and controller for networked linear quadratic optimal control,” SICON 2016
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Why bother?

How much do we gain compared to simple strategies?




Xit1 = X¢ + Wy, Wi ~N(0,1). Perfect channel
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Xit1 = X¢ + Wy, Wi ~N(0,1). Perfect channel

Periodic

Transmission eTaTTTbY]TQO

Strategy

Randomized
Transmission
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Distortion-transmission trade-off: Perfect channel

Randomized transmission strategy
Periodic transmission strategy
Optimal strategy
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Distortion-transmission trade-off: Perfect channel

lllustrative values

Periodic strategy D(0.5) =0.5

Optimal strategy D(0.5 ) = 0.075 (85% less dist.)
D(0.21) = 0.5 (58% less rate)
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What'’s the conceptual difficulty?




Static (one-shot) problem

X
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Static (one-shot) problem

* :X:
8§ C X is the silence set
X is the estimate when no packet is received

Total expected cost

c(%,8) =AP(X¢8) +¢e) P(X=x)d(x—
XES
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Static (one-shot) problem

Cost when x € § Cost when x ¢ 8
e —— X d(x —%) At ed(x—%)
8§ C X is the silence set
X is the estimate when no packet is received

Total expected cost

c(®,8) =AP(X¢8)+¢e) P(X=x)dx—%)+) P(X
XES

Choose (X, 8) to minimize c(X, 8).
Set-valued (or combinatorial) optimization problem.

—
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Dynamic problem

* :X:
8] C X is the silence set
X1 is the estimate when no packet is received
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Dynamic problem
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If a packet is received
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Dynamic problem
If a packet is received

e N —— )

81(x1) C X is the silence set

%) is the estimate when no packet is received
EEE——
8] C X is the silence set

X1 is the estimate when no packet is received . .
! P If a packet is not received

) € X is the silence set

) is the estimate when no packet is received
— —————————————_\|

Sequential optimization problem where the optimization problem
at each step is a set-valued optimization problem that depends
on a history of previously chosen sets!.

| X|
Exhaustive search complexity: (DC\ZDC')(Z R
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Optimal strategies and their performance

Source model Xi11 = aX¢+Wy,  where W, has symmetric and unimodal distribution. X; € Z/R.

Distortion d(x,X) = d(x —X) where d(-) is symmetric and quasi-convex.
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Source model Xi11 = aX¢+Wy,  where W, has symmetric and unimodal distribution. X; € Z/R.

Distortion d(x,X) = d(x —X) where d(-) is symmetric and quasi-convex.

Optimal transmission strategy Optimal estimation strategy
U, — 1, iFX¢— ax\t—ﬂ > k(S¢—1) R = afzt—h iFY, € {€, &}
¢ 0, otherwise ‘ Yi, iFY e X

Salient features
P> Optimal strategies are simple and intuitive

B> The transmitter does not try to send information through timing events
(or length of silence intervals).

D> The estimation strategy does not depend on the value of the threshold
> When the estimator does not receive a packet, it behaves as if the packet
was dropped by the channel, even when the channel is perfect!
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Optimal strategies and their performance
Source model Xi11 = aX¢+Wy,  where W, has symmetric and unimodal distribution. X; € Z/R.

Distortion d(x,X) = d(x —X) where d(-) is symmetric and quasi-convex.

Optimal transmission strategy Optimal estimation strategy
1, iFX¢— ax\t—ﬂ > k(S¢—1) O afzt—h iFY, € {€, &}
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0, otherwise Yi, iFY e X

Performance of threshold based strategies
> KU Expected discounted number of transmissions until first successful reception.

B> L) Expected discounted distortion until Arst successful reception.
> Mg‘): Expected discounted time until first successful reception.
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Optimal strategies and their performance
Source model Xi11 = aX¢+Wy,  where W, has symmetric and unimodal distribution. X; € Z/R.

Distortion d(x,X) = d(x —X) where d(-) is symmetric and quasi-convex.

Optimal transmission strategy Optimal estimation strategy
1, iFX¢— ax\t—ﬂ > k(S¢—1) O afzt—h iFY, € {€, &}
ut — Xt —

0, otherwise Yi, iFY e X

Performance of threshold based strategies
B> K. Expected discounted number of transmissions until Arst successful reception.

&
> Lék): Expected discounted distortion until Arst successful reception.
> Mg‘): Expected discounted time until first successful reception.

(k)
Then, D = —& . (Renewal Relationships)
MB M

Remote st




Optimal trade-offs for discrete sources

Assume i.i.d. packet drops (i.e., transition matrix [8 = 8] )-

e 1—c¢
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Assume i.i.d. packet drops (i.e., transition matrix [8 : - 8] )-
e 1—e¢

D> For i.i.d. packet drops k*(0) = k*(1).
&> For every k € Z-(, compute Dék) and N}Sk)_ Define }\ék) —

Costly communication
= (Lng) {Dg(f,g) + ANg(f,g)}

Constrained communication
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Optimal trade-offs for discrete sources

Assume i.i.d. packet drops (i.e., transition matrix [8 : - 8] )-
e 1—e¢

P> Fori.i.d. packet drops k*(0) = k*(1).
> For every k € Z-(, compute Dék) and N}Sk)_ Define }\ék) —

Costly communication
= (Lng) {Dg(f,g) + ANg(f,g)}

Constrained communication
(L”gF) {Dg(f,g) : Ng(f,g) < «}

(k+1
NIS

A
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Optimal trade-offs for continuous sources

Again assume i.i.d. packet drops.
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Optimal trade-offs for continuous sources

Again assume i.i.d. packet drops.

Costly communication
(i‘ngF) {DB (f, g) + }\NB (f, 9)}

A 100

or, equivalently, A = —
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Optimal trade-offs for continuous sources

Again assume i.i.d. packet drops.

Costly communication
(i‘ngF) {DB (f, g) + }\NB (f, 9)}

D3 (o) =

Constrained communication
(Lng) {Dﬁ(f> 9) : Nﬁ(ﬂ 9) = (X}

A 100

or, equivalently, A = —
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Proof outline




How to prove the optimality of a coding scheme?

Information theory > Achievability: |dentify a good strategy and evaluate its performance.
approach B Converse: Determine a lower bound on distortion.
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How to prove the optimality of a coding scheme?

Information theory B> Achievability: Identify a good strategy and evaluate its performance.
approach P> Converse: Determine a lower bound on distortion.
B> Hope: The two curves match

Converse bounds are hard! Especially for sequential models.

Stochastic control D> Dynamic program: |dentify sufficient statistics dynamic program
approach P> Structural results: Determine qualitative properties of optimal solutions

Structural results are hard! Especially for multi-agent systems.

P> Related results (real-time comm.): [Witsenhausen 1979, Walrand-Varaiya 1983, Teneketzis
2006, Mahajan-Teneketzis 2009, Kaspi-Merhav 2012, Asnani-Weissman 2013, Yiksel 2013 . . .]
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So how do we start?

Decentralized stochastic control




Dealing with non-classical information structure

P> Structure of optimal strategies
Instead of f(history of obs) use f(info state).

> Compute optimal strategy using DP
V(info state) = [Baction V] (info state)

in
action
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Dealing with non-classical information structure

B> Structure of optimal strategies
j Instead of f(history of obs) use f(info state).

> Compute optimal strategy using DP

Non-Classical info. struct. V(info state) = [Baction V] (info state)

in
action

Xty Yort—1,S0:t—1

YO:t) SO:t
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Dealing with non-classical information structure

D> Structure of optimal strategies
Instead of f(history of obs) use f(info state).

> Compute optimal strategy using DP
V(info state) = [Baction V] (info state)

in
action

Xty Yort—1,S0:t—1

YO:t) SO:t
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Dealing with non-classical information structure

D> Structure of optimal strategies
Instead of f(history of obs) use f(info state).

e 7 > Compute optimal strategy using DP
Non-Classical info. struct. V(info state) = [Bactionv} (info state)

in
action

Xty Yort—1,S0:t—1

YO:t) SO:t
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The common information approach

Original system

-
Xty Y0rt—1yS0:t—1

Yo:t—1y S0:t—1

> Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information approach,” IEEE TAC 2013. iy,
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The common information approach

Original system Coordinated system

—
Xty Y0rt—1yS0:t—1

Yoit—1y S0:t—1

Ficticious coordinator

Yo:t—1y S0:t—1

> Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information approach,” IEEE TAC 2013.

Remote state estimation-(Mahajan)




The common information approach

Original system Coordinated system

—
Xty Y0rt—1yS0:t—1

Yoit—1y S0:t—1

Ficticious coordinator
Yo:t—1 ) So:t—1 X1

P> The coordinated system is equivalent to the original system.

fe(X,Yo:e—1,S0:t—1) = hl (Yo:t—1, S0:t—1)(x).
P> The coordinated system is centralized.  Belief state P(X¢ | Yo.t—1, So:t—1)-

P> Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information approach,” IEEE TAC 2013.
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Information states or sufficient statistics

Notation Forany 7t € A(X) and @:X — {0, 1}
B Bi(p)={xeX:p(x)=1}, 1€{0,1}

D> & =, means &(x) = To{e(x)}m(x)

~ 1)

7(Bo(¢)
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Information states or sufficient statistics

Notation Forany 7t € A(X) and @:X — {0, 1}
> Bi(p)={xeX:p(x)=1}, i€{0,1}

B & =ml, means &(x) = Lo{¢(x)}m(x)

~ 1)

7(Bo ()

Pre-transmission belief 7! (x) = P(X¢ = x|So0:t—1 = S0:¢—1, Yo:t—1 = Yo:t—1).

Post-transmission belief  n2(x) = P(X¢ = x|So:t = S0:t, Yo:t = Yo:t)-
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Information states or sufficient statistics

Notation Forany 7t € A(X) and @:X — {0, 1}
P> Bi(p)={xeX:p(x)=1}, 1€{0,1}

B> & =ml, means &(x) = Lo{¢(x)}m(x)

~ 1)

7(Bo ()

Pre-transmission belief 7'[;1 (x) = P(X¢ =x[So:t—-1 = S0:t—1, Yort_1 = Yo:t—1 ).
Post-transmission belief  n2(x) = P(X¢ = x|So:t = S0:t, Yo:t = Yo:t)-

Belief update ., =P
+

6yt, |Fyt e X
7'[% = FZ(T[]L) (Pt>yt) = 7T*1|(pt) iFyt = &

T(Jl, |Fyt = @0
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Dynamic program

Vi (s,m') =0

and fort € {T,...,0}

Vi) = min  {A'(Bi(9)) + 7' Bol@)W2(n', @)+ > m' (W] (7', 9,x)}
@:X—{0,1} x€B1 (@)

Vi(s,m?) )r(rngn d(x,%) + V[, (s, m*P)
x€eX

where W’?(Tt1 ) (P) = QSOV‘[Z(O)T[1) + QS1\/t2“)7T1 |(p)

W (1%, @,%) = QsoVE(0, ') + Q51 VE (1, 8x)
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Dynamic program

Vi (s,m') =0

and fort € {T,...,0}
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@:X—{0,1} x€B1 (@)
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Remote state estimation-(Mahajan)




Dynamic program

Vi (s,m') =0

and fort € {T,...,0}

Vi) = min  {a'(Bi(9)) + 7' Bol@)W2A(', @)+ > w (W] (7', 9,x)}
@:X—{0,1} x€B1 (@)
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Dynamic program

Vi (s,m') =0

and fort € {T,...,0}

Vi) = min  {A'(Bi(9)) + 7' Bol@)W2(n', @)+ > m (W] (n',9,x)}
@:X—{0,1} x€B1 (@)

Vi(s,m?) )r(rngn d(x,%) + V[, (s, m*P)
x€eX

where W’?(Tt1 ) (P) = QSOV‘[Z(O)T[1) + QS1\/t2“)7T1 |(p)

W (7%, @,%) = QsoVE(0, ') + Q51 VE (1, 8x)
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Dynamic program

Vi (s,m') =0

and fort € {T,...,0}

Vi) = min  {A'(Bi(9)) + 7' Bol@)W2(n', @)+ > m' (W] (7', 9,x)}
@:X—{0,1} x€B1 (@)

Vi(s,m?) )r(rygran d(x,%) + V[, (s, m*P)
x€eX

where W’?(Tt1 ) (P) = QSOV‘[Z(O)T[1) + QS1\/t2“)7T1 |(p)

W (1%, @,%) = QsoVE(0, ') + Q51 VE (1, 8x)
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Dynamic program

Vi (s,m') =0

and fort € {T,...,0}

V] (s,m') = min

Al (B !
_min (A (B1 () + 7

VZ (s, m?) mann

xexxex

where W’?(Tt1 ) (P) = QSOV‘[Z(O)T[1) + QS1\/t2“)7T1 |(p)

= QsOvtz(O) 711) + Qs1vtz(1>6x)

W/ (12, @, x)

Remote state estimation-(Mahajan)

(Bo())W(r!

d(x,%) + V[, (s, m*P)

o)+ Y AW, e,x)}

xEB1 (@)

Salient features

P> Minimization over functions ¢

D> Similar to DP for POMDPs. Can be solved using
similar numerical techniques.




Can we use the DP to say something

more about the optimal strategy?




Simplifying modeling assumptions

Markov process Xip1 = aXy + Wy
> Discrete state process: X, a, Wy € Z
P> Continuous state process: X¢, a, Wy € R

Noise Distribution Unimodal and symmetric

Distortion function Symmetric and quasi-convex
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Threshold strategies

Search space of
strategies (f, g)

are optimal

N JER Optimal costly communication

Performance of threshold strategies

N Wl Optimal constrained communication




Step 1 Threshold strategies are optimal

Search space of
strategies (f, g)

N Wl Optimal constrained communication




A change of variables

aZi_y, iFY,€{&, &}

_ (Observable at both Tx and Rx)
Y, iFY, e X

Define Zo=0and Z; = {
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A change of variables

aZi_y, iFY,€{&, &}

_ (Observable at both Tx and Rx)
Y, iFY, e X

Define Zo=0and Z; = {

Et:Xt—ath], E:CF :Xt—Zt, ﬁt:kt—zt
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A change of variables

Define Zo=0and Z; = {

Yy, ifY, € X

Et :Xt—athh E:CF :Xt—Zt,

Thus, these are related as

E:('_ _ Et) |FYt € {QEO) 61}
0, ifFYeX

Remote state estimation-(Mahajan)

aZi_y, iFY,€{&, &}

(Observable at both Tx and Rx)

I/::t:kt_zt

and Ei g =aE +W,




A change of variables

aZi_y, iFY,€{&, &}

_ (Observable at both Tx and Rx)
Y, iFY, e X

Define Zo=0and Z; = {

Etht—athh E:CF :Xt—Zt, ﬁt:kt—zt

Thus, these are related as

B {Et, FY; € (€, &)

and E(.; =aEf +W.
0, ifY,eX o e

Note X; — X; = E — £, and hence d(X; — X,) = d(Ef — £.).
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Implication of change of variables

Pre-transmission belief 7l (e) = P(Ey = e|So:t—1 = S0:t—1, Yo:t—1 = Yo:t—1).

Post-transmission belief  nZ(e) = P(E{ = e|So.t = So:t, Yo:t = Yo:t)-
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Implication of change of variables

Pre-transmission belief (e) =P(Er = €|So:t—1 = S0:t—1, Y0:t—1 = Yo0:t_1)-
Post-transmission belief  nZ(e) = P(E{ = e|So.t = So:t, Yo:t = Yo:t)-

Belief update il =P
+

i = F (7, o1) =
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Dynamic program

Vi (s,m') =0

and fort € {T,...,0}

Vi) = min  {A'(Bi(9)) + 7' Bol@)W2(n', @)+ > m' (W] (7', 9,x)}
@:X—{0,1} x€B1 (@)

Vi(s,m?) )r(rngn d(x,%) + V[, (s, m*P)
x€eX

where W’?(Tt1 ) (P) = QSOV‘[Z(O)T[1) + QS1\/t2“)7T1 |(p)

W (1%, @,%) = QsoVE(0, ') + Q51 VE (1, 8x)

//m\\\\
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Dynamic program

Vi (s,m') =0

and fort € {T,...,0}

Vi(s,w) = min  {An!(B1(9) + 7' (Bole))W

Vi(s,m?) )r(rngn d(x,%) + V[, (s, m*P)
x€eX

where W’?(Tt1 ) (P) = QSOV‘[Z(O)T[1) + QS1\/t2“)7T1 |(p)

W (1%, @,%) = QsoVE(0, ') + Q51 VE (1, 8x)
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7' (B ((P))WE ('

,(p+Z7'c

x€B1 (

®)

y @)
', @,x)}

//m\\\\




Dynamic program

Vi (s,m') =0
7' (B (@))WQ (', o)

and fort € {T,...,0}

Vi(s,n!) = min  {a! (Bi(9) + 7! (Bo(@)) WP (T, @) +Xe§ )n @y x)}

Vi(s,m?) )r(rngn d(x,%) + V[, (s, m*P)
x€X

where W’?(Tt1 ) (P) = QSOV‘[Z(O)T[1) + QS1\/t2“)7T1 |(p)

W‘! (7[2) (P,X) = Qsthz(O, 711) + Qs1vt2(1>67<) Qs1vt2(]>60)

/lm\\\\
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Preliminaries: Majorization
[Hajek Mitzel Yang 2008, Lipsa Martins 2011, Nayyar et. al. 2013]

Almost uniform and

unimodal (ASU) Te 2 el 2 Te—1 2 T2 277
distribution about ¢ ? ‘]’ ]) T 9

c
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Preliminaries: Majorization
[Hajek Mitzel Yang 2008, Lipsa Martins 2011, Nayyar et. al. 2013]

Almost uniform and

unimodal (ASU) Te 2 el 2 Te—1 2 T2 277
distribution about ¢ ? ‘]’ ]) T 9

ASU Rearrangement
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Preliminaries: Majorization
[Hajek Mitzel Yang 2008, Lipsa Martins 2011, Nayyar et. al. 2013]

TTT]TT? Te 2 Mol 2 M1 2 Moz 277

Almost uniform and
unimodal (ASU)
distribution about ¢

ASU Rearrangement

Majorization
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Preliminaries: Majorization
[Hajek Mitzel Yang 2008, Lipsa Martins 2011, Nayyar et. al. 2013]

TT]}]TT? Te 2 Mol 2 M1 2 Moz 277

Almost uniform and
unimodal (ASU)
distribution about ¢

ASU Rearrangement

Majorization

ASU Majorization

n

1=—Nn 1="nN

Invariant to permutations.

E> miff§isASUand & >, 7

Remote state estimation-(Mahajan)
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Implication of Majorization

Recall DP  V{(s,n) = min {3 (B () + ' (Bol@))WE(', @) + 7' (B ()WL (!, o)}
@:X—

V7 (s, m?) QIEZH %)+ V! (s, m*P)
xeX

Proposition V{ and V7 satisfy the following property:
> Forany s € {0,1}and 7t >, &, then Vi(s,7t) = V{(s, &)
(Similar to Schur convexity, so we call it ASU Schur convexity)

II///,é

. . . 265
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Implication of Majorization

Recall DP  V{(s,n) = min {3 (B () + ' (Bol@))WE(', @) + 7' (B ()WL (!, o)}
@:X—

V7 (s, m?) QIEZH %)+ V! (s, m*P)
xeX

Proposition V{ and V7 satisfy the following property:
B> Forany s € {0,1}and 7t >, &, then V(s,7t) > Vi(s, &)
(Similar to Schur convexity, so we call it ASU Schur convexity)

II///,é

. . . 265
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Implication of Majorization

Recall DP

Proposition

Definition

. . . 265
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Vi(s,n) = min {3 (B () + ' (Bole)WE(', @) + 7' (B ()W (!, o))

VZ(s,m?) mann %)+ V! (s, m*P)

ngxex

V{ and V7 satisfy the following property:
> Forany s € {0,1}and 7t >, &, then Vi(s,7t) = Vi(s, &)
(Similar to Schur convexity, so we call it ASU Schur convexity)

A prescription ¢ is called threshold based if there exists a k € X such that
¢@(e) =1iflel > 1 and 0 otherwise.
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Implication of Majorization

Recall DP

Proposition

Definition

Theorem

Vi(s,n) = min {3 (B () + ' (Bole)WE(', @) + 7' (B ()W (!, o))

V7 (s, m?) QI&ZH %)+ V] (s, *P)
xeX

V{ and V7 satisfy the following property:
> Forany s € {0,1}and t >, &, then V{(s,7) > Vi(s, &)
(Similar to Schur convexity, so we call it ASU Schur convexity)

A prescription ¢ is called threshold based if there exists a k € X such that
¢@(e) =1iflel > 1 and 0 otherwise.

There is no loss optimality in restricting attention to threshold based
transmission strategies and using estimation strategies of form

0, ifY, € X
aBe1, iFYy € {&, &}

II///,é
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Structure of optimal strategies

Theorem For the infnite horizon costly communication problem, we have the following:
P> Structure of optimal estimation strategies: The optimal estimation strategy is
Xo=0andfort>0

AL iFY, € X
¢ X1, iFY, €{€, &}

D> Structure of optimal transmission strategy: There exist time-invariant thresholds
k(0), k(1) € X such that the strategy

U, — 1, iF’Xt—aXt—ﬂZk(St—ﬂ
t 0, otherwise

II///,é
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Threshold strategies

Search space of
strategies (f, g)

are optimal

N JER Optimal costly communication

Performance of threshold strategies




NN Performance of threshold-based strategies

Consider a threshold-based strategy
(e, ) — { 1 iflel > K(s)

0 otherwise

Remote state estimation-(Mahajan)
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NN Performance of threshold-based strategies

Consider a threshold-based strategy Let 1(%) denote the stopping time of first reception

- starting at Ey = 0).
) ){1 Flel > K(s) (BEETHNG 26 Eo =)

0 otherwise K(0)
k(1)

E¢

—k(1)
—k(0)

Remote state estimation-(Mahajan)
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NN Performance of threshold-based strategies

Consider a threshold-based strategy Let 1(%) denote the stopping time of first reception

(k) 1 IF|e| > k(s) (Starting at By = O)
f (e) ) = i
0 otherwise

(Distortion until fArst reception)
(Time until the Arst reception)

(Transmissions until the Arst reception)

II///,é
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Proposition {E¢}g2, Is a regenerative process. By renewal relationships, we have:

B

NG = Ng (£, g¥)

D(k) — Dﬁ(f(k), 9*) _

Define

Remote state estimation-(Mahajan)

(Distortion until fArst reception)

(Time until the Arst reception)

(Transmissions until the Arst reception)
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Proposition

Dy :=Dg (M), g*) =

NG = Ng (£, g¥)

(k)

Computing L(%k), Mg, Ky is sufficient to compute the

(k) (k)

performance of f(¥) (i.e., to compute Dék) and Ngd).

These can be computed using standard Markov chain formulas. otion)

lI///,é
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Threshold strategies are optimal Performance of threshold strategies

Search space of
strategies (f, g)

———

Nl Optimal constrained communication




Threshold strategies are optimal Perf rategies

For simplicity, we present the results fori.i.d. packet drops.

The results for Markov packet drops are similar (but harder to describe).

Search space of
strategies (f, g)

—————————

Nl Optimal constrained communication




NI JER Solution to costly comm. for discrete sources

Proposition B> CJY(A) =D + ANG is submodular in (k, A).
D H ' k* — . (k) . . .
ence B(?\) arg g]?ll(’)] CB (A) is increasing in A

Remote state estimation-(Mahajan)
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NI JER Solution to costly comm. for discrete sources

> C}Sk)(A) = D}sk) + AN g‘) is submodularin (k, A).

Proposition
- . (k) .. . .
B> Hence, ki (A) = arg gg Cp (A) is increasing in A

Define A" :={A € R5o: k5 (A) =
k

_ p(k=1) 4 (k)
=g, A,

C(ﬁk) _ Cﬁk+1)
(k) _ (k+1) (k)

— 7\B = (D[3 —D[3 . leg//,%

KN
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NI JER Solution to costly comm. for discrete sources

Define A" :={A € R5o: k5 (A) =
k

_ p(k=1) 4 (k)
=g, A,

C(ﬁk) _ Cﬁk+1)
(k) _ (1 (k+1) (k)

— 7\5 - (DB _DB ' =3'g//’%

K7™
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NI JER Solution to costly comm. for discrete sources

Define A" :={A € R5o: k5 (A) =
k

_ p(k=1) 4 (k)
=g, A,

C(ﬁk) _ Cﬁk+1)
(k) _ (1 (k+1) (k)

— 7\5 - (DB _DB ' =3'g//’%

K7™
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NI JER Solution to costly comm. for discrete sources

'GD’;«—————————————————

(k)
Cﬁ
— AV = (D
Remote state estimation-(Mahajan)
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NI JER Solution to costly comm. for discrete sources

L e

'GD’;«—————————————————

(k)
Ce

— AV = (D
Remote state estimation-(Mahajan)
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NI JER Solution to costly comm. for discrete sources
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NI JER Solution to costly comm. for discrete sources
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Solution to costly comm. for discrete sources

(k+1) j i (k) (k+1)
Theorem Strategy f is optimal for A € (A", Ay 1.

Ch(A) = minkez,, Cg‘) is piecewise linear, continuous, concave, and increasing
function of A.

. . ' ' ; : =30
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N(J Wl Solution to constrained comm. for discrete sources

Sufficient condition for optimality

A strategy (f°, g°) is optimal for the constrained problem if
(C1) Ng(f°,9°) =«

(C2) There exists A° > 0 such that (f°, g°) is optimal for the Lagrange relaxation with parameter A°.

lI///,é
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N(J Wl Solution to constrained comm. for discrete sources

Sufficient condition for optimality

A strategy (f°, g°) is optimal for the constrained problem if

(C1) Ng(f°,9°) =«

(C2) There exists A° > 0 such that (f°, g°) is optimal for the Lagrange relaxation with parameter A°.

Let k’g be such that

K K 41
Néﬁ)>oc>Né’5+)

Remote state estimation-(Mahajan)
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N W'l Solution to constrained comm. for discrete sources
Sufficient condition for optimality

A strategy (f°, g°) is optimal for the constrained problem if
(C1) Ng(f°,9°) =«

(C2) There exists A° > 0 such that (f°, g°) is optimal for the Lagrange relaxation with parameter A°.

Let k’g be such that

K K 41
Néﬁ)>oc>Né‘5+)

-

|
|
|
:
|
(%) optimal

|
|
|
|
|
Py

NG

n
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N W'l Solution to constrained comm. for discrete sources
Sufficient condition for optimality

A strategy (f°, g°) is optimal for the constrained problem if

(C1) Ng(f°,9°) =«

(C2) There exists A° > 0 such that (f°, g°) is optimal for the Lagrange relaxation with parameter A°.

(k+1) i
‘/f optimal Let kj; be such that

K K 41
Néﬁ)>oc>Né’5+)

-

|
|
|
|
|
(%) optimal

|
|
|
|
|
Py

A LK)

n
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N(J Wl Solution to constrained comm. for discrete sources

Sufficient conditi

A strategy (f°, g°) i Randomized strategy (0*, f'®), f**1) is optimal where
(C1) Ng(f°, g O*NG + (1 — 0N = «

(C2) There exi

(k+1) i
/f optimal Let kj; be such that

K K 41
Néﬁ)>oc>Né‘5+)

-

|
|
|
:
|
(%) optimal

|
|
|
|
|
Py

NG

n
lI///,é
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N(J .8 Solution to constrained comm. for discrete sources

Sufficient conditicﬁi

A strat{ A

(CI
(C:

AT
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N(J .8 Solution to constrained comm. for discrete sources

Sufficient conditi

A stratq A
(C
(C2

AT
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N JER Solution to costly communication for continuous sources

Proposition As in the case of discrete sources:
> Cék)(x) = D}Sk) + AN g‘) is submodularin (k, A).
o L . (k) . . .
> Hence, kBU\) = arg r];n;g Cp (A) is increasing in A

Remote state estimation-(Mahajan)

lI///,é

KN




N JER Solution to costly communication for continuous sources

Proposition As in the case of discrete sources:
> cg”(x) = Dg‘) + AN g‘) is submodularin (k, A).
o L . (k) . . .
B> Hence, kBU\) = arg r];nzug Cp (A) is increasing in A

Theorem IFthe pair (A, k) satisfies
0D

_ : (k) (k) _
= — ) (I.B., 6kDB + }\akNB = O)

then the strategy (f(*), g*) is optimal for the costly communication with cost A.

The optimal performance Cj (A) is continuous, concave and increasing function of A.

II///,é
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N JER Solution to costly communication for continuous sources

Proposition As in the case of discrete sources:
> cg”(x) = Dg‘) + AN g‘) is submodularin (k, A).
o L . (k) . . .
> Hence, kBU\) = arg r];nzug Cp (A) is increasing in A

Theorem IFthe pair (A, k) satisfies
0xD

_ : (k) (k) _
= — ) (I.B., akDB + }\akNB = O)

then the strategy (f'*), g*) is optimal for the costly communication with cost A.

The optimal performance Ch (A) is continuous, concave and increasing function of A.

Scaling with variance for Gaussian noise

A
Cho) =251 (53
II///,é
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N(J .8 Solution to constrained communication for continuous sources

Theorem Forany € (0,1] and a € (0, 1), let k() be such that

(K5 ()
N(3 = .

Such a Kk () always exists and we have the following:

P> The strategy (f(¥&(*)) g*) is optimal for the constrained optimization problem
with constraint «

(For the Markov packet drop case, we need to check additional KKT conditions)

B> The distortion transmission function Dj («) is continuous, convex, and decreasing
in o and is given by

(K ()

D’E(oc) =Dy

II///,é
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N(J .8 Solution to constrained communication for continuous sources

Theorem Forany € (0,1] and a € (0, 1), let k() be such that

(K5 ()
N(3 = .

Such a kj («) always exists and we have the following:

D> The strategy (f(*6(*)) g*) is optimal for the constrained optimization problem
with constraint «

(For the Markov packet drop case, we need to check additional KKT conditions)

B> The distortion transmission function D"g(oc) is continuous, convex, and decreasing
in o and is given by

(o) = DU

Scaling with variance for Gaussian noise

D’E,G(oc) = GZD’EJ(oc).
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Computation of optimal thresholds

Costly communication  Given A, find k such that 3, (D} +AN§) = 0.

Constrained Given «, And k such that Ng‘) — .
communication

Remote state estimation-(Mahajan)
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Computation of optimal thresholds

Costly communication  Given A, find k such that 3, (D} +AN§) = 0.

Constrained Given «, And k such that Ng‘) — .
communication

Main idea D> Pick a threshold k and use strategy f'*) until Arst successful reception.
B> The sample path values of L, M, and K may be viewed as a “noisy” observation
of true Lg‘), Mg‘), and Kg‘).
B> Use stochastic approximation to find optimal thresholds.
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Computation of optimal thresholds

Costly communication

Constrained
communication

Main idea

Remote state estimation-(Mahajan)

. . Kiefer-Wolfowitz Algorithm
Given A, Aind k such that ak(D% ) —|—7\N§3 N =o.

Given «, find k such that Ng‘) = . Robbins-Monro Algorithm

D> Pick a threshold k and use strategy f'*) until Arst successful reception.

B> The sample path values of L, M, and K may be viewed as a “noisy” observation
of true Lg‘), Mék), and Kg‘).

> Use stochastic approximation to And optimal thresholds.
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Computation

of optimal thresholds

Costly communid

Constrail
communicatf

Main i

10

A = 500
=
= X = 300
=
5 A =100
S 51 4 __ -
H &

2,000 4000 6,000 8000 10,000

[terations

Costly communication (f = 1.0, i.i.d. packet drop ¢ = 0.3)

-Wolfowitz Algorithm

ns-Monro Algorithm

sful reception.

Remote state estimation-(Mahajan)

a “noisy” observation
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Computation of optimal thresholds

. }-Wolfowitz Algorithm
Costly communid
. a=0.1
Constrall 3 5-Monro Algorithm
communicag
2,!
7
£ a=03
Main i = ul reception.
1 a = 0.5 “noisy” observation
1,000 2,000 3,000 4,000 5,000
Iterations
|| Constrained communication (3 = 1.0, i.i.d. packet drop ¢ = 0.3)
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Examples: Birth-death Markov chain

and Gauss-Markov process




FEJEN Symmetric birth-death Markov chain (perfect channel)

Py |F|1_J| =1
Py =< 1-2p, ifFi=j; where p € (0 %),
0, otherwise,

1—2p 1—2p 1—2p 1—2p 1—2p

Remote state estimation-(Mahajan)
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FEJEN Symmetric birth-death Markov chain (perfect channel)

Py |F|1_J| =1
Py =< 1-2p, ifFi=j; where p € (0 %),
0, otherwise,

Discounted cost Let Kg = —2— (1 —B)/Bp and mg = cosh™ ' (—Kp/2).
NO sinh(kmg) — ksinh(mg)
P 2sinh? (kmg/2) sinh(mg)
(k) _ 2BP sinh” (mg/2) cosh(kmg)
b sinh? (kmg /2)

(1—8)

Average cost ~ DI¥ =X—_

Remote state estimation-(Mahajan)
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FEJEN Symmetric birth-death Markov chain (perfect channel)

Py |F|1_J| =1,
Py =<{ 1-2p, ifi=j; where p € (0, 1),
0, otherwise,

Discounted cost Let Kg = —2— (1 —B)/Bp and mg = cosh™ ' (—Kp/2).
NO sinh(kmg) — ksinh(mg)
P 2sinh? (kmg/2) sinh(mg)
(k) _ 2BP sinh” (mg/2) cosh(kmg)
b sinh? (kmg /2)

(1—8)

A5 can be computed in terms of D and N/,

Average cost = ~ A _ k(e +1)(K2 + K+ 1)
1 6p(2k + 1)

Remote state estimation-(Mahajan)
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FEJEN Symmetric birth-death Markov chain (perfect channel)

Remote state estimation-(Mahajan)
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FEJEN Symmetric birth-death Markov chain (perfect channel)
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FEWIJEN Symmetric birth-death Markov chain (i.i.d. packet drops)

N

\3

R
W
()Y

Remote state estimation-(Mahajan)
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FEWIJEN Symmetric birth-death Markov chain (i.i.d. packet drops)

N

\3

W
()Y

Zni

/78

N
§
%
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Symmetric birth-death Markov chain (Markov packet drops)

0.1 0.9

p = 0.3, Q[

0.3 0.7]

Remote state estimation-(Mahajan)




Symmetric birth-death Markov chain (Markov packet drops)
|

03 0.7
0.1 0.9

p =03, Q[

e ITULL StatL LollTrativir\iviariajari/




Gauss-Markov process (a =1, 02 = 1)

Remote state estimation-(Mahajan)




Gauss-Markov process (a =1, 02 = 1)
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Summary

lcommunication system (cont.)

Markov Erasure
Transmitter __/_.> Receiver
Process Uy Channel

ACK/NACK and channel state

Feedback The receiver sends two bits of feedback: ACK/NACK and channel state.

Transmitter Decides whether to transmit or not. Denoted by U, € {0, 1}.
IFU, =0, X, = €. IFU, =1, X¢ = X¢.
ut = ft(Xht) Y1:t71 ) S]:tfl )

‘ Remote state estimation-(Mahajan)
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Summary

L

rﬁptimizati:)n probfems

Constrained communication

For o € (0,1),

For A € R>0,

D (o) i= inf {Dg(f,9): Ng(f,g) < }

Costly communication (Lagrange relaxation)

C5 () = Cp(f*, g% :

— inf {Dg(f, ANG (f,
('{‘g){ s(f,g) +ANg(f,g)}

o2
D}g is cts, dec, and convex

R
LL&emote state estimation-(Mahajan)

A
C’é is cts, inc, and concave

Remote state estimation-(Mahajan)
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Summary

rr o 0 N / N
iOptimal strategies and their performance

Source model Xep1 = aXe+Wy,  where W, has symmetric and unimodal distribution. X; € Z/R.

Distortion d(x,X) = d(x — %) where d(+) is symmetric and quasi-convex.

Optimal transmission strategy Optimal estimation strategy

U — 1, ifIXe — aXe 1] = Kk(Se1) R aXio1, iFY, € (€, ¢}
t 0, otherwise ' Y, ifFY, e X

Performance of threshold based strategies
> Kg‘): Expected discounted number of transmissions until Arst successful reception.
> Lg‘): Expected discounted distortion until first successful reception.
> Mg‘): Expected discounted time until first successful reception.

(%) (k)
u Then, Dg‘) = ﬁ Vi (Renewal Relationships)
E B B

Remote st

T
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Summary

i s
Dynamic program Y

Vi, (s,m') =0

and fort € {T,...,0}

Vi) = min (A (B1(9) + 7 (Bol@)WA(H, @)+ Y oWl (!, 9,0}
©:X—{0,1} x€B1 (@)

VE(s,m?) =min ) n?(x)d(x,%) + V[, (s, *P)
ﬁexxex

where WP(7r', @) = Qs0VE(0,7') + Qa1 VE (1,7 |)

W’! (7.[2’ (p>X) = QSOVtZ(O) 7'(]) + Qs]v'g(Léx)

A

i
L‘ Remote state estimation-(Mahajan)
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Summary

X
1‘
X

.
I’--nam-n A MO OF g o gy

Threshold strategies are optimal

Search space of
strategies (f, g)

NN Optimal costly communication

1

Performance of threshold strategies

N Wl Optimal constrained communication

Remote state estimation-(Mahajan)

U




Summary
Poiinpinmpablom

.
PR on paem oo pe pegn o peon g

Eomputation of optimal thresholds

— 5 5 Kiefer-Wolfowitz Algorithm
Costly communication  Given A, find k such that 3, (D +AN) = 0.

Constrained  Given o, find k such that N§* = «. Robbins-Monro Algorithm
communication

Main idea D> Pick a threshold k and use strategy f(*) until Arst successful reception.
B> The sample path values of L, M, and K may be viewed as a “noisy” observation
of true L(Bk), Mg‘), and Kg‘).
> Use stochastic approximation to Aind optimal thresholds.

M

iy

A
L o ) £342
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Concluding Remarks

Generalization to vector sources
B> Difficulty: IF X is ASU, is AX; + W, also ASU?

D> Even if threshold policies are not optimal, the tools developed may be useful to identify
best threshold-based strategy.

Remote state estimation-(Mahajan) EN




Concluding Remarks

Generalization to vector sources
P> Difficulty: IF X is ASU, is AX; + W, also ASU?

D> Even if threshold policies are not optimal, the tools developed may be useful to identify
best threshold-based strategy.

Results are derived under idealized assumptions

Future directions
B> Quantization . . . B> Scheduling multiple sources . . .
D> Power control . . . > Model network delays . . .

Beautiful example of stochastics and optimization

Decentralized control, POMDP, stochastic orders, majorization, Markov chains, constrained optimization,
stochastic approximation
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Concluding Remarks

Generalization to vector sources
B> Difficulty: IF X is ASU, is AX + W, also ASU?

D> Even if threshold policies are not optimal, the tools developed may be useful to identify
best threshold-based strategy.

Results are derived under idealized assumptions

Future directions
> Quantization . . . P> Scheduling multiple sources . . .
D> Power control . . . > Model network delays . . .

Beautiful example of stochastics and optimization

Decentralized control, POMDP, stochastic orders, majorization, Markov chains, constrained optimization,
stochastic approximation
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Communication system (cont.) Optimization problems Optimal strategies and their performance

Constrained communication

Source model Xis1 = aX¢+W,, where W, has symmetric and unimodal distribution. X, € Z/R.
Markou » Erasure F 0,1), Dj(a):= inf {Dp(f,g): Np(f,g) <
Process Uy Channel or o€ (0,1). Dy(e) = inff {Da(f,0): N (f,0) < o} Distortion  d(x,) = d(x— %) where d(-) is symmetric and quasi-convex.
| o . Optimal transmission strategy Optimal estimation strategy
| ACKINACKand channelstate Costly communication (Lagrange relaxation) 1, X — aReal > k(Se) 2 ARy FY; € (€0, €1}
ForA € R-o, Cp(f*,g5A) = ‘i1nF‘ {Dg(f,g) +ANg(f,g)} 0, otherwise Ye, iFY; € X
9

Feedback The receiver sends two bits of feedback: ACK/NACK and channel state.

Transmitter Decides whether to transmit or not. Denoted by U, € {0, 1}.
IFUy =0, X, = € IFU; =1, X; = Xe.
Ue = (X, Yiieo1, S1et)

Performance of threshold based strategies
B K(*: Expected di number of ti ions until first reception.
> L{¥): Expected discounted distortion until first successful reception.
B M{}): Expected discounted time until first successful reception.

) x) 0
L ) % -
Dj, is cts, dec, and convex Cy is cts, inc, and concave Then, DY = ey and N = . (Renewa Relationships)
w o B
|\ Remote state estimation-(Mahajan) ? | Remote state estimation-(Mahajan) ¢ || remote st )
Dynamic program MEITHH A change of variables Bkl Performance of threshold-based strategies
Vi (s,m) =0 X aZior, Y € (€0, €1} Consider a threshold-based strategy Lett*) denote the stopping time of first reception
Define  Zo=0and Z, = {Y., gt (Observable at both Tx and Rx) . { 1 el kGs) (starting at Eo = 0).
and for t € {T,...,0} o Cictienise
Visal) = min {3 (B (o)) + 7 (Bol@)WE(n @)+ 3 (W] (', ,x)} E=Xe—aZer, E =Xz, B=R-2Z
CEIED x€B (@)
Thus, these are related as
2 2) = mi R 1 Preds) By, iFY, € (&, &)
V2(s,n2) ;r;.;énzu)d(x,xwvm[s‘ ) E‘*:{O: ﬂrsx“ ! and Eyp1 =aEf + W, .
Define L (e) = E [ Y pd(EJ[Eo = e] (Distortion until first reception)
where WO(n!, @) = QuoV2(0,) + QuVE(1, ') Note X, — X, = E{ — £, and hence d(X, —R¢) = d(E{ — E). =
Ry
W12, 9,x) = QuoV2(0,') + QurV2(1, 52) ME () =E[ Y BfEo—¢]. (Time until the first reception)
=
Ki(e) =E [Z BUEo = c]. (Transmissions until the first reception)
=
0% o1 O]
Remote state estimation-(Mahajan)  J| Remote state estimation-(Mahajan) s \ Remote state estimation-(Mahajan) T

NJER Solution to costly comm. for discrete sources MBI solution to constrained comm. for discrete sources lComputation of optimal thresholds

- - . . Kiefer-Wolfowitz Algorithm
Sufficient conditi Costly communication  Given A, find k such that 2y (D) + AN{)
Astrategy (1°,g°) Randomized strategy (6%, f(¥), f*+1) is optimal where ) )
) o) Constrained  Given o, find k such that Njf* = o Robbins-Monro Algorithm

Dkt (C1) Ng(f,g O*Np™ + (1 —0%)Ny =a communication

B !

: (C2) There ex meter A°.

oy

b Main idea B Pick a threshold k and use strategy f(*) until first successful reception.

B H

B The sample path values of L, M, and K may be viewed as a “noisy” observation
(k) (K] (x)
Let ki, be such that of true L', My, and K

) (e B> Use stochastic approximation to find optimal thresholds.
NEH 5 g5 NS PP p

(k) A (k+TH (k1)
AR ARTTAR

/:M” optimal

Define A‘; ={AeRz0:ky(A) =k}
= AR

K

T optimad

() (x(K)y — ~(k+1) 3 (K) H
Cg ("ﬁk ]*Crsk ‘(7‘» Bk\ . - e T > G
(k) (1) (k) _ pglkt1) "

= A= (O D) /(NG - NG =Y oY 5N
Remote state estimation-(Mahajan) s || Remote state estimation-(Mahajan) % || Remote state estimation-(Mahajan) (2




