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Abstract

Optimal design of multi-agent sequential teams is investigated in this thesis. A
systematic methodology is presented to convert the search for an optimal multi-
stage design into a sequence of nested optimization problems, where at each step
the best decision rule of a agent at a given time is search. This conversion is called
sequential decomposition and it drastically simplifies the search of optimal solution
for both finite and infinite horizon problems. The main idea is as follows. A state
sufficient for input-output mapping of the system is identified. A joint probability
measure on this state is an information state sufficient for performance evaluation.
This information state evolves in time in a deterministic manner depending on the
choice of decision rules of the agents. Thus, these information states are a controlled
Markov process where the control actions are the decision rules of the agents. The
optimal control of the time-evolution of these information states results in a sequen-
tial decomposition of the problem. Applications of this methodology to real-time
communication and optimal feedback control over noisy communication channels
is also investigated.



 

 



Chapter 

Introduction

. Motivation
Decentralized systems arise in a variety of branches of engineering. Examples in-
clude the Internet, telecommunication networks, sensor networks, surveillance net-
works, monitoring and diagnostic systems, MANET (mobile ad-hoc networks), cog-
nitive radio, control of UAVs (unmanned aerial vehicles), robotics, multi-core CPUs,
etc. Most of these applications are independent areas of research with dedicated
conferences and journals. However, from an abstract level, these applications have
similar salient features and similar design difficulties. We believe that if we can
capture these salient feature in a simple model and understand how to resolve the
conceptual difficulties for that model, then these insights would provide design
guidelines for these applications. This is the main premise of this thesis. We study
a “simple” model of a decentralized system, and show how results for that model
can help in optimally designing real-time communication systems and networked
control systems.

The salient features of decentralized systems are as follows. Decentralized sys-
tems consist of multiple components (or agents); each component has partial infor-
mation about the state of the system but there is no centralization of information,
i.e., no agent knows the information available to all other agents. In many decen-
tralized systems, all components/agents have a common objective: optimize the
performance with respect to a system-wide objective (e.g., probability of correct
detection with minimum energy consumption in sensor, surveillance, and UAV net-
works, congestion avoidance in transportation and telecommunication networks,
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throughput in MANETs and telecommunication networks, etc.). The agents can ex-
change information with one another and coordinate their activities to achieve their
objective.

The decentralization of information makes the design of decentralized systems
drastically different from the design of centralized systems. In centralized partially
observed systems, control has a dual aspect, or function: (i) control—the control ac-
tion can alter the future values of the state of the system; and (ii) estimation—the
control action can alter the future information available to the control agent and
hence affect the knowledge that the control agent has about the state of the sys-
tem. In decentralized systems control has an additional function: (iii) communica-
tion—the control action of an agent can alter the future information available to
other agents, and affect the knowledge that other agents have about the state of the
system. Thus, in decentralized systems control has a triple aspect,1 or function:
control, estimation, and communication.

The communication aspect of control in decentralized systems is not well under-
stood. The decentralization of information and the noisy nature of communication
makes efficient communication extremely difficult. For example, when an agent
communicates a message how can it ascertain that the receiver, which has different
information, will interpret the message in the same way as its intended meaning?
Moreover, the presence of multiple agents affects the control and estimation aspects
of control. An agent has to take other agents’ control strategies into account while
determining how its control action alters the future state of the system and its own
future information. In order to understand the design of decentralized systems, we
need to understand the aforementioned three aspects of control. This thesis is an
attempt in that direction.

The rest of this chapter is organized as follows. We begin by a classification
of multi-agent systems and explain the class of systems that we will study in this
thesis. We then explain the main ideas for the optimal design of dynamic teams,
in particular, the notion of sequential decomposition and its advantages. We then
describe the organization and present the contributions of the thesis.

The term “triple aspect of control” or “triple control” is due to Pravin Varaiya. Ho () used the

term “signalling” for the third aspect of control.
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Multi-agent
systems

Dynamic
systems Teams

Sequential

Non-classical
info. struct.

Static
systems Games

Non-sequential

Classical
info. struct.

Information available
to the agents

Objective

Order of
agents’ actions

Information structures

Figure .: Classification of multi-agent systems. In this thesis we are interested
in sequential dynamic teams with non-classical information structures.

. Classification of multi-agent systems
Multi-agent systems can be classified either on the basis of the objective of the
agents as teams and games, or on the basis of the information available to the agents
as static and dynamic systems. Dynamic systems can be further classified as se-
quential and non-sequential. Sequential systems can be differentiated on the basis
of their information structures. This classification systems is shown in Figure .
and described in detail below.

Teams and games
Multi-agent systems can be classified as teams and games on the basis of the ob-
jective of the agents. In teams all agents have the same objective; in games, each
agent has its own objective. Historically, games were first studied in the seminal
work of von Neumann and Morgenstern () and were later developed as a sub-
field of mathematical economics called game theory (Aumann and Hart, , ,
). Teams were first studied in mathematical economics by Radner () and
Marschak and Radner (), and later in control systems by Witsenhausen (a,
), Ho et al. (), Ho (), and others.
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Both teams and games have two solution philosophies: equilibrium solutions
and optimal solutions. For each of these solution philosophies, the actual solution
concept of teams and games are different due to the difference in the objectives of
the agents.

A set of strategies of all agents is in equilibrium if no agent can improve its
performance (which is same as the system performance in case of teams) by uni-
laterally changing its strategy. In teams, an equilibrium solution is called person
by person optimal or member by member optimal solution. In games, there are
various notions of equilibrium solutions, such as Nash equilibrium and its refine-
ments, etc. For both teams and games, it is usually desirable to find all equilibrium
designs.

A set of strategies of all agents is optimal if no other design gives a better perfor-
mance to all agents. In teams, an optimal solution is also called globally optimal so-
lution (to contrast it with person by person optimal solution which can be thought
of as a locally optimal solution). In games, optimal solutions are generally called
Pareto optimal in honor of Vilfredo Pareto, who used the concept in his studies of
economic efficiency and income distribution. In teams it is usually sufficient to find
one optimal design while in games it is desirable to find the Pareto frontier, which
is the set of all Pareto optimal designs.

Static and dynamic systems
Multi-agent systems, both teams and games, can be classified on the basis of the in-
formation available to the agents into static and dynamic systems. The distinction
is based on primitive random variables, which are random variables that repre-
sent the randomness generated by nature and are usually assumed to be mutually
independent. If the observations of all agents depend only on primitive random
variables then the system is called static; if the observations of some agents also
depend on the decision rule of any agent that acted in the past (including the agent
whose observations we are interested in) then the system is called dynamic. Static
systems are also called single-stage systems, while dynamic systems are also called
multi-stage.

The search for an optimal design of static systems is called static optimization.
Examples include linear programming, non-linear programming, and convex opti-
mization techniques. The search for an optimal design of dynamic systems is called
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dynamic optimization. Examples include dynamic programming (backward in-
duction) and forward induction.

Sequential and non-sequential systems
Multi-stage systems can be further classified into sequential and non-sequential
systems. In sequential systems the order in which agents act does not depend on
events in nature and the actions taken by the agents. Thus, the order of agents’
actions can be fixed before the system starts operating and agents act in the same
order along all behaviors (sample paths) of the systems. In non-sequential systems
the order in which agents act depends on events in nature and actions taken by the
agents. Thus, the order in which agents act cannot be determined before the sys-
tem starts operating and the agents act in different order along different behaviors
(sample paths) of the system.

The distinction between sequential and non-sequential systems has been ex-
plained in Witsenhausen (b, ). Optimal design of sequential systems was
investigated in Witsenhausen (). Properties and design of non-sequential sys-
tems was investigated in Witsenhausen (b, ), Andersland (), Anders-
land and Teneketzis (, ), Teneketzis () and Teneketzis and Andersland
().

Classical and non-classical information structures
Sequential systems can be further classified on the basis of their information struc-
ture (also called information pattern). Information structure is the set of data avail-
able to each agent to make a decision. If each agent knows everything that was
known to all agents that acted before it, the system has a classical information
structure. If the information structure can be converted into a classical informa-
tion structure by a change of variables, it is called quasi-classical. An information
structure that is neither classical nor quasi-classical is called a (strictly) non-classi-
cal information structure.

The importance of information structures was first highlighted in Witsenhausen
(a). The role information structures in specific team problems was explored in
Ho and Chu (), Chu () Yoshikawa (), Ho (), and others.

To understand the simplification in determining optimal designs provided by
a classical information structure, consider the simplest system with a non-classical
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information structure— a one agent system that does not have perfect recall, i.e., the
agent does not remember everything that it has seen in the past and everything that
it has done in the past. In this case, at any time the agent can try to communicate
to its future self through the state of the system. In a system with perfect recall, i.e.,
in a one agent system with perfect recall, the future self of the agent will know ev-
erything that the agent currently knows, so the agent has no information that it can
communicate to its future self. Thus, in a system with classical information struc-
ture, control only has the dual function of control and estimation; the third function
of communication is not needed. The absence of communication aspect drastically
simplifies the search of optimal designs. We will explain this simplification later.

. Scope of this thesis
We are interested in the optimal design of sequential dynamic teams. Witsenhausen
() showed that under a technical condition, which is almost always satisfied, a
dynamic team can be converted to a static team. This conversion comes at the cost
of expansion of the state space of system variables. Our belief is that one should
try to exploit the dynamic nature of the problem rather than work around it. For
that reason, we want to obtain a sequential decomposition of the optimal design of
a dynamic (multi-stage) team. Sequential decomposition is a divide and conquer
technique which decomposes the one shot optimization problem of choosing an
optimal design into a sequence of nested optimization problems, each of which is
drastically simpler to solve than the original problem.

Teams with a classical information structure are centralized problems; for such
problems Markov decision theory (Kumar and Varaiya, ) provides a system-
atic methodology to obtain a sequential decomposition. Teams with non-classical
information structure are strictly decentralized problems; for such finite-horizon
problems the standard form (Witsenhausen, ) provides a sequential decompo-
sition. There is no solution methodology for infinite-horizon decentralized team
problems. This thesis provides a sequential decomposition for both finite and in-
finite horizon dynamic teams with non-classical information structures.
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. Main ideas for optimal design of dynamic teams
An optimal design of a finite-horizon dynamic team always exists when all system
variables are finite valued; it can be found by a brute force search of all designs.
The number of possible designs increase exponentially with the number of agents
and the time horizon for which the system runs. So, the complexity of brute force
search is exponential in the number of agents and the time horizon of the system.
For this reason, we want to determine a systematic method to search for an optimal
solution efficiently.

For infinite horizon performance criteria, the situation is different. Identifying
an optimal (or near-optimal) design by brute force is not possible because there are
countably infinite number of designs. Furthermore, it is not possible to implement a
general infinite horizon design. So, we need to identify some qualitative properties
of optimal designs that will enable us to search and implement optimal designs
compactly.

A sequential team with a classical information structure is equivalent to either
a MDP (Markov decision process), where the controller perfectly observes the state
of the system, or a POMDP (partially observable Markov decision process), where
the controller takes noisy observations of the state of the system. For both these cas-
es, the results from Markov decision theory allow for efficient search and compact
implementation of optimal designs. We explain why this is the case,2 then contem-
plate on how these ideas can be extended to teams with non-classical information
structure.

Consider a MDP with finite state space X and finite action space U which op-
erates for a finite horizon T. In general, the control action at any time can depend
on all the past observations and all the past control actions. So, at time t there are
|U|
|X|

t
×|U|

t−1 control laws; for the entire horizon there are approximately |U|(|X|×|U|)T

designs. Hence, a brute force search is doubly exponential in the size of the horizon.
Markov decision theory provides two simplifications. The first is the structural re-
sults which state that we only need to look at controllers where the control action
depends on the current state. Consequently, at time t, we only need to look at |U||X|

functions; for the entire horizon there are |U|T×|X| designs. Hence, the structural

We do a loose hand-waving complexity analysis here. See Blondel and Tsitsiklis () for a more

detailed survey of complexity results for MDP and POMDP.
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results simplify the problem exponentially: a brute force search is now “only” ex-
ponential in T. The second simplification is the sequential decomposition provided
by the dynamic programming equations which transform the one shot optimiza-
tion problem into a sequence of T nested optimization problems. For each step of
the dynamic problem, we need to need to find a value function, which is a func-
tion with (finite) domain X. For each value of x ∈ X, evaluating the value function
requires approximately |U|2 calculations. Hence, for the entire horizon we need to
evaluate T × |X| × |U|2 computations. Thus, the structural results and sequential
decomposition drastically reduce the complexity of search for an optimal solution.

For infinite horizon MDP, Markov decision theory shows that we can restrict
attention to control laws that do not change with time. This makes it easy to imple-
ment an optimal design since we only need to implement one control law. This also
allows us to extend the sequential decomposition of the finite horizon to infinite
horizon: for infinite horizon problems, optimal time-invariant control law is given
by the fixed point of a functional equation. Finding fixed points of these functional
equations can be converted into linear programs with |X| variables and |X|×|U| con-
straints (see Manne () and d’Epenoux ()). Linear programs can be solved in
polynomial time (Karmarkar, ), which means that infinite horizon MDPs with
finite state and action spaces can be solved in polynomial time.

Next consider a finite horizon POMDP with finite state space X, finite observa-
tion space Y, and finite action spaceU. In general, the control action at time t can
depend on all the past observations and all the past control actions. So, at time t

there are |U||Y|t×|U|t−1 control laws; for the entire horizon, there are approximately
|U|

(|Y|×|U|)T designs. For POMDPs, Markov decision theory provides two simplifi-
cations. The first is the structural results which state that we only need to look at
controllers where the control action depends on the controller’s belief about the
state of the system. However, these structural results do not immediately reduce
the complexity of the search of an optimal design; the belief space is uncountable,
so there are uncountable number of control laws that satisfy the structural prop-
erties. The second simplification—the sequential decomposition of dynamic pro-
gramming equations—helps in reducing the complexity of the search of an optimal
design. The nested optimality equations of dynamic programming reduce the one
shot optimization problem into T nested optimization problems. At each step of
the optimization problem we need to find a value function; for POMDPs, the value
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function has an uncountable domain (the space of beliefs on the state of the sys-
tem). In spite of this, these value functions can be computed exactly because they
are piecewise linear and concave (Smallwood and Sondik, ) and as such can
be represented compactly by a family of linear functions that form the upper en-
velope of the value function. In the worst case, we need to construct approximately
|U|
|Y|

T linear envelopes. For specific instances, the family of envelopes may increase
polynomially with the time horizon (Littman, ).

For infinite horizon POMDP, Markov decision theory shows that we can restrict
attention to control laws that do not change with time. An optimal time-invariant
control law can be obtained by the fixed point of a functional equation. These func-
tional equations cannot be solved exactly; however, they can be approximated effi-
ciently by using randomized algorithms that discretize the belief space; Rust ()
shows that the worst case complexity of solving discounted cost POMDPs with finite
state and action spaces is polynomial in |X| and |U|. There are other results which
exploit the special structure of POMDPs arising in specific application domains to
solve the finite and infinite horizon optimality equations more efficiently.

Thus, Markov decision theory provides an efficient method to search for opti-
mal (or near optimal) solutions for MDPs and POMDPs, and a compact way to im-
plement infinite horizon solutions. Furthermore, in many problems the optimality
equations can be used to identify more refined qualitative properties of optimal con-
trol laws, which further simplify the search of an optimal solution. For example, for
sequential hypothesis testing (Wald, ) the optimality equations can be used to
prove that optimal decision rule is of a “threshold type”; for centralized LQG (linear
quadratic Gaussian) problems the optimality equations can be used to prove that
optimal control laws are affine. Such structural results significantly simplify the
search of optimal designs.

So, when the sequential team has a classical information structure, both finite
and infinite horizon systems can be optimally designed in an efficient manner using
Markov decision theory. However, no such systematic methodology exists when
sequential teams have non-classical information structure. In general, multi-agent
teams are NEXP-complete, i.e., they provably do not admit a polynomial time solu-
tion (Bernstein et al., ). However, it is worthwhile to determine search method-
ologies which are better than brute force search and identify specific instances that
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can be solved efficiently. In this thesis, we identify instances of multi-agent prob-
lem which can be reduced to POMDPs where the unobserved state is either finite or
uncountable, and the action space is finite (but exponential in the size of the alpha-
bets). This allows us to leverage the huge existing literature on numerically solving
POMDPs to multi-agent teams.

We would like to exploit the sequentiality of the system to decompose the brute
force one-shot optimization problem (where we evaluate the performance of a choice
of design rules for all agents for the entire horizon in a single step) into a sequence
of nested optimization problems (where at each step we evaluate the effect of a de-
cision rule of a single agent at a single time step on the overall performance); that
is, obtain a sequential decomposition. The number of nested optimization problems
resulting from the sequential decomposition are linear in the number of agents
and the time horizon. So, if each step of a sequential decomposition can be solved
efficiently, the sequential decomposition provides a tractable method of optimally
designing sequential multi-agent systems. We would also like to find qualitative
properties of optimal decision rules to reduce the space over which we search at
each step. We would then like to extend this sequential decomposition to infinite
horizon problem, and hope that the search for an optimal infinite horizon design
reduces to finding the fixed point of a functional equation; this would make the
implementation of an optimal infinite horizon design easier and could also help in
identifying approximation algorithms to search for near optimal designs.

For finite-horizon decentralized problems, the standard form (Witsenhausen,
) provides a sequential decomposition. However, this sequential decomposi-
tion is only applicable to finite-horizon problems and cannot be extended to in-
finite horizon problems even for time-homogeneous systems. We are interested in
methodologies that extend to infinite horizon.

. Organization of the thesis
Sequential decomposition of dynamic teams is difficult both from a conceptual and
computational viewpoint. We focus on resolving the conceptual difficulties. For
that matter, we consider the simplest multi-agent team—a two-agent team. We be-
lieve that once we make the conceptual jump from understanding the design of
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one-agent centralized systems to understanding the design of two-agent decentral-
ized systems, extending the same line of reasoning to general multi-agent systems
will be significantly easier.

The research presented in this thesis was carried out in the following order. We
first investigated sequential decomposition of globally optimal design of real-time
communication over noisy forward channel. Teneketzis () had derived quali-
tative properties of optimal encoders and decoders, and we used these qualitative
properties as a starting point for determining globally optimal encoders and de-
coders. We then investigated networked control systems and real-time communi-
cation over noisy forward and backward channels. These applications are essen-
tially two-agent teams. They are rich enough to capture the fundamental concep-
tual difficulties in optimally designing two-agent teams. By carefully analyzing
the sequential decomposition of real-time communication and networked control
systems, we were able to develop a framework for sequential decomposition of a
general two-agent team.

In this thesis we do not present the research in the chronological order that it
was carried out. Rather, we first present a solution methodology for the design of a
general two-agent team problem (Chapter ), and then explain how this methodol-
ogy can be applied to real-time communication (Chapter ) and networked control
systems (Chapter ). As a result of this organization, the fundamental ideas of
sequential decomposition of two agent teams can be separated from application
specific details. This organization also shows how the results of the general solu-
tion methodology of Chapter  could be applied to other applications. We take a
critical look at the strength and weakness of our solution framework in Chapter 
and conclude with some possible future directions.

. Contribution of the thesis
The contributions of this thesis lie in both conceptual and technical aspects of the
design of decentralized systems. This thesis provides a conceptual framework for
the design of decentralized two-agent teams with strictly non-classical information
structures. We use sequential decomposition as a solution concept for the design
of dynamic teams. The notion of information state sufficient for performance analy-
sis is the key concept to obtain a sequential decomposition. This thesis presents
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properties that such information states must satisfy. This is the first description
of the properties of information states in the literature and the most important con-
ceptual contribution of this thesis. There was no general methodology to identify
information states appropriate for both finite and infinite horizon problems. As
such, the only way to identify appropriate information states was to guess infor-
mation states and check if they lead to a sequential decomposition. In light of the
properties of information states presented in this thesis, we can guess information
states and check if they satisfy the aforementioned properties. Checking whether
our choice of information states satisfies a few properties is a huge simplification
over directly checking if they lead to a sequential decomposition.

We also provide an intuitive explanation of our choice of information states that
satisfy the aforementioned properties. We can look at the design of two-agent teams
as controlled input-output systems from the point of view of the system designer.
The designer provides the decision rules of each agent as control inputs and, in
general, does not observe any output; hence, he has to optimally design a partially
observed system. Therefore, the designer can use his belief on the state sufficient
for input-output mapping on the system as an information state. This suggests that it
may be possible to identify information states sufficient for performance analysis
simply by identifying state sufficient for input-output mapping, although we have
not explored this angle in this thesis.

The technical contributions of this thesis are three-fold—in the contexts of two-
agent teams, real-time communication, and networked control systems. In Chap-
ter  we investigate sequential decomposition of finite and infinite horizon dynam-
ic two-agent teams. In order to obtain a sequential decomposition of any dynamic
optimization problem, we need to identify an information state sufficient for perfor-
mance evaluation. We present properties that must be satisfied by information states
sufficient for performance analysis, guess information states that satisfy these prop-
erties, and show that optimally controlling the time evolution of these information
states leads to a sequential decomposition of finite horizon two-agent teams. When
all system variables are finite valued, the optimality equations of the sequential
decomposition can be viewed as the optimality equations of POMDPs (partially ob-
servable Markov decision processes) for which efficient computational algorithms
exist.
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Next we consider time-homogeneous infinite-horizon problems for two perfor-
mance criteria: total expected discounted cost and average cost per unit time. For
each of these performance criteria, we consider four variations, called variations ,
, , and , depending on the whether the agents have finite time-invariant state
space or perfect recall. We show how to obtain a sequential decomposition of in-
finite horizon problems for three of these four variations; the sequential decomposi-
tion exploits the fact that there is no loss of optimality in restricting attention to time
-invariant meta-strategies (explained in Chapter ). For the total expected discounted
cost criteria, we show that optimal strategies can be determined by the unique fixed
point of a functional equation. For the average cost per unit time criteria, we show
that, under a technical condition, near-optimal strategies can be determined by the
fixed point of a functional equation. The fixed point functional equations for these
three variations can be viewed as fixed point functional equations that arise in in-
finite horizon POMDPs. When all system variables are finite valued, the fixed point
equations of variation  belong to a class for which efficient approximate compu-
tational algorithms exist; the fixed point equations of variations  and  belong
to a class for which finding efficient approximate computational algorithms is an
active area of research.

In variations  and  one agent has perfect recall (i.e., it remembers everything
that it has seen and done in the past) and one agent has time-invariant memory. For
these variations we derive qualitative/structural properties of optimal controllers
and show that, without any loss of optimality, the agent with perfect recall can
choose its control actions only based on its belief about the state of the plant and
the state of the other agent; thus, the agent with perfect recall can restrict attention
to control laws belonging to a time-invariant functional space. This restriction al-
lows us to derive optimality equations for these variations of the infinite horizon
problems.

In Chapter  we consider four models of point-to-point real-time communica-
tion, consisting of a Markov source, a real-time encoder, a real-time receiver, a for-
ward channel, which is either noiseless or noisy, between the encoder and the re-
ceiver; some models also include a backward channel, which is either noiseless or
noisy, between the receiver and the encoder. For each of these models, we consider
both finite and infinite horizon problems; for infinite horizon problems, we consid-
er three variations corresponding to variations ,  and  of Chapter . We show
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that these models are instances of two agent teams; thus, we can use the results of
Chapter  to derive qualitative properties of optimal encoding and decoding strate-
gies and to obtain a sequential decomposition of both finite and infinite horizon
problems. Before this thesis, the qualitative/structural properties were known for
variation  of three models and and the sequential decomposition was known for
only the variation  for on model.

In this thesis, we provide a unified framework to study all models of point-
to-point real-time communication. We show that the various structural properties
of optimal real-time communication systems previously derived in the literature
are special cases of the structural properties of optimal two-agent teams derived in
Chapter . Furthermore, we provide a sequential decomposition for all models of
real-time communication.

In Chapter  we consider the optimal design of a simple model for a NCS (net-
worked control system) for both finite and infinite horizon problems. We assume
that the NCS consists of a plant, a sensor, and a controller. There is a communica-
tion channel between the sensor and the controller, and another communication
channel between the controller and the plant. Both communication channels are
assumed to be noisy. This model captures the salient features of a general NCS, viz.,
non-linear plant dynamics, noisy communication channels, and resource and pow-
er limitations at the sensor. We show that this model is an instance of a two agent
team; thus, we can use the results of Chapter  to derive qualitative properties of
optimal sensors and controllers and to obtain a sequential decomposition of both
finite and infinite horizon cases. Before this thesis, the optimal design of NCS was
understood only for linear plant dynamics and noiseless communication channels.
In this thesis we provide a framework to study NCS with non-linear plant dynamics
and noisy communication channels.
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Chapter 

Optimal design of two-agent systems

In this chapter we consider the optimal design of a general two-agent team. We
explain what an information state means, and then identify appropriate informa-
tion states for two-agent teams. Controlling the time evolution of these information
states in an optimal manner leads to a sequential decomposition of the optimization
problem. We then consider time homogeneous models with infinite horizon cost
criteria. We consider four variations of the infinite horizon problem; for three of
the variations we show that optimal designs are given by fixed points of functional
equations. We then present the intuition behind our choice of information states
and conclude the chapter.

Notation
We use uppercase letters N, M, S, U, W, X, Y, and Z to represent random vari-
ables, corresponding lowercase letters n, m, etc. to represent their realizations, and
corresponding calligraphic letters N ,M, etc. to represent their alphabets. We use
lowercase letters c, d, f , g, h, and l to represent functions, corresponding uppercase
letters C, D, etc. to represent collection of functions, and corresponding script let-
ters C , G , etc. to represent family of functions. We use Gothic letters F, J, etc. to
represent σ-algebras.

For random variables and functions, xt is a short hand for the sequence x1, . . . , xt,
and xb

a is a short hand for xa, . . . , xb. E {·} denotes the expectation of a random vari-
able, Pr (·) denotes the probability of an event, I [·] denotes the indicator function of
a statement, and P {X} denotes the space of all PMF (probability mass functions) on
X. In order to denote that the expectation of a random variable or the probability
of an event depends on a function ϕ, we use E

{
·

∣∣∣ϕ} and Pr
(
·

∣∣∣ϕ), respectively. This
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System Channel 1 Channel 2Agent 1 Agent 2
Xt Y1

t U1
t Y2

t

U2
t

N1
t N2

t

Figure .: A general two-agent system

slightly unusual notation is chosen since we want to keep track of all functional de-
pendencies and the conventional notation of Eϕ {·} and Prϕ (·) is too cumbersome
to use.

. A general finite-horizon two-agent problem

System model
Consider a two-agent system, shown in Figure ., that operates in discrete time for
a horizon T as follows:

Xt+1 = ft(Xt,U1
t ,U

2
t ,Wt). (.)

Here Xt ∈ Xt denotes the state of the system at time t, U1
t and U2

t denote the control
actions of agents  and , respectively, at time t, and Wt denotes the process noise
at time t. The function ft(·) is the plant function. The observations Y1

t and Y2
t of the

agents are given by

Y1
t = h1

t (Xt,N1
t ), (.a)

Y2
t = h2

t (Xt,U1
t ,N

2
t ), (.b)

where Nk
t ∈ N

k
t and hk

t , k = 1, 2, denotes the channel noise and observation chan-
nel of agent k at time t, respectively. The control actions U1

t and U2
t are generated

according to

U1
t = g1

t (Y1
t ,S

1
t−1), (.a)

U2
t = g2

t (Y2
t ,S

2
t−1), (.b)
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where Sk
t ∈ S

k
t , k = 1, 2, denote the state of agents  and . These states are updated

according to

S1
t = l1t (Y1

t ,U
1
t ,S

1
t−1), (.a)

S2
t = l2t (Y2

t ,U
2
t ,S

2
t−1). (.b)

The functions gk
t (·) and lkt (·) are the control law of agent k and state-update rule/

function of agent k at time t, respectively. We will use decision rule as a generic
term to refer to either the control law or the state-update function. At each time an
instantaneous cost of ρt(Xt,U1

t ,U
2
t ) is incurred. We assume that the function ρt is

positive and uniformly bounded.

For ease of exposition, we will assume that all system variables are finite. Under
some technical assumptions, the results presented in this chapter can be extend to
the case where the system variables are continuous.

Agents’ strategies and systems’ design
The choice of Gk := (gk

1, . . . , g
k
T) is called a control strategy of agent k, k = 1, 2; the

choice of Lk := (lk1, . . . , l
k
T) is called a state-update strategy of agent k, k = 1, 2. The

choice (G1,L1,G2,L2) of control and state-update strategies of both agents is called
a design of the system.

Primitive random variables
All the randomness in the system is generated by the random variables (X1, W1, . . . ,

WT, N1
1, . . . ,N

1
T, N2

1, . . . ,N
2
T). These random variables are called primitive random

variables and are assumed to be mutually independent and defined on a common
probability space (Ω,F,P). We denote the PMF (probability mass function) of X1 by
PX1 , the PMF of Wt by PWt and the PMF of Nk

t by PNk
t
. Once a design is specified, all

system variables are measurable with respect to the underlying probability space
(Ω,F,P).

Performance measure and optimization
The performance of a design is quantified by the total expected cost under that
design, i.e.,
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JT(G1,L1,G2,L2) := E

 T∑
t=1

ρt(Xt,U1
t ,U

2
t )

∣∣∣∣∣∣∣ G1,L1,G2,L2

 (.)

where the expectation is taken with respect to the measure induced on {(Xt,U1
t ,U

2
t ),

t = 1, . . . ,T} by the joint measure on the primitive random variables and the choice
of the design (G1,L1,G2,L2).

We are interested in the following optimization problem.

Problem .. Consider a two-agent sequential team where the plant function ft, the ob-
servation functions h1

t and h2
t , the cost function ρt, and the PMF of the primitive random

variables are given for t = 1, . . . ,T. Determine a design (G1,∗,L1,∗,G2,∗,L2,∗) that minimizes
the total expected cost under that design, i.e.,

JT(G1,∗,L1,∗,G2,∗,L2,∗) = J ∗T := min
G1
∈G 1,T

L1
∈L 1,T

G2
∈G 2,T

L2
∈L 2,T

JT(G1,L1,G2,L2), (.)

where for k = 1, 2, G k,T := G k
1 × · · · × G k

T ; G k
t is the family of functions from Yk

t × S
k
t−1 to

U
k
t ; L k,T := L k

1 × · · · ×L k
T ; and L k

t is the family of functions from Yk
t × U

k
t × S

k
t−1 to

S
k
t .

If part of the design is pre-specified (e.g., the state-update strategy is fixed), then we are
only interested in determining the remaining components of the design optimally.

We assume that all decision rules are pure (i.e., not randomized). We could have
generalized the model by allowing randomized decision rules; however, random-
ized decision rules would not lead to a lower cost (see Gihman and Skorohod (,
Theorem .)).

The sequential nature of the problem
Problem . is a multi-stage sequential team with non-classical information struc-
ture (see the classification in Section .). To explicitly highlight the sequential na-
ture of the problem, we need to refine the notion of time. We call each step of the
evolution of the system a stage. For each stage we consider four time instances: 1t,
2t, 3t and 4t. We assume that agent  generates a decision U1

t at time 1t and updates
its state S1

t at time 2t, agent  generates a decision U2
t at time 3t and updates its state

S2
t at time 4t. We will sometimes refer to the agent acting at time it as “agent it”. The
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sequential ordering of the system variables is shown in Figure . (some of these
variables will be defined later).

Stage t
1t 2t 3t 4t

Wt−1 Xt N1
t Y1

t U1
t S1

t N2
t Y2

t U2
t S2

t Wt

g1
t l1t g2

t l2t

1πt
2πt

3πt
4πt

Time
notation

System
variables

Decision
functions

Information
states

Figure .: Sequential ordering of the system variables for the two-agent system

For the ease of notation, let iϕt denote the function used by agent it, and let iϕt−1

denote all the past functions until time it, i.e.,

1ϕt = g1
t ,

1ϕt−1 = (g1,t−1, l1,t−1, g2,t−1, l2,t−1); (.a)
2ϕt = l1t ,

2ϕt−1 = (g1,t, l1,t−1, g2,t−1, l2,t−1); (.b)
3ϕt = g2

t ,
3ϕt−1 = (g1,t, l1,t, g2,t−1, l2,t−1); (.c)

4ϕt = l2t ,
4ϕt−1 = (g1,t, l1,t, g2,t, l2,t−1). (.d)

Data and Information Fields
Definition . (Data at agents). Let iOk

t denote the data available at agent k at time it.
Then,

1O1
t := (Y1

t ,S
1
t−1), 2O1

t := (Y1
t ,U

1
t ,S

1
t−1), (.a)

3O1
t := S1

t ,
4O1

t := S1
t , (.b)

and

1O2
t := S2

t−1,
2O2

t := S2
t−1, (.c)

3O2
t := (Y2

t ,S
2
t−1), 4O2

t := (Y2
t ,U

2
t ,S

2
t−1). (.d)

Let i
O

k
t denote the space of realizations of iOk

t .
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For any choice of iϕt−1 of past decision rules, the data iOk
t of agent k are measur-

able with respect to F. All the information (about the randomness of F) that agent k

can obtain from its data is called its information field iJk
t . This information field

equals the smallest sub-field σ(iOk
t ; iϕt−1) of F with respect to which iOk

t is measur-
able.

Definition . (Information Fields). Let iJk
t denote the information field of agent k at

time time it. Then,

1J1
t := σ(Y1

t ,S
1
t−1; 1ϕt−1), 2J1

t := σ(Y1
t ,U

1
t ,S

1
t−1; 2ϕt−1), (.a)

3J1
t := σ(S1

t ; 3ϕt−1), 4J1
t := σ(S1

t ; 4ϕt−1), (.b)

and

1J2
t := σ(S2

t−1; 1ϕt−1), 2J2
t := σ(S2

t−1; 2ϕt−1), (.c)
3J2

t := σ(Y2
t ,S

2
t−1; 3ϕt−1), 4J2

t := σ(Y2
t ,U

2
t ,S

2
t−1; 4ϕt−1). (.d)

Observe that agent  does not change its information at time 2t and 4t, thus

3J1
t =

4J1
t and 1J1

t+1 =
2J1

t+1. (.a)

Similarly, for agent 

1J2
t =

2J2
t and 3J2

t =
4J2

t . (.b)

The information fields of agent  change with time as follows. While going from
time 4(t − 1) to 1t, agent  observes new data, so 4J1

t−1 ⊆
1J1

t . While going from time
1t to 2t, agent  generates a control action; this control action does not contain any
self information since randomized strategies are not allowed. So, 1J1

t =
2J1

t . While
going from 2t to 3t, agent  either stores the current observation and control action
or sheds information. In the first case 2J1

t =
3J1

t ; in the second 2J1
t ⊃

3J1
t . While

going from 3t to 4t, agent  neither observes any additional data, nor does it take
any decision. So 3J1

t =
4J1

t . Thus,

· · ·
4J1

t−1 ⊆
1J1

t =
2J1

t ⊇
3J1

t =
4J1

t ⊆
1J1

t+1 · · · (.a)

By a similar argument, the information fields of agent  change as follows:
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· · ·
4J2

t−1 ⊇
1J2

t =
2J2

t ⊆
3J2

t =
4J2

t ⊇
1J2

t+1 · · · (.b)

Furthermore, due to noise in the observation channel(
1J1

t =
2J1

t

)
6⊆

6⊇

(
1J2

t =
2J2

t

)
and

(
3J1

t =
4J1

t

)
6⊆

6⊇

(
3J2

t =
4J2

t

)
.

Therefore, agent  does not know everything that is known to agent  and vice-ver-
sa; so, the system has non-classical information structure.

. Global Optimization
As mentioned in the introduction, our goal is to obtain a sequential decomposition
of a generic decentralized optimization problem. We proceed as follows. We first
obtain a sequential decomposition of a finite horizon problem. We then investigate
conditions under which this sequential decomposition can be extended to infinite
horizon problems. In particular, we consider four variations of the two-agent prob-
lem that depend on whether an agent has perfect recall or time-invariant state. For
three of these four cases, we show how to obtain a sequential decomposition that
works for both finite and infinite horizon problems.

In order to obtain a sequential decomposition for the finite horizon problem,
we need to identify “information states sufficient for performance evaluation”. There is
no known methodology for identifying appropriate information states that lead to
a sequential decomposition of both finite and infinite horizon problems. We first
explain the properties that appropriate information states must satisfy. We then
use these properties as a guide to guess appropriate information states and show
how they lead to a sequential decomposition of the two-agent team.

Information states
A critical step in obtaining a sequential decomposition for problems with non-clas-
sical information structures is identifying an information state sufficient for per-
formance evaluation. An information state is a sufficient statistic that satisfies cer-
tain properties. Unfortunately, all definitions of information states in the literature,
with the exception of Witsenhausen (), are in terms of their properties for sys-
tems with a classical information structure; the only explanation of the properties
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of information states for systems with a non-classical information structure is in
Witsenhausen ():

The (information) state should be a summary (‘compression’) of some data
(the ‘past’) known to someone (an observer or a controller) and sufficient for
some purposes (input-output map, optimization, dynamic programming).

In this section we define the properties that the information states sufficient for
performance analysis should satisfy and explain what these properties mean in
the context of the two-agent sequential team. Consider a two-agent team, where
the agents sit together before the system starts operating and plan what decision
rules they will use. Since both agents have the same objective, such a “pre-game”
agreement is admissible. In order to obtain a sequential decomposition , the agents
need to determine their decision rules in a backward manner. Thus at time t, the
agents need to do the following:

. Determine the information that would be common knowledge to them (in the
sense of Aumann ()).

. Using this common information and assuming that future decision rules have
been optimally chosen, determine decision rules that are optimal at time t.

Hence, the information that is common knowledge at time t can be used to obtain a
sequential decomposition. In general, the agents can chose information states, which
are “smaller” than the entire common knowledge but still lead to a sequential de-
composition. Such information states should be measurable with respect to the
common knowledge and sufficient to determine optimal decision rule. More pre-
cisely, the should satisfy the following properties:

. Sufficient summary of past information

The information state should be a representation of all the past information
that is sufficient for future performance evaluation. This has the following
interpretation.

The two-agent decentralized team is a controlled stochastic input-output
system. The stochastic inputs are {X1, Wt, Nk

t , k = 1, 2, t = 1, . . . ,T}, the con-
trolled inputs are {(gk

t , l
k
t ), k = 1, 2, t = 1, . . . ,T}, and the outputs are {(U1

t ,U
2
t ),

t = 1, . . . ,T}. The system designer has to choose a design (G1,L1,G2,L2).
Suppose the system is at time 1t (similar interpretations will hold for 2t, 3t,
and 4t): nature has produced (x1,wt, n1,t−1,n2,t−1), the designer has chosen
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1ϕt−1 (which equals (g1,t−1, l1,t−1, g2,t−1, l2,t−1)), and the system has produced
(u1,t−1,u2,t−1) and incurred a cost

∑t−1
t′=1 ρt′(xt′ ,u1

t′ ,u
2
t′). The designer has to

choose 1ϕT
t (which equals (g1,T

t , l
1,T
t , g2,T

t , l
2,T
t )) to minimize the expected fu-

ture cost E
{∑T

t′=t ρt′(xt′ ,U1
t′ ,U

2
t′)

∣∣∣ 1ϕt−1, 1ϕT
t

}
. Different choices of past deci-

sion rules are equivalent for the purpose of evaluating future performance
if any choice of future decision rules lead to the same expected future per-
formance. In other words, two choices of past decision rules 1ϕt−1,(1) and
1ϕt−1,(2) are equivalent, denoted by 1ϕt−1,(1)

∼
1ϕt−1,(2), if for any choice of

future decision rules 1ϕT
t = (g1,T

t , l
1,T
t , g2,T

t , l
2,T
t ), we have

E

 T∑
t′=t

ρt′(Xt′ ,U1
t′ ,U

2
t′)

∣∣∣∣∣∣∣ 1ϕt−1,(1), 1ϕT
t

 = E
 T∑

t′=t

ρt′(Xt′ ,U1
t′ ,U

2
t′)

∣∣∣∣∣∣∣ 1ϕt−1,(2), 1ϕT
t


Recall that the designer has already chosen 1ϕt−1 and wants to choose 1ϕT

t

to minimize the expected future cost. If 1ϕt−1,(1)
∼

1ϕt−1,(2) then the optimal
future decision rules will be the same for both of them. So, to evaluate future
performance and choose future decision rules, it is sufficient for the designer
to keep track of the equivalence class of the past decision rules.

Let iΦt−1 denote the space of realization of all past decision rules, and let
iΠt be any arbitrary space. Suppose iπt : iΦt−1

→
iΠt is a function such that

for any iϕt−1,(1), iϕt−1,(2)
∈

iΦt−1, if iπt(iϕt−1,(1)) = iπt(iϕt−1,(2)) then iϕt−1,(1)
∼

iϕt−1,(2). Any such iπt is a sufficient statistic for future performance evalua-
tion.

. Common knowledge and sequential update

All agents in the system should be able to solve the sequential decomposi-
tion of the problem. So, the information state cannot depend on data that is
observed locally by one of the agents. In fact, the information state should be
common knowledge between the two agents in the sense of Aumann (),
and the agents should be able to keep track of how the information state
evolves with time.

In centralized stochastic optimization (i.e., problems with classical infor-
mation structure), the conditional probability of the state of the plant con-
ditioned on the agent’s data is an information state appropriate for perfor-
mance evaluation. However, in decentralized stochastic optimization (i.e.,
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problems with non-classical information structures) such conditional proba-
bilities cannot be information states as they are not common knowledge: the
data observed at each agent is not common knowledge, hence conditional
probabilities based on this data is not common knowledge. The sufficient
statistics iπt of () are derived from past decision rules, which are common
knowledge. So, they can be evaluated by both agents.

Furthermore, in order for both agents to carry out the sequential decom-
position, for any realization of current information state and any choice of
current decision rules, both agents should be able to determine the next re-
alization of information state. This means that if 1πt, 2πt, 3πt and 4πt are
information states then: 2πt(2ϕt−1) should be a function of 1πt(1ϕt−1) and 1ϕt

(recall that 2ϕt−1 = (1ϕt−1, 1ϕt)); 3πt(3ϕt−1) should be a function of 2πt(2ϕt−1)

and 2ϕt; 4πt(4ϕt−1) should be a function on 3πt(3ϕt−1) and 3ϕt; and 1πt+1(1ϕt)

should be a function of 4πt(4ϕt−1) and 4ϕt.

Any sequence of functions {iπt, i = 1, 2, 3, 4, t = 1, . . . ,T} that have properties ()
and () is a valid choice of information states, and can be used to obtain a sequen-
tial decomposition for the finite horizon problem. We want to develop a methodol-
ogy that can be extended to infinite horizon problem. For that matter, we require
the following additional property.

. Time invariant domain

We want to identify functions iπt : iΦt−1
→

iΠ such that {iπt, i = 1, 2, 3, 4,
t = 1, . . . ,T} satisfy () and () and the sets 1Π, 2Π, 3Π and 4Π do not depend
on the time horizon T.

An information state should provide a sufficient representation of past knowledge
that is also efficient, both in calculating optimal decision rules and in their imple-
mentation. The smaller the set of all realizations of the information state, the more
efficient it is to compute optimal decision rules. So, the following property is desir-
able.

. Minimality.

If more than one appropriate information state exist, working with the infor-
mation state is computationally most efficient. However, we have not been
able to establish a good way of comparing information states of infinite hori-
zon problems. So, in the rest of the chapter, we will not consider minimality.
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In summary, for finite horizon problems we want to identify information states that
satisfy properties () and (); for infinite horizon problems, the information states
should also satisfy property (). Now, we will restate the above properties more
formally so that they can be verified more easily.

Property () is formally equivalent to the following two statements:

 . The information state is a summary of past information.

Thus, 1πt should be a function of 1ϕt−1; 2πt should be a function of 2ϕt−1; 3πt

should be a function of 3ϕt−1; and 4πt should be a function of 4ϕt−1.

 . The information state absorbs the effect of past decisions on future perfor-
mance.

This means that

E

 T∑
t′=t

ρt′(Xt′ ,U1
t′ ,U

2
t′)

∣∣∣∣∣∣∣ G1,L1,G2,L2


= E

 T∑
t′=t

ρt′(Xt′ ,U1
t′ ,U

2
t′)

∣∣∣∣∣∣∣ 1πt, g1,T
t , l

1,T
t , g

2,T
t , l

2,T
t


= E

 T∑
t′=t

ρt′(Xt′ ,U1
t′ ,U

2
t′)

∣∣∣∣∣∣∣ 2πt, g1,T
t+1, l

1,T
t , g

2,T
t , l

2,T
t


= E

 T∑
t′=t

ρt′(Xt′ ,U1
t′ ,U

2
t′)

∣∣∣∣∣∣∣ 3πt, g1,T
t+1, l

1,T
t+1, g

2,T
t , l

2,T
t


= E

 T∑
t′=t

ρt′(Xt′ ,U1
t′ ,U

2
t′)

∣∣∣∣∣∣∣ 4πt, g1,T
t+1, l

1,T
t+1, g

2,T
t+1, l

2,T
t


Property () is equivalent to () and the following statement.

 . Both agents should be able to keep track of the information states.

This means that 2πt should be determined from 1πt and 1ϕt (i.e., 1πt and g1
t );

3πt should be determined from 2πt and 2ϕt (i.e., 2πt and l1t ); 4πt should be de-
termined from 3πt and 3ϕt (i.e., 3πt and g2

t ); and 1πt+1 should be determined
from 4πt and 4ϕt (i.e., 4πt and l2t ).
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Furthermore, statements () and () imply that statement () is equivalent to the
following:

’ . The information states should be sufficient to evaluate the instantaneous
cost.

This means that

E
{
ρt(Xt,U1

t ,U
2
t )

∣∣∣ G1,L1,G2,L2
}
= E

{
ρt(Xt,U1

t ,U
2
t )

∣∣∣ 1πt, g1
t , l

1
t , g

2
t

}
= E

{
ρt(Xt,U1

t ,U
2
t )

∣∣∣ 2πt, l1t , g
2
t

}
= E

{
ρt(Xt,U1

t ,U
2
t )

∣∣∣ 3πt, g2
t

}
= E

{
ρt(Xt,U1

t ,U
2
t )

∣∣∣ 4πt
}

For finite horizon problems, information states sufficient for performance analysis must
satisfy statements (), () and () or equivalently satisfy statements (), (’)
and (). For infinite horizon problems, the information states should also satisfy
property () which is equivalent to the following:

 . The information states belong to time-invariant spaces

This means that there exist spaces 1Π, 2Π, 3Π and 4Π such that for all t, iπt ∈

iΠ, i = 1, 2, 3, 4.

As mentioned earlier, there is no general method of identifying appropriate infor-
mation states for problems with a non-classical information structure. That is
why we first guess information states that satisfy the above properties, and then
show how to obtain a sequential decomposition using these information states.

Definition .. Define 1πt, 2πt, 3πt and 4πt as follows:

1πt := Pr
(
Xt,Y1

t ,S
1
t−1,S

2
t−1

∣∣∣ 1ϕt−1
)
, (.a)

2πt := Pr
(
Xt,Y1

t ,U
1
t ,S

1
t−1,S

2
t−1

∣∣∣ 2ϕt−1
)
, (.b)

3πt := Pr
(
Xt,Y2

t ,U
1
t ,S

1
t ,S

2
t−1

∣∣∣ 3ϕt−1
)
, (.c)

4πt := Pr
(
Xt,Y2

t ,U
1
t ,U

2
t ,S

1
t ,S

2
t−1

∣∣∣ 4ϕt−1
)
. (.d)

Let iΠt, i = 1,2,3,4, denote the space of probability measures on (Xt × Y
1
t × S

1
t−1 × S

2
t−1),

(Xt×Y
1
t×U

1
t ×S

1
t−1×S

2
t−1), (Xt×Y

2
t×U

1
t ×S

1
t×S

2
t−1), and (Xt×Y

2
t×U

1
t ×U

2
t ×S

1
t×S

2
t−1),

respectively. Then iπt takes values in iΠt.
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The above definitions are to be interpreted as follows. Let (Ω,F,P) denote the
probability space on which all primitive random variables are defined. For any
choice 1ϕt−1 of past decision rules at 1t, the state Xt of the system, the observation
Y1

t of agent , and the states S1
t−1, S2

t−1 of both the agents are F--measurable. Thus,
for any choice of 1ϕt−1, the vector (Xt,Y1

t ,S
1
t−1,S

2
t−1) is F--measurable. 1πt is the cor-

responding induced measure on (Xt × Y
1
t × S

1
t−1 × S

2
t−1). Similar interpretations

hold for 2πt, 3πt, and 4πt.

The above defined probability measures are related as follows:

Lemma .. 1πt, 2πt, 3πt and 4πt are information states for the control law and state-
update rules at agents  and , respectively. Specifically,

. There exist linear transformations 1Qt, 2Qt, 3Qt and 4Qt such that

2πt =
1Qt(g1

t ) 1πt, (.a)
3πt =

2Qt(l1t ) 2πt, (.b)
4πt =

3Qt(g2
t ) 3πt, (.c)

1πt+1 =
4Qt(l2t ) 4πt. (.d)

. The expected instantaneous cost can be expressed as

E
{
ρt(Xt,U1

t ,U
2
t )

∣∣∣ 4ϕt−1
}
= ρ̂t(4πt). (.)

where ρ̂t is a linear function of 4πt that depends on (G1,L1,G2,L2) only through 4πt.

Proof. We will prove each part separately.

. Consider any xt ∈ Xt, y1
t ∈ Y

1
t , u1

t = U
1
t , s1

t−1 ∈ S
1
t−1, s2

t−1 ∈ S
2
t−1, and 2ϕt−1 =

(1ϕt−1, g1
t ). A component of 2πt is given by

2πt(xt, y1
t ,u

1
t , s

1
t−1, s

2
t−1)

= Pr
(
Xt = xt,Y1

t = y1
t ,U

1
t = u1

t ,S
1
t−1 = s1

t−1,S
2
t−1 = s2

t−1

∣∣∣ 2ϕt−1
)

= Pr
(
U1

t = u1
t

∣∣∣ Xt = xt,Y1
t = y1

t ,S
1
t−1 = s1

t−1,S
2
t−1 = s2

t−1; 1ϕt−1, g1
t

)
× Pr

(
Xt = xt,Y1

t = y1
t ,S

1
t−1 = s1

t−1,S
2
t−1 = s2

t−1

∣∣∣ 1ϕt−1, g1
t

)
(a)
= I

[
u1

t = g1
t (y1

t , s
1
t−1)

]
Pr

(
Xt = xt,Y1

t = y1
t ,S

1
t−1 = s1

t−1,S
2
t−1 = s2

t−1

∣∣∣ 1ϕt−1
)

= I
[
u1

t = g1
t (y1

t , s
1
t−1)

]
1πt(xt, y1

t , s
1
t−1, s

2
t−1)
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=:
(

1Qt(g1
t ) 1πt

)
(xt, y1

t ,u
1
t , s

1
t−1, s

2
t−1) (.)

where (a) follows from the sequential order in which the system variables are
generated.

. Consider any xt ∈ Xt, y2
t ∈ Y

2
t , u1

t ∈ U
1
t , s1

t ∈ S
1
t , s2

t−1 ∈ S
2
t−1, and 3ϕt−1 =

(2ϕt−1, l1t ). A component of 3πt is given by

3πt(xt, y2
t ,u

1
t , s

1
t , s

2
t−1)

= Pr
(
Xt = xt,Y2

t = y2
t ,U

1
t = u1

t ,S
1
t = s1

t ,S
2
t−1 = s2

t−1

∣∣∣ 3ϕt−1
)

=
∑

y1
t ∈Y

1
t

s1
t−1
∈S

1
t−1

Pr
(
Y2

t = y2
t

∣∣∣ Xt = xt,Y1
t = y1

t ,U
1
t = u1

t ,S
1
t = s1

t ,S
1
t−1 = s1

t−1,S
2
t−1 = s2

t−1; 3ϕt−1
)

× Pr
(
S1

t = s1
t

∣∣∣ Xt = xt,Y1
t = y1

t ,U
1
t = u1

t ,S
1
t−1 = s1

t−1,S
2
t−1 = s2

t−1; 2ϕt−1, l1t
)

× Pr
(
Xt = xt,Y1

t = y1
t ,U

1
t = u1

t ,S
1
t−1 = s1

t−1,S
2
t−1 = s2

t−1

∣∣∣ 2ϕt−1, l1t
)

(b)
=

∑
y1

t ∈Y
1
t

s1
t−1
∈S

1
t−1

PN2
t

(
n2

t ∈ N
2
t : y2

t = h2
t (xt,u1

t ,n
2
t )
)
I
[
s1

t = l1t (y1
t ,u

1
t , s

1
t−1)

]
× Pr

(
Xt = xt,Y1

t = y1
t ,U

1
t = u1

t ,S
1
t−1 = s1

t−1,S
2
t−1 = s2

t−1

∣∣∣ 2ϕt−1
)

=
∑

y1
t ∈Y

1
t

s1
t−1
∈S

1
t−1

PN2
t

(
n2

t ∈ N
2
t : y2

t = h2
t (xt,u1

t ,n
2
t )
)
I
[
s1

t = l1t (y1
t ,u

1
t , s

1
t−1)

]
×

2πt(xt, y1
t ,u

1
t , s

1
t−1, s

2
t−1)

=:
(

2Qt(l1t ) 2πt
)
(xt, y2

t ,u
1
t , s

1
t , s

2
t−1) (.)

where (b) follows from the sequential order in which the system variables are
generated.

. Consider any xt ∈ Xt, y2
t ∈ Y

2
t , u1

t ∈ U
1
t , u2

t ∈ U
2
t , s1

t ∈ S
1
t , s2

t−1 ∈ S
2
t−1, and

4ϕt−1 = (3ϕt−1, g2
t ). A component of 4πt is given by,

4πt(xt, y2
t ,u

1
t ,u

2
t , s

1
t , s

2
t−1)

= Pr
(
Xt = xt,Y2

t = y2
t ,U

1
t = u1

t ,U
2
t = u2

t ,S
1
t = s1

t ,S
2
t−1 = s2

t−1

∣∣∣ 4ϕt−1
)

= Pr
(
U2

t = u2
t

∣∣∣ Xt = xt,Y2
t = y2

t ,U
1
t = u1

t ,S
1
t = s1

t ,S
2
t−1 = s2

t−1; 3ϕt−1, g2
t

)
× Pr

(
Xt = xt,Y2

t = y2
t ,U

1
t = u1

t ,S
1
t = s1

t ,S
2
t−1 = s2

t−1

∣∣∣ 3ϕt−1, g2
t

)
(c)
= I

[
u2

t = g2
t (y2

t , s
2
t−1)

]
Pr

(
Xt = xt,Y2

t = y2
t ,U

1
t = u1

t ,S
1
t = s1

t ,S
2
t−1 = s2

t−1

∣∣∣ 3ϕt−1
)

= I
[
u2

t = g2
t (y2

t , s
2
t−1)

]
3πt(xt, y2

t ,u
1
t , s

1
t , s

2
t−1)
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=:
(

3Qt(g2
t ) 3πt

)
(xt, y2

t ,u
1
t ,u

2
t , s

1
t , s

2
t−1) (.)

where (c) follows from the sequential order in which the system variables are
generated.

. Consider any xt+1 ∈ Xt+1, y1
t+1 ∈ Y

1
t+1, s1

t ∈ S
1
t , s2

t ∈ S
2
t , and 1ϕt = (4ϕt−1, l2t ).

Consider a component of 1πt+1,

1πt+1(xt+1, y1
t+1, s

1
t , s

2
t )

= Pr
(
Xt+1 = xt+1,Y1

t+1 = y1
t+1,S

1
t = s1

t ,S
2
t = s2

t

∣∣∣ 1ϕt
)

=
∑

xt∈Xt, y2
t ∈Y

2
t

u1
t ∈U

1
t , u2

t ∈U
2
t

s2
t−1
∈S

2
t−1

Pr
(
Y1

t+1 = y1
t+1

∣∣∣ Xt+1 = xt+1,Xt = xt,Y2
t = y2

t ,U
1
t = u1

t ,

U2
t = u2

t ,S
1
t = s1

t ,S
2
t−1 = s2

t−1,S
2
t = s2

t ; 1ϕt
)

× Pr
(
Xt+1 = xt+1

∣∣∣ Xt = xt,Y2
t = y2

t ,U
1
t = u1

t ,

U2
t = u2

t ,S
1
t = s1

t ,S
2
t−1 = s2

t−1,S
2
t = s2

t ; 1ϕt
)

× Pr
(
S2

t = s2
t

∣∣∣ Xt = xt,Y2
t = y2

t ,U
1
t = u1

t ,

U2
t = u2

t ,S
1
t = s1

t ,S
2
t−1 = s2

t−1; 4ϕt−1, l2t
)

× Pr
(
Xt = xt,Y2

t = y2
t ,U

1
t = u1

t ,U
2
t = u2

t ,S
1
t = s1

t ,S
2
t−1 = s2

t−1

∣∣∣ 4ϕt−1, l2t
)

(d)
=

∑
xt∈Xt, y2

t ∈Y
2
t

u1
t ∈U

1
t , u2

t ∈U
2
t

s2
t−1
∈S

2
t−1

PN1
t+1

(
n1

t+1 ∈ N
1
t+1 : y1

t+1 = h1
t+1(xt+1,n1

t+1)
)

× PWt

(
wt ∈ Wt : xt+1 = ft(xt,u1

t ,u
2
t ,wt)

)
× I

[
s2

t = l2t (y2
t ,u

2
t , s

2
t−1)

]
× Pr

(
Xt = xt,Y2

t = y2
t ,U

1
t = u1

t ,U
2
t = u2

t ,S
1
t = s1

t ,S
2
t−1 = s2

t−1

∣∣∣ 4ϕt−1
)

=
∑

xt∈Xt, y2
t ∈Y

2
t

u1
t ∈U

1
t , u2

t ∈U
2
t

s2
t−1
∈S

2
t−1

PN1
t+1

(
n1

t+1 ∈ N
1
t+1 : y1

t+1 = h1
t+1(xt+1,n1

t+1)
)

× PWt

(
wt ∈ Wt : xt+1 = ft(xt,u1

t ,u
2
t ,wt)

)
× I

[
s2

t = l2t (y2
t ,u

2
t , s

2
t−1)

]
4πt(xt, y2

t ,u
1
t ,u

2
t , s

1
t , s

2
t−1)

=:
(

4Qt(l2t ) 4πt
)
(xt+1, y1

t+1, s
1
t , s

2
t ) (.)

where (d) follows from the sequential order in which the system variables are
generated.



 

 



. Consider the expected instantaneous cost

E
{
ρt(Xt,U1

t ,U
2
t )

∣∣∣ 4ϕt−1
}

=
∑

(xt∈Xt,u1
t ∈U

1
t ,u

2
t ∈U

2
t )

ρt(xt,u1
t ,u

2
t ) Pr

(
Xt = xt,U1

t = u1
t ,U

2
t = u2

t

∣∣∣ 4ϕt−1
)

=
∑

(xt∈Xt,u1
t ∈U

1
t ,u

2
t ∈U

2
t )

ρt(xt,u1
t ,u

2
t )

×

∑
(y2

t ∈Y
2
t , s

1
t ∈S

1
t , s

2
t−1
∈S2

t−1
)

Pr
(
Xt = xt,Y2

t = y2
t ,S

1
t = s1

t ,S
2
t−1 = s2

t−1,U
1
t = u1

t ,U
2
t = u2

t

∣∣∣ 4ϕt−1
)

=
∑

(xt∈Xt,u1
t ∈U

1
t ,u

2
t ∈U

2
t )

ρt(xt,u1
t ,u

2
t ) ×

∑
(y2

t ∈Y
2
t , s

1
t ∈S

1
t , s

2
t−1
∈S2

t−1
)

4πt(xt, y2
t ,u

1
t ,u

2
t , s

1
t , s

2
t−1)

=: ρ̂t(4πt) (.)

Equations (.)–(.) imply that the transformations 1Qt, 2Qt, 3Qt and 4Qt are lin-
ear in the sense that if iπ(1)

t ,
iπ(2)

t ∈
iΠt, iϕt ∈

iΦt, and λ ∈ [0, 1] then

iQt(iϕt)
(
λ iπ(1)

t + (1 − λ) iπ(2)
t

)
= λ iQt(iϕt) iπ(1)

t + (1 − λ) iQt(iϕt) iπ(2)
t .

Further (.) implies that ρ̂ is linear in 4π, i.e.,

ρ̂t
(
λ 4π(1)

t + (1 − λ) 4π(2)
t

)
= λρ̂t(4π(1)

t ) + (1 − λ)ρ̂t(4π(2)
t ) �

The information states iπt, i = 1, 2, 3, 4, satisfy () by definition. Part  of Lem-
ma . shows that they satisfy (); part  shows that they satisfy (). Thus, using
these information states we should be able to obtain a sequential decomposition of
Problem . However, () is not satisfied in general. So, this sequential decompo-
sition will not always extend to infinite horizon problems.

In order to obtain a sequential decomposition of Problem . we consider the
problem of optimally controlling the time evolution of the information states 1πt,
2πt, 3πt and 4πt, t = 1, . . . ,T. We then consider four time-homogeneous variations of
the system of Problem ., and show how to extend the sequential decomposition
to infinite horizon problems for three of these four variations.
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An equivalent optimization problem
Consider a centralized deterministic optimization problem with state space alter-
nating between 1Πt, 2Πt, 3Πt and 4Πt and action space alternating between G 1

t , L 1
t ,

G 2
t , and L 2

t . The system dynamics are given by (.) and at each stage t the de-
cision rules g1

t , l1t , g2
t , and l2t are determined according to meta-functions or meta-

rules 1∆t, 2∆t, 3∆t and 4∆t, where 1∆t is a function from 1Πt to G 1
t , 2∆t is a function

from 2Πt to L 1
t , 3∆t is a function from 3Πt to G 2

t , and 4∆t is a function from 4Πt to
L 2

t . Thus the system equations (.) can be written as

g1
t =

1∆t(1πt), 2πt =
1Qt(g1

t ) 1πt, (.a)

l1t =
2∆t(2πt), 3πt =

2Qt(l1t ) 2πt, (.b)

g2
t =

3∆t(3πt), 3πt =
3Qt(g2

t ) 1πt, (.c)

l2t =
4∆t(4πt), 1πt+1 =

4Qt(l2t ) 4πt. (.d)

The initial state 1π1 = Pr (X1,Y1) is given (in terms of PX1 and PN1
1
). An instanta-

neous cost ρ̂t(4πt) is incurred at each stage. The choice (1∆1,
2∆1,

3∆1,
4∆t, . . . ,

1∆T,
2∆T,

3∆T,
4∆T) is called a meta-strategy or a meta-design and denoted by ∆T. The perfor-

mance of a meta--strategy is given by the total cost incurred by that meta-strategy,
i.e.,

JT(∆T)(1π1) =
T∑

t=1

ρ̂t(4πt). (.)

Now consider the following optimization problem:

Problem .. Consider the dynamic system (.) with known transformations 1Qt, 2Qt,
3Qt and 4Qt given by (.)–(.). The initial state 1π1 is given. Determine a meta--
strategy ∆T to minimize the total cost given by (.).

Given any meta-strategy ∆T, the time evolution of iπt is deterministic; iπt and
the corresponding iϕt can be determined from (.). Thus, for any given initial
state 1π1 and any choice of meta-strategy, we can determine a corresponding design.
Further, we can rewrite the performance criterion of (.) as
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JT(G1,L1,G2,L2) = E

 T∑
t=1

ρt(Xt,U1
t ,U

2
t )

∣∣∣∣∣∣∣ G1,L1,G2,L2


(a)
=

T∑
t=1

E
{
ρt(Xt,U1

t ,U
2
t )

∣∣∣ 4ϕt−1
}

(b)
=

T∑
t=1

ρ̂t(4πt)

=:JT(∆T)(1π1) (.)

where (a) follows from the sequential ordering of system variables and (b) follows
from Lemma ..

For any meta-strategy ∆T and any initial state 1π1, the system equations (.)
determine a strategy (G1,L1,G2,L2). We call (G1,L1,G2,L2) the strategy correspond-
ing to ∆T and 1π1. For any strategy (G1,L1,G2,L2) and any initial state 1π1, there
exist many meta-strategies ∆T such that (G1,L1,G2,L2) is the strategy correspond-
ing to ∆T and 1π1. One such meta-strategy is

g1
t =

1∆t(1πt), l1t =
2∆t(2πt), g2

t =
3∆t(3πt), l2t =

4∆t(4πt)

for all iπt ∈
iΠt, i = 1, 2, 3, 4, t = 1, . . . ,T. Equation (.) implies that for a given 1π1,

the performance of any meta-strategy∆T in Problem . is same as the performance
of the corresponding strategy (G1,L1,G2,L2) in Problem .. Therefore, the optimal
performance of Problems . and . are same; furthermore, the design (G1,∗,L1,∗,

G2,∗,L2,∗) corresponding to any optimal meta-strategy ∆∗,T for Problem . is opti-
mal for Problem ..

The global optimization algorithm
Problem . can be formulated as a classical centralized optimization problem by
considering the information state iπt as the “controlled state” at time it, the decision
rule iϕt (which is equal to g1

t , l1t , g2
t , or l2t depending on it) as the “control action” (or

decision) at time it, and the meta-function i∆t as the “control law” at time it. Hence,
an optimal meta-strategy for Problem . is given by the optimal “control strategy”
of the centralized optimization problem and can be determined as follows:
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Theorem . (Global optimization algorithm). An optimal meta-strategy ∆∗,T for
Problem . (and consequently an optimal design for Problem .) can be determined by
the solution of the following nested optimality equations. For all iπt ∈

iΠt, i = 1, 2, 3, 4,
t = 1, . . . ,T, define

1VT+1(1πT+1) = 0, (.a)

and for t = 1, . . . ,T

1Vt(1πt) = inf
g1

t ∈G
1
t

2Vt
(

1Qt(g1
t ) 1πt

)
, (.b)

2Vt(2πt) = inf
l1t ∈L

1
t

3Vt
(

2Qt(l1t ) 2πt
)
, (.c)

3Vt(3πt) = inf
g2

t ∈G
2
t

4Vt
(

3Qt(g2
t ) 3πt

)
, (.d)

4Vt(4πt) = ρ̂t(4πt) + inf
l2t ∈L

2
t

1Vt+1

(
4Qt(l2t ) 4πt

)
. (.e)

The functions iVt are called value functions; they represent the minimum expected future
cost that the system in state iπ will incur from time it onwards. These value functions
can be determined sequentially by moving backwards in time. The optimal performance of
Problem . (and Problem .) is given by

J
∗

T =
1V1(1π1). (.)

For any it and iπ, the arg min (or arg inf) in the RHS of iVt(iπ) equals to the optimal value of
the meta-function i∆t(iπt). Thus, solving for the value functions for all values of the informa-
tion state also determines an optimal meta-strategy ∆∗,T for Problem .. Relations (.)
can be used to determine optimal design for Problem ..

Proof. This is a standard result for a deterministic optimization problem, see Dynkin
and Yushkevich (, Chapter ). �

We can combine the four step T-stage sequential decomposition of (.) into a
one-step T-stage sequential decomposition as follows

1VT+1(1πT+1) = 0, (.a)

and for t = 1, . . . ,T
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1Vt(1πt) = inf
g1

t ∈G
1
t

l1t ∈L
1
t

g2
t ∈G

2
t

l2t ∈L
2
t

ρ̂t

((
3Qt(g2

t ) ◦ 2Qt(l1t ) ◦ 1Qt(g1
t )
)

1πt

)

+ 1Vt+1

((
4Qt(l2t ) ◦ 3Qt(g2

t ) ◦ 2Qt(l1t ) ◦ 1Qt(g1
t )
)

1πt

).(.b)

The above decomposition is equivalent to a deterministic dynamic program in
function space. Theorem . presents a finer decomposition which corresponds to
the refinement of time presented in Figure .; the decomposition given by (.)
has a smaller search space than the decomposition given in (.).

We also have the following result

Theorem . (Concavity of Value Functions). The value functions iVt, i = 1, . . . , 4,
t = 1, . . . ,T, given by (.) are concave in the corresponding iπ.

Proof. Recall that 1Q, 2Q, 3Q and 4Q are linear in iπ and ρ̂t(·) is linear in 4π. The result
of the theorem follows from the fact that concavity is maintained under composi-
tion of a concave function with a linear transformation, summation of concave func-
tions, and point--wise minimum/infimum of concave functions. We will proceed
by backward induction. Observe that 1VT+1 is a concave function of 1π. Assume
that 1Vt+1 is a concave function of 1π. We will show that iVt, i = 1, . . . ,T are concave
functions of iπ. Define

4Wt(4πt, l2t ) := ρ̂t(4πt) + 1Vt+1(4Q(l2t ) 4πt). (.)

4W is a composition of a sum of two functions: one is linear in 4πt and the other
is a composition of a concave function with a linear transformation. Hence 4W is
concave in 4πt. Now,

4Vt(4πt) = min
l2t ∈L

2
t

4W(4πt, l2t ). (.)

Since 4Wt is concave in 4π, and 4Vt is the point--wise minimum of 4Wt, 4Vt is concave
in 4π. Similar argument extends to the other three cases. Hence iVt is concave in iπ,
i = 1, . . . , 4. Thus, by induction iVt, i = 1, . . . , 4, t = 1, . . . ,T is concave in iπ. �
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Summary of the result
We have shown that by an appropriate choice of information states, the general
two-agent team problem (Problem .) can be transformed into a deterministic per-
fectly observed MDP (Problem .) with state spaces iΠ which are continuous and
action spaces G 1

t , L 1
t , G 2

t , and L 2
t which are function spaces. The information state

is perfectly observed by both the agents since they know each other’s decision rules.
The search for an optimal design proceeds in two steps: the backward step and the
forward step. In the backward step, both agents agree upon a rule to break ties and
simultaneously determine meta-functions for each information state at each time
by proceeding backwards in time. In the forward step, they start with the common-
ly known initial value of information state and use the result of the backward step
to determine the decision rules for both of them for all times by moving forwards in
time. This is similar to a standard deterministic MDP (e.g., travelling salesman prob-
lem), where the agent can simply store the control actions rather than the control
laws.

Furthermore, when all the system variables are finite the nested optimality equa-
tions of (.) are similar to the nested optimality equations of POMDPs: the informa-
tion state 1π, 2π, 3π and 4π are probability measures on finite spaces and the action
spaces G 1

t , L 1
t , G 2

t , and L 2
t are finite. So, the computational methods of solving

POMDPs are also applicable to two-agent teams. However, there is a big difference
between the sequential decomposition of POMDPs and two-agent teams. In POMDPs
each step of the sequential decomposition is a parameter optimization problem (we
have to choose the best control action Ut) while in two-agent teams each step of the
sequential decomposition (.) is a functional optimization problem (we have to
choose the best decision function g1

t , l1t , g2
t , or l2t ). This difference makes it harder

to solve the sequential decomposition equations of two-agent teams than the se-
quential decomposition equations of POMDPs. We will talk about computational
complexity in detail in later sections.

. An example—real-time communication
Consider a real-time communication system that consists of a binary Markov source
that must be transmitted over a binary discrete memoryless channel in real-time.
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Suppose that the system operates for three steps. The source output is denoted by
{X1,X2,X3} and it is assumed that

PX1 =
[

0.4 0.6
]
, PX2|X1 = PX3|X2 =

 1.0 0.0

0.1 0.9

.
An encoder encodes the source output in real-time to generate binary encoded

symbols {Z1,Z2,Z3} as follows:

Z1 = c1(X1), Z2 = c2(X1,X2), Z3 = c3(X1,X2,X3).

The functions c1(·), c2(·), and c3(·) are called encoding functions. The encoded sym-
bols {Z1,Z2,Z3} are transmitted over a memoryless Z-channel and generate binary
source outputs {Y1,Y2,Y3} as follows:

Yt = Zt ·Nt, t = 1, 2, 3,

where {N1,N2,N3} denotes the channel noise and are binary i.i.d. random variables
with the distribution

PN1 = PN2 = PN3 =
[

0.1 0.9
]
.

A decoder observes {Y1,Y2,Y3} and generates estimates
{
X̂1, X̂2, X̂3

}
of the source

in real-time as follows:

X̂1 = g1(Y1), X̂2 = g2(Y1,Y2), X̂3 = g3(Y1,Y2,Y3).

The functions g1(·), g2(·), and g3(·) are called decoding functions. The objective is
to determine encoding and decoding functions (c1, c2, c3, g1, g2, g3) to minimize the
probability of error

Pe = E
{
ρ(X1, X̂1) + ρ(X2, X̂2) + ρ(X3, X̂3)

∣∣∣ c1, c2, c3, g1, g2, g3
}

where

ρ(X, X̂) =
{

0, if X = X̂,
1, if X 6= X̂,
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On solving the nested optimality equations of Theorem ., we find that an op-
timal solution is (the optimal solution was obtained numerically, it is simply pre-
sented in analytic form here).

c1(X1) = 1 − X1, c2(X1,X2) = 1 − X1 · X2,

c3(X1,X2,X3) = 1 − X1 · X2 · X3

and

g1(Y1) = 1 − Y1, g2(Y1,Y2) = (1 − Y1) · (1 − Y2),

g3(Y1,Y2,Y3) = (1 − Y1) · (1 − Y2) · (1 − Y3)

The probability of error under this scheme is /.

. The time homogeneous system—the four variations
The information states of Definition . do not belong to time-invariant spaces. Con-
sequently, the sequential decomposition of Theorem . cannot be extended to in-
finite horizons in general. In the remainder of this chapter, we identify instances of
Problem . where the sequential decomposition can be extended to infinite hori-
zon problems.

We restrict attention to time-homogeneous systems, i.e., systems where (i) the
spaces Xt, Y1

t , Y2
t , U1

t , U2
t , Wt, N1

t , and N2
t do not depend on t; (ii) the noise

statistics PWt , PN1
t

and PN2
t

do not depend on t; (iii) the plant function ft(·), the
observation functions h1

t (·) and h2
t (·), and the cost function ρt(·) do not depend on

time t; and (iv) each agent has either time-invariant state (i.e., Sk
t does not depend

on t), or has perfect recall. Based on the state of each agent, there are four variations
of a time-homogeneous two-agent system:

. both agents have time-invariant state space;
. agent  has perfect recall, agent  has time-invariant state space;
. agent  has time-invariant state space, agent  has perfect recall;
. both agents have perfect recall.

We will consider the first three of these four variation in the sequel.
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. Time-homogeneous system—Variation 
Consider a time-homogeneous variation of the system of Problem . with both
agents having time-invariant states denoted by S1 and S2, respectively. We first
show how this simplifies the sequential decomposition of the finite horizon prob-
lem derived in Section .. We then will consider two instances of the correspond-
ing infinite horizon problem, and derive optimality equations whose solutions de-
termine a globally optimal design for these instances.

The finite horizon problem
For a time-homogeneous variation of Problem . with time-invariant state at both
agents, we can simplify some of the optimality equations derived in the previous
section. The spaces G 1

t , L 1
t , G 2

t , L 2
t , 1Πt, 2Πt, 3Πt and 4Πt do not depend on time;

so, we can drop the subscript t and simply denote them by G 1, L 1, G 2, L 2, 1Π,
2Π, 3Π and 4Π, respectively. Furthermore, the transformations 1Qt, 2Qt, 3Qt and 4Qt

and the function ρ̂t of Lemma . do not depend on t; so, we can denote them by 1Q,
2Q, 3Q, 4Q and ρ̂, respectively. Thus, Problem . reduces to a time-homogeneous
problem—the state space, the action space, the system update equations, and the
instantaneous cost do not depend on t. Hence, we can simplify Theorem . as
follows.

Corollary .. If the system of Problem . is time-homogeneous, the nested optimality
equations (.) can be written as

1VT+1(1π) = 0, (.a)

and for t = 1, . . . ,T

1Vt(1π) = inf
g1

t ∈G
1

2Vt
(

1Q(g1
t ) 1π

)
, (.b)

2Vt(2π) = inf
l1t ∈L

1

3Vt
(

2Q(l1t ) 2π
)
, (.c)

3Vt(3π) = inf
g2

t ∈G
2

4Vt
(

3Q(g2
t ) 3π

)
, (.d)

4Vt(4π) = ρ̂(4π) + inf
l2t ∈L

2

1Vt+1

(
4Q(l2t ) 4π

)
. (.e)
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Infinite horizon problems
For the time-homogeneous model of the two-agent team of Section . we can for-
mulate infinite horizon (T → ∞) optimization problems using two criteria: the
expected discounted cost and the average cost per unit time. Let (G1,L1,G2,L2),
where G1 := (g1

1, g
1
2, . . .), L1 := (l11, l

1
2, . . .), G2 := (g2

1, g
2
2, . . .), L2 := (l21, l

2
2, . . .) denote an

infinite horizon design. The two performance criteria that we consider are:

. The expected discounted cost criterion

Under this criterion the performance of a design is given by

J
β(G1,L1,G2,L2) := E

 ∞∑
t=1

βt−1ρ(Xt,U1
t ,U

2
t )

∣∣∣∣∣∣∣ G1,L1,G2,L2

 (.)

where 0 < β < 1 is called the discount factor.

. The average cost per unit time criterion

Under this criterion the performance of a design is given by

J̄(G1,L1,G2,L2) := lim sup
T→∞

1
T
E

 T∑
t=1

ρ(Xt,U1
t ,U

2
t )

∣∣∣∣∣∣∣ G1,L1,G2,L2

 . (.)

We take the lim sup rather than the lim as for some designs (G1,L1,G2,L2) the
limit may not exist.

Ideally, while implementing a solution for infinite horizon problems, we would like
to use time-invariant designs. This motivates the following definitions.

Definition . (Stationary design). A infinite horizon design (G1,L1,G2,L2), where
G1 := (g1

1, g
1
2, . . .), L1 := (l11, l

1
2, . . .), G2 := (g2

1, g
2
2, . . .), L2 := (l21, l

2
2, . . .), is called stationary

(or time-invariant) if g1
1 = g1

2 = · · · := g1, l11 = l12 = · · · := l1, g2
1 = g2

2 = · · · := g2, and l21 =

l22 = · · · := l2. Such a stationary design is equivalently denoted by (g1,∞, l1,∞, g2,∞, l2,∞).

Definition . (Stationary meta-strategy). A meta-strategy ∆̃∞ = (∆̃1, ∆̃2, · · ·), where
∆̃t = (1∆t,

2∆t,
3∆t,

4∆t), is called stationary (or time-invariant) if ∆̃1 = ∆̃2 = · · · := ∆̃.

In time-homogeneous infinite-horizon stochastic optimization problems with
classical information structures, there is no loss in optimality in restricting atten-
tion to stationary strategies, see Kumar and Varaiya (). This result drastical-
ly simplifies the search for an optimal solution. In general, restricting attention
to stationary strategies is not optimal for problems with non-classical information
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structures, see Sandell (). However, there is no loss of optimality in restricting
attention to stationary meta-strategies: for the expected discounted cost criterion
there exist stationary meta-strategies that are optimal; for the average cost per unit
time criterion, under a technical condition, there exist stationary meta-strategies
that are arbitrarily close to optimal. However, the optimal design corresponding to
the optimal stationary meta-strategy is, in general, time-varying.

The expected discounted cost problem
Consider a time-homogeneous infinite-horizon problem for the system of Prob-
lem . with the expected discounted cost criterion of (.). Consider 1πt, 2πt, 3πt

and 4πt as in Definition .: they satisfy the properties of Lemma .; further, since
the system is time-invariant, the transformations 1Q, 2Q, 3Q and 4Q and the expect-
ed instantaneous cost ρ̂ do not depend on t. Let γt := (g1

t , l
1
t , g2

t , l
2
t ) denote the deci-

sion rules at time t and Γ denote the space G 1
×L 1

×G 2
×L 2. We can combine (.)

as

1πt+1 = Q̃(γt) 1πt, γt = ∆̃t(1πt) (.)

where

Q̃(γt) := 4Q(l2t ) ◦ 3Q(g2
t ) ◦ 2Q(l1t ) ◦ 1Q(g1

t ),

∆̃t(1πt) :=
(

1∆t(1πt), 2∆t(2πt), 3∆t(3πt), 4∆t(4πt)
)

and 2πt, 3πt, and 4πt are related to 1πt by the time-invariant analogue of (.). Fur-
ther, the instantaneous cost at time t can be written as

ρ̃(1πt,
1γt) = ρ̂

(
3Q(g2

t ) ◦ 2Q(l1t ) ◦ 1Q(g1
t ) 1πt

)
Hence, the time-homogeneous infinite horizon problem for the system of Prob-
lem . with the expected discounted cost criterion of (.) is equivalent to the
following deterministic optimization problem.

Problem .. Consider a deterministic system with state space 1Π and action space Γ. The
system dynamics are given by

1πt+1 = Q̃(γt) 1πt, γt = ∆̃t(1πt) (.)
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where Q̃ is a known transformation and ∆̃ : Π → Γ is a meta-function that is to be deter-
mined. At each time an instantaneous cost ρ̃(1πt, γt) is incurred. The initial state 1π1 is
known. The objective is to determine a meta-strategy ∆̃∞ = (∆̃1, ∆̃2, . . .) so as to minimize
the discounted infinite horizon total cost given by

J
β(∆̃∞) =

∞∑
t=1

βt−1ρ̃(1πt, γt) (.)

Problem . is a standard deterministic time-invariant infinite horizon problem
with total discounted cost criterion. Since we have assumed ρ(·) to be uniformly
bounded, ρ̂ and ρ̃ are also uniformly bounded, therefore an optimal meta-strategy
is guaranteed to exist and we have the following result:

Theorem .. For Problem . and consequently for the infinite horizon expected discount-
ed cost problem for the system of Problem . with the performance criterion given by (.),
there is no loss of optimality in restricting attention to stationary meta-strategies. Specifi-
cally there exists a stationary meta-strategy ∆̃∗,∞ := (∆̃∗, ∆̃∗, . . .), and a corresponding in-
finite horizon design (G1,∗,L1,∗,G2,∗,L2,∗), where G1,∗ := (g1,∗

1 , g
1,∗
2 , . . .), L1,∗ := (l1,∗1 , l

1,∗
2 , . . .),

G2,∗ := (g2,∗
1 , g

2,∗
2 , . . .), L2,∗ := (l2,∗1 , l

2,∗
2 , . . .), such that

J
β(∆̃∗,∞) = V(1π1), (.)

where V is the unique uniformly bounded fixed point of

V(1π) = min
γ∈Γ

{
ρ̃(1π, γ) + βV

(
Q̃(γ)(1π)

)}
, (.)

and ∆̃∗ satisfies

V(1π) = ρ̃
(

1π, ∆̃∗(1π)
)
+ βV

(
Q̃
(
∆̃∗(1π)

)
(1π)

)
. (.)

Optimal decision rules (g1,∗
t , l

1,∗
t , g2,∗

t , l
2,∗
t ) at time t are given by

(g1,∗
t , l

1,∗
t , g

2,∗
t , l

2,∗
t ) =: γ∗t = ∆̃

∗(1πt). (.)

Proof. This is a standard result, see Dynkin and Yushkevich (, Chapter ). �

Observe that the fixed point equation (.) can be decomposed into its “natural”
sequential form as
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1V(1π) = inf
g1∈G 1

2V(1Q(g1) 1π) (.a)

2V(2π) = min
l1∈L 1

3V(2Q(l1) 2π) (.b)

3V(3π) = inf
g2∈G 2

4V(3Q(g2) 3π) (.c)

4V(4π) = ρ̃(4π) + min
l2∈L 2

1V(4Q(l2) 4π) (.d)

These equations are the infinite horizon analogues of (.).

The average cost per unit time problem
Consider the time-homogeneous infinite horizon problem for the system of Prob-
lem . with the average cost per unit time criterion of (.). Using arguments
similar to those of the first paragraph of the previous section, this problem is equiv-
alent to the following deterministic problem:

Problem .. Consider a deterministic system with state space 1Π and action space Γ. The
system dynamics are given by

1πt+1 = Q̃(γ) 1πt, γt = ∆̃t(1πt) (.)

where Q̃ is a known transformation and ∆̃ : Π → Γ is a meta-function. At each time an
instantaneous cost ρ̃(1πt, γt) is incurred. The initial state 1π1 is known. The objective is to
determine a meta-strategy ∆̃∞ = (∆̃1, ∆̃2, . . .) so as to minimize the average cost per unit
time over an infinite horizon, given by

J̄(∆̃∞) = lim sup
T→∞

1
T

T∑
t=1

ρ̃(1πt, γt). (.)

Problem . cannot be solved by taking the limit β → 1 in the result of Theo-
rem .. Such a result is valid only if the problem has finite state and action space,
see Whittle (, Theorem ..), which is not the case here. See Arapostathis et
al. () for a survey of various results connecting the expected discounted cost
problem with the average cost per unit time problem.

For Problem . an optimal meta-strategy may not exist. However, under suit-
able conditions, we can guarantee the existence of meta-strategies that are arbitrar-
ily close to optimal. Specifically, we have the following result:
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Theorem .. For Problem . and correspondingly for the infinite horizon average cost
per unit time problem with the performance criterion given by (.), assume that:

. For any ε > 0 there exist bounded measurable functions v(·) and r(·) and meta-func-
tion ∆̃∗ : Π→ Γ such that for all 1π,

v(1π) = min
γ∈Γ

v
(
Q̃(γ) 1π

)
= v

(
Q̃
(
∆̃∗(1π)

)
1π

)
, (.)

and

ρ̃(1π, ∆̃∗(1π))+r
(
Q̃
(
∆̃∗(1π)

)
1π

)
≤ v(1π)+r(1π) ≤ min

γ∈Γ

{
ρ̃(1π, γ)+r(Q̃(γ) 1π)

}
+ε.

(.)

Then for any horizon T and any meta-strategy ∆̃T := (∆̃1, . . . , ∆̃T), the stationary meta-strat-
egy ∆̃∗,T := (∆̃∗, . . . , ∆̃∗) (T-times) satisfies

JT(∆̃∗,T) ≤ r(1π1) + Tv(1π1) ≤ JT(∆̃T) + Tε (.)

Further, the stationary meta-strategy ∆̃∗,∞ := (∆̃∗, ∆̃∗, . . .) is ε-optimal (i.e., ε close to
optimal). That is, for any infinite horizon meta-strategy ∆̃∞ := (∆̃1, ∆̃2, . . .) we have

J(∆̃∗,∞) ≤ v(1π1) ≤ J(∆̃∞) + ε (.)

where

J(∆̃∗,∞) := lim sup
T→∞

1
T

T∑
t=1

ρ̃
(

1πt, ∆̃
∗(1πt)

)
(.)

with 1πt+1 = Q̃
(
∆̃∗(1πt) 1πt

)
and

J(∆̃∞) := lim inf
T→∞

1
T

T∑
t=1

ρ̃
(

1πt, ∆̃t(1πt)
)

(.)

with 1πt+1 = Q̃
(
∆̃t(1πt) 1πt

)
. ε-optimal decision rules (g1,∗

t , l
1,∗
t , g

2,∗
t , l

2,∗
t ) at time t are given

by

(g1,∗
t , l

1,∗
t , g

2,∗
t , l

2,∗
t ) =: γ∗t = ∆̃

∗(1πt). (.)

Proof. This is a standard result, see Dynkin and Yushkevich (, Chapter ). �
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Conditions that guarantee that assumption () of Theorem . is satisfied are
fairly technical and do not provide much insight into the properties of the plant,
the observation channels, and the cost functions that will guarantee the existence
of such policies. The interested reader may look at Dynkin and Yushkevich (,
Chapter , §). It may be possible to extend the sufficiency conditions of Sennott
(, a, b) to uncountable action spaces.

Significance of the results of variation 
The sequential decomposition presented in this section provides an efficient way
to search for an optimal design. For infinite horizon problem, it also provides an
economical way to implement an optimal solution.

Consider the finite horizon problem. Suppose agent  and  are identical, i.e.,
Y

1 = Y2 = Y, U1 = U2 = U, and S1 = S2 = S. Then, searching for an optimal
design by brute force requires evaluation of |U|2×T×|Y|×|S|

×|S|
2×T×|Y|×|U|×|S| designs;

this is exponential in the time horizon for which the system runs. As mentioned in
the discussion of Section ., the optimality equations are similar to POMDP; the in-
formation state is a belief over a (|X|×|Y|×|U|×|S|2)--dimensional vector (the actual
size varies with time, so we chose a representative value), an action space of size
|U|
|Y|×|S| or |S||Y|×|U|×|S| and observation space that has only one element (no obser-

vation). A technique similar to Smallwood and Sondik (), which represents the
value functions by a family of linear functions that form their upper envelope, can
be used to solve the finite horizon optimality equations exactly. In the worst case,
the family of linear functions forming the upper envelopes is as large as all possible
designs. However, we hope that for specific problems a lot of these functions can
be pruned at each step, and, as is the case in POMDPs, the total number of envelopes
may increase in a sub-exponential manner.

Consider the infinite horizon problem. As mentioned Section ., we can view
the decentralized two-agent control problem as an equivalent deterministic opti-
mization problem by considering the information state as the “controlled state”,
the decision rules as the “control action” and the meta-function as the “control
law” at each time. In classical infinite-horizon deterministic optimization problems,
there is no loss of optimality in restricting attention to stationary design/strategy;
by analogy, in the infinite-horizon decentralized two-agent problem, there is no
loss of optimality in restricting attention to stationary meta-strategies. In classical
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infinite-horizon deterministic optimization problems, stationary actions are not op-
timal in general; by analogy, in infinite-horizon decentralized two-agent problem,
stationary control and state-update strategies are not optimal in general. In the ab-
sence of a systematic framework, the task of finding and implementing an optimal
infinite-horizon strategy is infeasible. The methodology of this section provides
one systematic framework: obtain and implement time-varying optimal infinite-
horizon control and state-update strategies by obtaining and implementing sta-
tionary infinite-horizon meta-strategies. The off-line search simplifies to finding
the fixed point of a functional equation. As is the case in POMDPs, we can find an
approximate fixed point using randomized algorithms whose complexity is poly-
nomial in the size of the alphabets (Rust, ). Once an optimal stationary meta-
strategy is obtained, both agents can store it, and use it to obtain the current opti-
mal decision rules by keeping track of the current information state. This greatly
simplifies the on-line implementation of a time-varying optimal design.

. Time-homogeneous system—Variation 
Consider a time-homogeneous variation of the model of Problem . where agent 
has perfect recall and agent  has time-invariant and finite state. Since agent  has
perfect recall the state-update function of agent  is fixed, and we only need to
determine the control strategy of agent  and control state-update strategies for
agent .

Data and information fields of agent 
Agent  has perfect recall, hence its state is given by

S1
t = (Y1,t,U1,t).

Thus, the data at agent  can be written as (cf. (.))

1O1
t := (Y1,t,U1,t−1), (.a)

2O1
t =

3O1
t =

4O1
t := (Y1,t,U1,t) (.b)

Further, the information fields of agent  are given by



 

 



1J1
t := σ(Y1,t,U1,t−1; 1ϕt−1), 2J1

t := σ(Y1,t,U1,t; 2ϕt−1), (.a)
3J1

t := σ(Y1,t,U1,t; 3ϕt−1), 4J1
t := σ(Y1,t,U1,t; 4ϕt−1), (.b)

Agent  has perfect recall, so it does not shed information while going from time
2t to 3t. Thus, the time-evolution of the information fields of agent , which is given
in general by (.a), can be written more precisely as

· · ·
4J1

t−1 ⊆
1J1

t =
2J1

t =
3J1

t =
4J1

t ⊆
1J1

t+1 · · · (.a)

Therefore, the information fields at agent  are a filtration. Agent  does not have
perfect recall; it sheds information while going from 4(t−1) to 1t. Therefore, the time-
evolution of the information fields of agent , which is given in general by (.b),
can be written more precisely as

· · ·
4J2

t−1 ⊃
1J2

t =
2J2

t ⊆
3J2

t =
4J2

t ⊃
1J2

t+1 · · · (.b)

Agent ’s belief and their evolution
Agent  does not “know” what is “known” to agent . We can characterize what
agent  “thinks” about nature and agent  by using agent ’s belief on the state of
the plant and the data at agent  based on the information field of agent . Since the
state of the plant and the data at agent  are time-invariant, agent ’s belief is time-
invariant (Agent ’s data, and therefore agent ’s belief change between refinements
of time at each stage, but not across stages). These beliefs are defined as follows:

Definition . (Agent ’s belief). Let iB1
t denote agent ’s belief on the state of the plant

and the data at agent , i.e.,

iB1
t = Pr

(
Xt,

iO2
t

∣∣∣ iJ1
t

)
. (.)

Let i
B

1 := P
{
X ×

i
O

2
}

denote the space of realizations of iB1
t .

Agent ’s belief can be written more elaborately as follows
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1B1
t := Pr

(
Xt,S2

t−1

∣∣∣ Y1,t,U1,t−1; 1ϕt−1
)

(.a)

2B1
t := Pr

(
Xt,S2

t−1

∣∣∣ Y1,t,U1,t; 2ϕt−1
)

(.b)

3B1
t := Pr

(
Xt,Y2

t ,S
2
t−1

∣∣∣ Y1,t,U1,t; 3ϕt−1
)

(.c)

4B1
t := Pr

(
Xt,Y2

t ,U
2
t ,S

2
t−1

∣∣∣ Y1,t,U1,t; 4ϕt−1
)

(.d)

The sequential ordering of these beliefs are shown in Figure .. For any par-
ticular realization (y1,t,u1,t−1) of (Y1,t,U1,t−1) and any arbitrary (but fixed) choice of
1ϕt−1, the realization 1b1

t of 1B1
t is a PMF of (X×S2). If (Y1,t,U1,t−1) is a random vector,

then 1B1
t is a random vector belonging toP

{
X × S

2
}
. Similar interpretation hold for

2B1
t , 3B1

t , 4B1
t .

Since the information fields of agent  are a filtration (see (.a)), the beliefs
evolve in a state-like manner as follows:

Lemma . (Evolution of agent ’s beliefs). For each stage t, there exists functions 1F1,
2F1, 3F1 and 4F1 such that

2B1
t =

1F1(1B1
t ,U

1
t ), (.a)

3B1
t =

2F1(2B1
t ,U

1
t ), (.b)

4B1
t =

3F1(3B1
t , g

2
t ), (.c)

1B1
t+1 =

4F1(4B1
t , l

2
t ,Y

1
t+1,U

1
t ). (.d)

Proof. We will prove each part separately.

. Consider 1o1
t = (y1,t,u1,t−1) ∈ (Y1,t

× U
1,t−1), u1

t ∈ U
1, xt ∈ X, s2

t−1 ∈ S
2, and

2ϕt−1 = (1ϕt−1, g1
t ). Then, a component (xt, s2

t−1) of a realization 2b1
t of 2B1

t is
given by

2b1
t (xt, s2

t−1) = Pr
(
Xt = xt,S2

t−1 = s2
t−1

∣∣∣ 1O1
t =

1o1
t ,U

1
t = u1

t ; 2ϕt−1
)

=
Pr

(
Xt = xt,S2

t−1 = s2
t−1,U

1
t = u1

t

∣∣∣ 1O1
t =

1o1
t ; 2ϕt−1

)
Pr

(
U1

t = u1
t

∣∣∣ 1O1
t =

1o1
t ; 2ϕt−1

) (.)

Now,
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Pr
(
Xt = xt,S2

t−1 = s2
t−1,U

1
t = u1

t

∣∣∣ 1O1
t =

1o1
t ; 2ϕt−1

)
= Pr

(
U1

t = u1
t

∣∣∣ Xt = xt,S2
t−1 = s2

t−1,
1O1

t =
1o1

t ; 1ϕt−1, g1
t

)
× Pr

(
Xt = xt,S2

t−1 = s2
t−1

∣∣∣ 1O1
t =

1o1
t ; 1ϕt−1, g1

t

)
(a)
= I

[
u1

t = g1
t (1o1

t )
]

Pr
(
Xt = xt,S2

t−1 = s2
t−1

∣∣∣ 1O1
t =

1o1
t ; 1ϕt−1

)
= I

[
u1

t = g1
t (1o1

t )
]

1b1
t (xt, s2

t−1) (.)

where (a) follows from the sequential order in which the system variables are
generated. Observe that Pr

(
U1

t = u1
t

∣∣∣ 1O1
t =

1o1
t ; 2ϕt−1

)
is the marginal of the

LHS of (.). Combining (.) and (.) results in

2b1
t (xt, s2

t−1) =: 1F1(1b1
t ,u

1
t )(xt, s2

t−1) (.)

where 1F1 is defined by (.) and (.).

. Consider (y1,t,u1,t) ∈ (Y1,t
× U

1,t), xt ∈ X, y2
t ∈ Y

2, s2
t−1 ∈ S

2, and 3ϕt−1 =

(2ϕt−1, l1t ). Then a component (xt, y1
t , s

2
t−1) of a realization 1b2

t of 3B1
t is given by

3b1
t (xt, y2

t , s
2
t−1) = Pr

(
Xt = xt,Y2

t = y2
t ,S

2
t−1 = s2

t−1

∣∣∣ Y1,t = y1,t,U1,t = u1,t; 3ϕt−1
)

= Pr
(
Y2

t = y2
t

∣∣∣ Xt = xt,S2
t−1 = s2

t−1,Y
1,t = y1,t,U1,t = u1,t; 2ϕt−1, l1t

)
× Pr

(
Xt = xt,S2

t−1 = s2
t−1

∣∣∣ Y1,t = y1,t,U1,t = u1,t; 2ϕt−1, l1t
)

(b)
= PN2

(
n2

t ∈ N
2 : y2

t = h2(xt,u1
t ,n

2
t )
)

× Pr
(
Xt = xt,S2

t−1 = s2
t−1

∣∣∣ Y1,t = y1,t,U1,t = u1,t; 2ϕt−1
)

= PN2

(
n2

t ∈ N
2 : y2

t = h2(xt,u1
t ,n

2
t )
)

2b1
t (xt, s2

t−1)

=: 3F1(2b1
t ,u

1
t )(xt, y2

t , s
2
t−1) (.)

where (b) follows from the sequential order in which the system variables are
generated.
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. Consider (y1,t,u1,t) ∈ (Y1,t
× U

1,t), xt ∈ X, y2
t ∈ Y

2, u2
t ∈ U

2, s2
t−1 ∈ S

2, and
4ϕt−1 = (3ϕt−1, g2

t ). Then a component (xt, y2
t ,u

2
t , s

2
t−1) of a realization 4b1

t of 4B1
t

is given by

4b1
t (xt, y2

t ,u
2
t , s

2
t−1)

= Pr
(
Xt = xt,Y2

t = y2
t ,U

2
t = u2

t ,S
2
t−1 = s2

t−1

∣∣∣ Y1,t = y1,t,U1,t = u1,t; 4ϕt−1
)

= Pr
(
U2

t = u2
t

∣∣∣ Xt = xt,Y2
t = y2

t ,S
2
t−1 = s2

t−1Y1,t = y1,t,U1,t = u1,t; 3ϕt−1, g2
t

)
× Pr

(
Xt = xt,Y2

t = y2
t ,S

2
t−1 = s2

t−1

∣∣∣ Y1,t = y1,t,U1,t = u1,t; 3ϕt−1, g2
t

)
(c)
= I

[
u2

t = g2
t (y2

t , s
2
t−1)

]
× Pr

(
Xt = xt,Y2

t = y2
t ,S

2
t−1 = s2

t−1

∣∣∣ Y1,t = y1,t,U1,t = u1,t; 3ϕt−1
)

= I
[
u2

t = g2
t (y2

t , s
2
t−1)

]
3b1

t (xt, y2
t , s

2
t−1)

=: 3F1(3b1
t , g

2
t )(xt, y2

t , s
2
t−1) (.)

where (c) follows from the sequential order in which the system variables are
generated.

. Consider 4o1
t = (y1,t,u1,t) ∈ (Y1,t

× U
1,t), y1

t+1 ∈ Y
1, xt+1 ∈ X, s2

t ∈ S
2, and

1ϕt = (4ϕt−1, l2t ). Then a component (xt+1, s2
t ) of a realization 1b1

t+1 of 1B1
t+1 is

given by

1b1
t+1(xt+1, s2

t ) = Pr
(
Xt+1 = xt+1,S2

t = s2
t

∣∣∣ Y1
t+1 = y1

t+1,
4O1

t =
4o1

t ; 1ϕt
)

=
Pr

(
Xt+1 = xt+1,S2

t = s2
t ,Y

1
t+1 = y1

t+1

∣∣∣ 4O1
t =

4o1
t ; 1ϕt

)
Pr

(
Y1

t+1 = y1
t+1

∣∣∣ 4O1
t =

4o1
t ; 1ϕt

) (.)

Now,

Pr
(
Xt+1 = xt+1,S2

t = s2
t ,Y

1
t+1 = y1

t+1

∣∣∣ 4O1
t =

4o1
t ; 1ϕt

)
= Pr

(
Y1

t+1 = y1
t+1

∣∣∣ Xt+1 = xt+1,S2
t = s2

t ,
4O1

t =
4o1

t ; 1ϕt
)

× Pr
(
Xt+1 = xt+1,S2

t = s2
t

∣∣∣ 4O1
t =

4o1
t ; 1ϕt

)
= PN1

(
n1

t ∈ N
1 : y1

t+1 = h1
t (xt+1,n1

t+1)
)

× Pr
(
Xt+1 = xt+1,S2

t = s2
t

∣∣∣ 4O1
t =

4o1
t ; 1ϕt

)
(.)
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Further,

Pr
(
Xt+1 = xt+1,S2

t = s2
t

∣∣∣ 4O1
t =

4o1
t ; 1ϕt

)
=

∑
xt∈X,y2

t ∈Y
2

u2
t ∈U

2,s2
t−1
∈S

2

Pr
(
Xt+1 = xt+1,Xt = xt,Y2

t = y2
t ,U

2
t = u2

t ,

S2
t−1 = s2

t−1,S
2
t = s2

t

∣∣∣ 4O1
t =

4o1
t ; 1ϕt

)
=

∑
xt∈X,y2

t ∈Y
2

u2
t ∈U

2,s2
t−1
∈S

2

Pr
(
Xt+1 = xt+1

∣∣∣ Xt = xt,Y2
t = y2

t ,U
2
t = u2

t ,

S2
t−1 = s2

t−1,S
2
t = s2

t ,
4O1

t =
4o1

t ; 1ϕt
)

× Pr
(
S2

t = s2
t

∣∣∣ Xt = xt,Y2
t = y2

t ,U
2
t = u2

t ,

S2
t−1 = s2

t−1,
4O1

t =
4o1

t ; 4ϕt−1, l2t
)

× Pr
(
Xt = xt,Y2

t = y2
t ,U

2
t = u2

t ,S
2
t−1 = s2

t−1

∣∣∣ 4O1
t =

4o1
t ; 4ϕt−1, l2t

)
(d)
=

∑
xt∈X,y2

t ∈Y
2

u2
t ∈U

2,s2
t−1
∈S

2

PW
(
wt ∈ W : xt+1 = f (xt,u1

t ,u
2
t ,wt)

)
I
[
s2

t = l2t (y2
t ,u

2
t , s

1
t−1)

]
× Pr

(
Xt = xt,Y2

t = y2
t ,U

2
t = u2

t ,S
2
t−1 = s2

t−1

∣∣∣ 4O1
t =

4o1
t ; 4ϕt−1

)
=

∑
xt∈X,y2

t ∈Y
2

u2
t ∈U

2,s2
t−1
∈S

2

PW
(
wt ∈ W : xt+1 = f (xt,u1

t ,u
2
t ,wt)

)
I
[
s2

t = l2t (y2
t ,u

2
t , s

1
t−1)

]
×

4b1
t (xt, y2

t ,u
2
t , s

2
t−1). (.)

where (d) follows from the sequential order in which the system variables are
generated. Combining (.)–(.) we get

1b1
t+1(xt+1, s2

t ) =: 4F1(4b1
t , l

2
t , y

1
t+1,u

1
t )(xt+1, s2

t ) (.)

where 4F1 is given by (.)–(.). �

Structural properties
In this section, we provide structural/qualitative properties of optimal control laws
of agent  that are true for every arbitrary but fixed control and state-update strate-
gies of agent . These properties are subsequently used to convert the model of
variation  into a model similar to that of variation .

Theorem . (Structure of optimal control laws of agent ). Consider variation 
of the model of Problem .. For any arbitrary but fixed control and state-update strategies
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of agent , there is no loss of optimality in restricting attention to control laws at agent  of
the form

U1
t = ĝ1

t (1B1
t ), t = 2, . . . ,T. (.)

Proof. We will look at the system from agent ’s point of view. The plant and agent 
are fixed, and agent  has perfect recall. So, for fixed control and state-update strate-
gies at agent , the design of agent  is a centralized optimization problem. The
structural results follow from the standard result for POMDPs (partially observable
Markov decision processes). In order to prove this explicitly, we need to show that
the process {1B1

t , t = 1, . . . ,T} is controlled Markov process with control action U1
t ,

and the expected instantaneous cost at time t can be written as a function of 1B1
t and

U1
t .

For any 1b1
t+1 ∈

1
B

1, any realization (1b1,t,u1,t) of (1B1,t,U1,t), and any choice of
1ϕt, we have

Pr
(

1B1
t+1 =

1b1
t+1

∣∣∣ 1B1,t = 1b1,t,U1,t = u1,t; 1ϕt
)

=
∑

x1
t+1
∈X

1
t+1

y1
t+1
∈Y

1
t+1

Pr
(

1B1
t+1 =

1b1
t+1,Xt+1 = xt+1,Y1

t+1 = y1
t+1

∣∣∣ 1B1,t = 1b1,t,U1,t = u1,t; 1ϕt
)

=
∑

x1
t+1
∈X

1
t+1

y1
t+1
∈Y

1
t+1

Pr
(
Y1

t+1 = y1
t+1

∣∣∣ 1B1,t+1 = 1b1,t+1,Xt+1 = xt+1,U1,t = u1,t; 1ϕt
)

× Pr
(
Xt+1 = xt+1

∣∣∣ 1B1,t+1 = 1b1,t+1,U1,t = u1,t; 1ϕt
)

× Pr
(

1B1
t+1 =

1b1
t+1

∣∣∣ 1B1,t = 1b1,t,Y1
t+1 = y1

t+1,U
1,t = u1,t; 1ϕt

)
(a)
=

∑
x1

t+1
∈X

1
t+1

y1
t+1
∈Y

1
t+1

PN1

(
n1

t+1 ∈ N
1 : y1

t+1 = h1(xt+1,n1
t+1)

)
1b1

t+1(xt+1)

× I
[
1b1

t+1 =
4F1

(
3F1(2F1(1F1(1b1

t ,u
1
t ),u1

t ), g2
t ), l2t , y

1
t+1,u

1
t

)]
= Pr

(
1B1

t+1 =
1b1

t+1

∣∣∣ 1B1
t =

1b1
t ,U

1
t = u1

t ; g2
t , l

2
t

)
, (.)

where 1b1
t+1(xt+1) denotes the marginal of 1b1

t+1(xt+1, s1
t ) and (a) follows from Lem-

ma .. Further, the expected conditional instantaneous cost can be written as
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E
{
ρ(Xt,U1

t ,U
2
t )

∣∣∣ 4B1,t = 4b1,t,U1,t = u1,t; 4ϕt−1
}

=
∑
xt∈X

u2
t ∈U

2

ρ(xt,u1
t ,u

2
t ) Pr

(
Xt = xt,U2

t = u2
t

∣∣∣ 4B1,t = 4b1,t,U1,t = u1,t; 4ϕt−1
)

(b)
=

∑
xt∈X

u2
t ∈U

2

ρ(xt,u1
t ,u

2
t ) 4b1

t (xt,u2
t )

=
∑
xt∈X

u2
t ∈U

2

ρ(xt,u1
t ,u

2
t )
(

3F1
(

2F1
(

1F1(1b1
t ,u

1
t ),u1

t

)
, g2

t

))
(xt,u2

t )

=: ρ̄(1b1
t ,u

1
t , g

2
t ),

where 4b1
t (xt,u2

t ) is the marginal of 4b1
t (xt, y2

t , u2
t , s

2
t−1) in (b). Therefore, the total ex-

pected distortion can be written as

E

 T∑
t=1

ρ(Xt,U1
t ,U

2
t )

∣∣∣∣∣∣∣ G1,L1,G2,L2


= E

 T∑
t=1

E
{
ρ(Xt,U1

t ,U
2
t )

∣∣∣ 4B1,t,U1,t; 4ϕt−1
} ∣∣∣∣∣∣∣ G1,L1,G2,L2


= E

 T∑
t=1

ρ̄(1B1
t ,U

1
t , g

2
t )

∣∣∣∣∣∣∣ G1,L1,G2,L2

 (.)

Thus, for a fixed G2 := (g2
1, . . . , g

2
T) and L2 := (l21, . . . , l

2
T), {1B1

t , t = 1, . . . ,T} is a con-
trolled Markov process with control action U1

t , and the objective is to minimize a
total expected cost where the instantaneous cost is a function of 1B1

t and U1
t . From

Markov decision theory Kumar and Varaiya (, Chapter ) we know that there
is no loss of optimality in restricting attention to control laws of the form (.).

�

Information states
Theorem . implies that we only need to consider control laws of the form (.) at
agent . Control laws of the form (.) have the same structure as control laws of
the form (.). Furthermore, agent ’s beliefs take values in a time-invariant space.
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So, if we think of agent ’s belief as its state, variation  is almost the same as vari-
ation ; the only difference lies in the time instances at which agent ’s state is up-
dated. In variation  the agent ’s state is updated only at 2t, while in variation 
the agent ’s belief is updated at each time 1t, 2t, 3t and 4t. This difference does not
affect the solution methodology. We can still define information states in the same
way as in Definition . and use them to obtain a sequential decomposition.

Definition .. Define 1πt, 2πt, 3πt and 4πt as follows:

1πt := Pr
(
Xt,Y1

t ,
1B1

t ,S
2
t−1

∣∣∣ 1ϕt−1
)

(.a)

2πt := Pr
(
Xt,U1

t ,
2B1

t ,S
2
t−1

∣∣∣ 2ϕt−1
)

(.b)

3πt := Pr
(
Xt,Y2

t ,U
1
t ,

3B1
t ,S

2
t−1

∣∣∣ 3ϕt−1
)

(.c)

4πt := Pr
(
Xt,Y2

t ,U
1
t ,U

2
t ,

4B1
t ,S

2
t−1

∣∣∣ 4ϕt−1
)

(.d)

These information states can be interpreted in a similar manner to information
states of Definition .. Observe that in Definition . 2πt includes a measure on
Y1

t , while in Definition . it does not. In Definition . a measure on Y1
t is needed

to generate a measure on S1
t at time 3t; in Definition . the information from Y1

t is
absorbed in 2b1

t and the measure on Y1
t is not needed at 3t.

The time-evolution of the above defined information states is similar to that of
Lemma .; the time-evolution is time invariant and the evolution at 2t is simpler
as l1t is fixed.

Lemma .. 1πt, 2πt, 3πt and 4πt are information states for the control law and state-
update rules at agents  and , respectively. Specifically,

. There exist linear transformations 1Q, 2Q, 3Q and 4Q such that

2πt =
1Q(ĝ1

t ) 1πt, (.a)
3πt =

2Q 2πt, (.b)
4πt =

3Q(g2
t ) 3πt, (.c)

1πt+1 =
4Q(l2t ) 4πt. (.d)
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. The expected instantaneous cost can be expressed as

E
{
ρ(Xt,U1

t ,U
2
t )

∣∣∣ 4ϕt−1
}
= ρ̂(4πt). (.)

Proof. We will prove each part separately. The proof follows the same outline as the
proof of Lemma ..

. Consider any xt ∈ X, u1
t ∈ U

1, 2b1
t ∈

2
B

1, s2
t−1 ∈ S

2, and 2ϕt−1 = (1ϕt−1, ĝ1
t )

where ĝ1
t is of the form (.). A component of 2πt is given by

2πt(xt,u1
t ,

2b1
t , s

2
t−1)

= Pr
(
Xt = xt,U1

t = u1
t ,

2B1
t =

2b1
t ,S

2
t−1 = s2

t−1

∣∣∣ 2ϕt−1
)

=

∫
1
B1

∑
yt∈Y

Pr
(
Xt = xt,Y1

t = y1
t ,U

1
t = u1

t ,
2B1

t =
2b1

t ,

1B1
t =

1b1
t ,S

2
t−1 = s2

t−1

∣∣∣ 2ϕt−1
)

d 1b1
t

=

∫
1
B1

∑
yt∈Y

Pr
(

2B1
t =

2b1
t

∣∣∣ Xt = xt,Y1
t = y1

t ,U
1
t = u1

t ,
1B1

t =
1b1

t ,S
2
t−1 = s2

t−1; 2ϕt−1
)

× Pr
(
U1

t = u1
t

∣∣∣ Xt = xt,Y1
t = y1

t ,
1B1

t =
1b1

t ,S
2
t−1 = s2

t−1; 1ϕt−1, ĝ1
t

)
× Pr

(
Xt = xt,Y1

t = y1
t ,

1B1
t =

1b1
t ,S

2
t−1 = s2

t−1

∣∣∣ 1ϕt−1, ĝ1
t

)
d 1b1

t

(a)
=

∫
1
B1

∑
yt∈Y

I
[
2b1

t =
2F1(1b1

t ,u
1
t )
]
I
[
u1

t = ĝ1
t (1b1

t )
]

× Pr
(
Xt = xt,Y1

t = y1
t ,

1B1
t =

1b1
t ,S

2
t−1 = s2

t−1

∣∣∣ 1ϕt−1
)

d 1b1
t

=

∫
1
B1

∑
yt∈Y

I
[
2b1

t =
2F1(1b1

t ,u
1
t )
]
I
[
u1

t = ĝ1
t (1b1

t )
]

1πt(xt, y1
t ,

1b1
t , s

2
t−1) d 1b1

t

=:
(

1Q(ĝ1
t ) 1πt

)
(xt,u1

t ,
1b1

t , s
2
t−1) (.)

where (a) follows from Lemma . and the sequential order in which the sys-
tem variables are generated.
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. Consider any xt ∈ X, y2
t ∈ Y

2, u1
t ∈ U

1, 3b1
t ∈

3
B

1, s2
t−1 ∈ S

2, and 3ϕt−1 =

(2ϕt−1, l1t ). A component of 3πt is given by

3πt(xt, y2
t ,u

1
t ,

3b1
t , s

2
t−1)

= Pr
(
Xt = xt,Y2

t = y2
t ,U

1
t = u1

t ,
3B1

t =
3b1

t ,S
2
t−1 = s2

t−1

∣∣∣ 3ϕt−1
)

=

∫
2
B1

Pr
(
Xt = xt,Y2

t = y2
t ,U

1
t = u1

t ,

2B1
t =

2b1
t ,

3B1
t =

3b1
t ,S

2
t−1 = s2

t−1|
3ϕt−1

)
d 2b1

t

=

∫
2
B1

Pr
(
Y2

t = y2
t

∣∣∣ Xt = xt,U1
t = u1

t ,

2B1
t =

2b1
t ,

3B1
t =

3b1
t ,S

2
t−1 = s2

t−1; 3ϕt−1
)

d 2b1
t

× Pr
(

3B1
t =

3b1
t

∣∣∣ Xt = xt,U1
t = u1

t ,
2B1

t =
2b1

t ,S
2
t−1 = s2

t−1; 2ϕt−1, l1t
)

× Pr
(
Xt = xt,U1

t = u1
t ,

2B1
t =

2b1
t ,S

2
t−1 = s2

t−1

∣∣∣ 2ϕt−1, l1t
)

d 2b1
t

(b)
=

∫
2
B1

PN2

(
n2

t ∈ N
2 : y2

t = h2(xt,u1
t ,n

2
t )
)
I
[
3b1

t =
2F1(2b1

t ,u
1
t )
]

× Pr
(
Xt = xt,U1

t = u1
t ,

2B1
t =

2b1
t ,S

2
t−1 = s2

t−1

∣∣∣ 2ϕt−1
)

d 2b1
t

=

∫
2
B1

PN2

(
n2

t ∈ N
2 : y2

t = h2(xt,u1
t ,n

2
t )
)
I
[
3b1

t =
2F1(2b1

t ,u
1
t )
]

×
2πt(xt,u1

t ,
2b1

t , s
2
t−1) d 2b1

t

=: (2Q 2πt)(xt, y2
t ,u

1
t ,

3b1
t , s

2
t−1) (.)

where (b) follows from Lemma . and the sequential order in which the sys-
tem variables are generated.

. Consider any xt ∈ Xt, y2
t ∈ Y

2, u1
t ∈ U

1, u2
t ∈ U

2, 4b1
t ∈

4
B

1, s2
t−1 ∈ S

2, and
4ϕt−1 = (3ϕt−1, g2

t ). A component of 4πt is given by

4πt(xt, y2
t ,u

1
t ,u

2
t ,

4b1
t , s

2
t−1)

= Pr
(
Xt = xt,Y2

t = y2
t ,U

1
t = u1

t ,U
2
t = u2

t ,
4B1

t =
4b1

t ,S
2
t−1 = s2

t−1

∣∣∣ 4ϕt−1
)

=

∫
3
B1

Pr
(
Xt = xt,Y2

t = y2
t ,U

1
t = u1

t ,U
2
t = u2

t ,

3B1
t =

3b1
t ,

4B1
t =

4b1
t ,S

2
t−1 = s2

t−1

∣∣∣ 4ϕt−1
)

d 3b1
t

=

∫
3
B1

Pr
(
U2

t = u2
t

∣∣∣ Xt = xt,Y2
t = y2

t ,U
1
t = u1

t ,

3B1
t =

3b1
t ,

4B1
t =

4b1
t ,S

2
t−1 = s2

t−1; 4ϕt−1
)

d 3b1
t
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× Pr
(

4B1
t =

4b1
t

∣∣∣ Xt = xt,Y2
t = y2

t ,U
1
t = u1

t ,
3B1

t =
3b1

t ,S
2
t−1 = s2

t−1; 4ϕt−1
)

× Pr
(
Xt = xt,Y2

t = y2
t ,U

1
t = u1

t ,
3B1

t =
3b1

t ,S
2
t−1 = s2

t−1

∣∣∣ 3ϕt−1, g2
t

)
d 3b1

t

(c)
=

∫
3
B1
I
[
u2

t = g2
t (y2

t , s
2
t−1)

]
I
[
4b1

t =
3F1(3b1

t , g
2
t )
]

× Pr
(
Xt = xt,Y2

t = y2
t ,U

1
t = u1

t ,
3B1

t =
3b1

t ,S
2
t−1 = s2

t−1

∣∣∣ 3ϕt−1
)

d 3b1
t

=

∫
3
B1
I
[
u2

t = g2
t (y2

t , s
2
t−1)

]
I
[
4b1

t =
3F1(3b1

t , g
2
t )
]

3πt(xt, y2
t ,u

1
t ,

3b1
t , s

2
t−1)

=:
(

3Q(g2
t ) 3πt

)
(xt, y2

t ,u
1
t ,u

2
t ,

4b1
t , s

2
t−1) (.)

where (c) follows from Lemma . and the sequential order in which the sys-
tem variables are generated.

. Consider any xt+1 ∈ X, y1
t+1 ∈ Y

1, 1b1
t+1 ∈

1
B

1, s2
t ∈ S

2, and 1ϕ1 = (4ϕt−1, l2t ).
Consider a component of 1πt+1,

1πt+1(xt+1, y1
t+1,

1b1
t+1, s

2
t )

= Pr
(
Xt+1 = xt+1,Y1

t+1 = y1
t+1,

1B1
t+1 =

1b1
t+1,S

2
t = s2

t

∣∣∣ 1ϕt−1
)

=

∫
4
B1

∑
xt∈X, y2

t ∈Y
2,

u1
t ∈U

1,u2
t ∈U

2

s2
t−1
∈S

2
t−1

Pr
(

1B1
t+1 =

1b1
t+1

∣∣∣ Xt+1 = xt+1,Xt = xt,

Y1
t+1 = y1

t+1,Y
2
t = y2

t ,U
1
t = u1

t ,U
2
t = u2

t ,

4B1
t =

4b1
t ,S

2
t−1 = s2

t−1,S
2
t = s2

t ; 4ϕt−1, l2t
)

× Pr
(
Y1

t+1 = y1
t+1

∣∣∣ Xt+1 = xt+1,Xt = xt,Y2
t = y2

t ,U
1
t = u1

t ,

U2
t = u2

t ,
4B1

t =
4b1

t ,S
2
t−1 = s2

t−1,S
2
t = s2; 4ϕt−1, l2t

)
× Pr

(
Xt+1 = xt+1

∣∣∣ Xt = xt,Y2
t = y2

t ,U
1
t = u1

t ,

U2
t = u2

t ,
4B1

t =
4b1

t ,S
2
t−1 = s2

t−1,S
2
t = s2

t ; 4ϕt−1, l2t
)

× Pr
(
Xt = xt,Y2

t = y2
t ,U

1
t = u1

t ,

U2
t = u2

t ,
4B1

t =
4b1

t ,S
2
t−1 = s2

t−1

∣∣∣ 4ϕt−1
)

d 4b1
t

(d)
=

∫
4
B1

∑
xt∈X, y2

t ∈Y
2,

u1
t ∈U

1,u2
t ∈U

2

s2
t−1
∈S

2
t−1

I
[
1b1

t+1 =
4F1(4b1

t , l
2
t , y

1
t+1,u

1
t )
]

× PN1

(
n1

t ∈ N
1 : y1

t+1 = h1(xt+1,n1
t+1)

)
× PW

(
wt ∈ W : xt+1 = ft(xt,u1

t ,u
2
t ,wt)

)
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× Pr
(
Xt = xt,Y2

t = y2
t ,U

1
t = u1

t ,

U2
t = u2

t ,
4B1

t =
4b1

t ,S
2
t−1 = s2

t−1

∣∣∣ 4ϕt−1
)

d 4b1
t

=

∫
4
B1

∑
xt∈X, y2

t ∈Y
2,

u1
t ∈U

1,u2
t ∈U

2

s2
t−1
∈S

2
t−1

I
[
1b1

t+1 =
4F1(4b1

t , l
2
t , y

1
t+1,u

1
t )
]

× PN1

(
n1

t ∈ N
1 : y1

t+1 = h1(xt+1,n1
t+1)

)
× PW

(
wt ∈ W : xt+1 = ft(xt,u1

t ,u
2
t ,wt)

)
×

4πt(xt, y2
t ,u

1
t ,u

2
t ,

4b1
t , s

2
t−1) d 4b1

t

=:
(

4Q(l2t ) 4πt
)
(xt+1, y1

t+1,
1b1

t+1, s
2
t ) (.)

where (d) follows from Lemma . and the sequential order in which the sys-
tem variables are generated.

. The expected instantaneous cost can be expressed as

E
{
ρ(Xt,U1

t ,U
2
t )

∣∣∣ 4ϕt−1
}

=
∑

(xt∈X,u1
t ∈U

1,u2
t ∈U

2)

ρ(xt,u1
t ,u

2
t ) Pr

(
Xt = xt,U1

t = u1
t ,U

2
t = u2

t

∣∣∣ 4ϕt−1
)

=
∑

(xt∈X,u1
t ∈U

1,u2
t ∈U

2)

ρ(xt,u1
t ,u

2
t ) ×

∫
4
B1

∑
(y2

t ∈Y
2, s2

t−1
∈S2)

4πt(xt, y2
t ,u

1
t ,u

2
t ,

4b1
t , s

2
t−1)

=: ρ̂t(4πt) (.)

�

Global optimization
The results for global optimization for finite and infinite horizon problems for vari-
ation  only depend on: (i) the information states 1πt, 2πt, 3πt and 4πt belonging
to time-invariant spaces 1Π, 2Π, 3Π and 4Π; and (ii) satisfying Lemma . where
the transformations 1Q, 2Q, 3Q and 4Q and the function ρ̂ do not depend on t. As
shown above, in the case of variation , the information states specified by Defini-
tion . belong to time-invariant spaces and satisfy Lemma . in a time-invariant
manner. Thus, the results of variation  are also applicable to variation  with in-
formation states specified by Definition .. Hence, for the finite horizon problem,
we can simplify Theorem . as follows.
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Corollary .. For the time-homogeneous variation  of the model of Problem ., the
nested optimality equations (.) can be written as

1VT+1(1π) = 0, (.a)

and for t = 1, . . . ,T

1Vt(1π) = inf
ĝ1

t ∈Ĝ
1

2Vt
(

1Q(ĝ1
t ) 1π

)
, (.b)

2Vt(2π) = 3Vt
(

2Q 2π
)
, (.c)

3Vt(3π) = inf
g2

t ∈G
2

4Vt
(

3Q(g2
t ) 3π

)
, (.d)

4Vt(4π) = ρ̂(4π) + inf
l2t ∈L

2

1Vt+1

(
4Q(l2t ) 4π

)
. (.e)

For the infinite horizon problems, the fixed point equations remain the same as
those of Theorems . and . with γt := (ĝ1

t , g
2
t , l

2
t ), Γ := Ĝ 1

× G 2
×L 2,

Q̃(γt) := 4Q(l2t ) ◦ 3Q(g2
t ) ◦ 2Q ◦ 1Q(g1

t )

and, instead of (.) and (.), optimal decision rules (g1,∗
t , g

2,∗
t , l

2,∗
t ) are given by

(g1,∗
t , g

2,∗
t , l

2,∗
t ) =: γ∗t = ∆̃

∗(1πt). (.)

Significance of the results of variation 
The sequential decomposition presented in this section suggests an approach that
can potentially lead to efficient algorithms for the search of globally optimal designs
for finite and infinite horizon problems. The structural results of (.) provide a
compact representation of optimal control laws of agent ; instead of implementing
a control law with a time-varying domain of the form

U1
t = g1

t (Y1
1, . . . ,Y

1
t )

the controller only has to use a control law of the form (.), which has a time-
invariant domain.
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The sequential decomposition of (.) is equivalent to the sequential decompo-
sition of a POMDP where the (unobserved) state and the action spaces are continu-
ous. Numerical methods for POMDPs of this form is an active area of research. For
finite horizon problems, we are not aware of any good computational techniques;
For infinite horizon problems, some preliminary results (Thrun,  and Porta et
al., ) exist.

. Time-homogeneous system—Variation 
Consider a time-homogeneous variation of the model of Problem . where agent 
has time-invariant and finite state and agent  has perfect recall. This is similar
to variation , with the structure of the states of agents  and  reversed. This
variation can be solved in exactly the same manner as variation . We look at the
system from agent ’s point-of-view and show that the control law at agent  can
just be a function of its belief. This means that we can define information states in
the same manner as in variation  and show that these information states satisfy
Lemma . in a time-invariant manner. Hence, the results for global optimization
for the finite and infinite horizon problems of variation  can also be used for
variation . Details are provided below.

Data and information fields of agent 
Agent  has perfect recall, hence its state is given by

S2
t = (Y2,t,U2,t).

Thus, the data at agent  can be written as (cf. (.))

1O2
t =

2O2
t := (Y2,t−1,U2,t−1), (.a)

3O2
t := (Y2,t,U2,t−1) (.b)

4O2
t := (Y2,t,U2,t) (.c)

Agent  does not have perfect recall; it sheds information while going from time
2t to 3t. Thus, the time-evolution of the information fields of agent , which is given
in general by (.a), can be written more precisely as
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· · ·
4J1

t−1 ⊆
1J1

t =
2J1

t ⊃
3J1

t =
4J1

t ⊆
1J1

t+1 · · · (.a)

Agent  has perfect recall, so it does not shed information while going from 4(t− 1)

to 1t. Therefore, the time-evolution of the information fields of agent , which is
given in general by (.b), can be written more precisely as

· · ·
4J2

t−1 =
1J2

t =
2J2

t ⊆
3J2

t =
4J2

t =
1J2

t+1 · · · (.b)

Therefore, the information fields at agent  are a filtration.

Agent ’s belief and their evolution
We define agent ’s beliefs as follows:

Definition . (Agent ’s belief). Let iB2
t denote agent ’s belief on the state of the plant

and the data at agent , i.e.,

iB2
t = Pr

(
Xt,

iO1
t

∣∣∣ iJ2
t

)
. (.)

Let i
B

2 := P
{
X ×

i
O

1
}

denote the space of realizations of iB2
t .

Agent ’s belief can be written more elaborately as follows

1B2
t := Pr

(
Xt,Y1

t ,S
1
t−1

∣∣∣ Y2,t−1,U2,t−1; 1ϕt−1
)

(.a)

2B2
t := Pr

(
Xt,Y1

t ,U
1
t ,S

1
t−1

∣∣∣ Y2,t−1,U2,t−1; 2ϕt−1
)

(.b)

3B2
t := Pr

(
Xt,U1

t ,S
1
t

∣∣∣ Y2,t,U2,t−1; 3ϕt−1
)

(.c)

4B2
t := Pr

(
Xt,U1

t ,S
1
t

∣∣∣ Y2,t,U2,t; 4ϕt−1
)

(.d)

The sequential ordering of these beliefs are shown in Figure .. These beliefs
should be interpreted in the same manner as the beliefs of agent  in variation .

Since the information fields of agent  are a filtration (see (.b)), the beliefs
evolve in a state-like manner as follows:

Lemma . (Evolution of agent ’s beliefs). For each stage t, there exists functions 1F2,
2F2, 3F2 and 4F2 such that
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2B2
t =

1F2(1B2
t , g

1
t ), (.a)

3B2
t =

2F2(2B2
t ,Y

2
t , l

1
t ), (.b)

4B2
t =

3F2(3B2
t ,U

2
t ), (.c)

1B2
t+1 =

4F2(4B2
t ,U

2
t ), (.d)

The proof is similar to that of Lemma ..

Structural properties
The structural/qualitative properties of optimal control laws of agent  for varia-
tion  are similar to the structural properties of optimal control laws for agent  in
variation .

Theorem . (Structure of optimal control laws of agent ). Consider variation 
of the model of Problem .. For any arbitrary but fixed control and state-update strategies
of agent , there is no loss of optimality in restricting attention to control laws of the form

U2
t = ĝ2

t (3B2
t ), t = 2, . . . ,T (.)

for agent .

Proof. We look at the system from agent ’s point of view. The plant and agent  are
fixed, and agent  has perfect recall. So, for fixed control and state-update strategies
at agent , determining the optimal design of agent  is a centralized optimization
problem. The structural form of optimal designs for agent  follows from the stan-
dard result for POMDP (Kumar and Varaiya, , Chapter ). The details are along
the same lines as the proof of Theorem .. �

Information states
As in variation , we can use the structural result of Theorem . as a guide to
define information states for variation .
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Definition .. Define 1πt, 2πt, 3πt and 4πt as follows:

1πt := Pr
(
Xt,Y1

t ,S
1
t−1,

1B2
t

∣∣∣ 1ϕt−1
)
, (.a)

2πt := Pr
(
Xt,Y1

t ,U
1
t ,S

1
t−1,

2B2
t

∣∣∣ 2ϕt−1
)
, (.b)

3πt := Pr
(
Xt,Y2

t ,U
1
t ,S

1
t ,

3B2
t

∣∣∣ 3ϕt−1
)
, (.c)

4πt := Pr
(
Xt,Y2

t ,U
1
t ,U

2
t ,S

1
t ,

4B2
t

∣∣∣ 4ϕt−1
)
. (.d)

These information states can be interpreted in the same way as the information
states of Definition .. Observe that in Definition . 4πt includes a measure on
Y2

t , while in Definition . it does not. In Definition . a measure on Y2
t is needed

to generate a measure on S2
t at time 4t; in Definition . the information from Y2

t is
absorbed in 4b1

t and the measure on Y2
t is not needed at 4t.

The time-evolution of the above defined information states is similar to that of
Lemma .; the time-evolution is time invariant, and the evolution at 4t is simpler
as l2t is fixed.

Lemma .. 1πt, 2πt, 3πt and 4πt are information states for the control law and state-
update rules at agents  and , respectively. Specifically,

. There exist linear transformations 1Q, 2Q, 3Q and 4Q such that

2πt =
1Q(g1

t ) 1πt, (.a)
3πt =

2Q(l1t ) 2πt, (.b)
4πt =

3Q(g2
t ) 3πt, (.c)

1πt+1 =
4Q 4πt. (.d)

. The expected instantaneous cost can be expressed as

E
{
ρ(Xt,U1

t ,U
2
t )

∣∣∣ 4ϕt−1
}
= ρ̂(4πt). (.)

The proof proceeds along the same lines as the proof in case of variation .

Global optimization
Following the arguments for variation , we can use the results for global opti-
mization for the finite and infinite horizon problems for variation  to variation 
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with the information states specified by Definition .. Hence, for the finite horizon
problem, we can simplify Theorem . as follows.

Corollary .. For the time-homogeneous variation  of the model of Problem ., the
nested optimality equations (.) can be written as

1VT+1(1π) = 0, (.a)

and for t = 1, . . . ,T

1Vt(1π) = inf
g1

t ∈G
1

2Vt
(

1Q(g1
t ) 1π

)
, (.b)

2Vt(2π) = inf
l1t ∈L

1

3Vt
(

2Q(l1t ) 2π
)
, (.c)

3Vt(3π) = inf
g2

t ∈G
2

4Vt
(

3Q(g2
t ) 3π

)
, (.d)

4Vt(4π) = ρ̂(4π) + 1Vt+1

(
4Q 4π

)
. (.e)

For the infinite horizon problems, the fixed point equations remain the same as
those of Theorems . and . with γt := (ĝ1

t , l
1
t , g

2
t ), Γ := Ĝ 1

×L 1
× G 2,

Q̃(γt) := 4Q ◦ 3Q(g2
t ) ◦ 2Q(l1t ) ◦ 1Q(g1

t )

and, instead of (.) and (.), optimal decision rules (g1,∗
t , l

1,∗, g2,∗
t ) are given by

(g1,∗
t , l

1,∗, g2,∗
t ) =: γ∗t = ∆̃

∗(1πt). (.)

Significance of the results of variation 
The results for variation  are similar to those for variation ; the significance of
and limitations of the results for both cases are the same.

. Intuition behind the choice of information state
The most critical part of the sequential decomposition is identifying information
states sufficient for performance evaluation. In this chapter we explained the prop-
erties that such information states need to satisfy, identified information states that
satisfy these properties, and showed that the optimal control of the evolution of
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these information states leads to a sequential decomposition of the optimization
problem formulated in Problem .. At first glance the choice of the information
state presented in this chapter seems ad-hoc. The reader may be left wondering
why the probability measures presented in Sections ., .–. were chosen as in-
formation states. This choice was guided by some intuition and a lot of trial and
error. However, on hindsight this choice of information state seems obvious.

We can view the two-agent team from the designer’s point: the designer knows
the system model and the statistics of the primitive random variables but does not
know the observations of any agent. He is concerned with determining optimal
decision rules for both agents before the system starts operating. From the designer’s
point of view, the optimization problem is centralized. The designer can look at the
system as a stochastic input-output system. The stochastic inputs are the primitive
random variables, the controlled inputs are the decision rules, and the output is
the instantaneous cost. The input-output relation can be described consistently by
the tuple (Xt,S1

t−1,S
2
t−1), which represents the state of the plant, the stage of agent 

and the state of agent . Thus, this tuple represents a state sufficient for the input-
output mapping of the system. However, this state cannot be used for optimization
because the designer does not observe this state. So, the optimization problem at
the designer is conceptually equivalent to a POMDP. Hence, the designer can obtain
a sequential decomposition by forming a belief on the state (sufficient for input-
output mapping) of the system based on all the past information available to him
(i.e., all the past decision rules, since the designer does not observe anything). This
“belief” can be described by

Pr
(
Xt,S1

t−1,S
2
t−1

∣∣∣ 1ϕt−1
)

which is the “conditional probability density” of the “state” conditioned on the all
the past observations and “control actions” of the designer. Technically 1πt is not a
conditional probability measure, rather it is a unconditional probability measure;
but, this fact is a technicality which does not affect the solution methodology.

In Definition ., information state at time 1t is defined as

1πt = Pr
(
Xt,Y1

t ,S
1
t−1,S

2
t−1

∣∣∣ 1ϕt−1
)

which can be simplified to
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= Pr
(
Y1

t

∣∣∣ Xt,S1
t−1,S

2
t−1; 1ϕt−1

)
Pr

(
Xt,S1

t−1,S
2
t−1

∣∣∣ 1ϕt−1
)

= PN1
t

(
N1

t ∈ N
1
t : Y1

t = h1
t (Xt,N1

t )
)

Pr
(
Xt,S1

t−1,S
2
t−1

∣∣∣ 1ϕt−1
)

= Pr
(
Y1

t

∣∣∣ Xt
)

Pr
(
Xt,S1

t−1,S
2
t−1

∣∣∣ 1ϕt−1
)

Pr
(
Y1

t

∣∣∣ Xt
)

depends on the statistics of the observation channel of agent  and does
not depend on the decision rules. Thus, the information state defined in Defini-
tion . is essentially equivalent to the belief Pr(Xt,S1

t−1,S
2
t−1 |

1ϕt−1) of the designer
on the state (Xt,S1

t−1,S
t−1) which is sufficient for input output mapping of the sys-

tem. Similar considerations motivate the choice of information states at time 2t, 3t,
and 4t.

. Conclusion
In this chapter, we considered a general model for a two-agent team and showed
how to obtain a sequential decomposition for both finite and infinite horizon prob-
lems.

First, we considered a general finite-horizon model for a two-agent team. We for-
mulated it as a decentralized optimization problem. We presented general proper-
ties that information states sufficient for performance evaluation should satisfy. We
identified information states that satisfy these properties, and obtained a sequential
decomposition of the finite-horizon problem using these information states.

Next, we restricted attention to time-homogeneous systems and considered three
variations of infinite horizon problems: in variation  both agents have finite mem-
ory; in variations  and  one agent has finite memory, the other has perfect recall.
For variation  we showed how to extend the sequential decomposition of finite
horizon problems to two infinite horizon cases: total discounted cost criterion, and
average cost per unit time criterion. For both these criteria, in general stationary
designs are not optimal. However, for the total discounted cost there is no loss of
optimality in restricting attention to stationary meta-designs; for the average cost
per unit time criterion, if a technical condition holds, there is no loss of optimal-
ity in restricting attention to stationary meta-designs. For both cases, we derived
functional equations whose fixed points determine optimal meta-designs. For vari-
ations  and , we showed that the agent with perfect recall can make optimal
decisions based on its belief on the state of the plant and the state of the other agent.
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This structural result converts the model of variations  and  into a model simi-
lar to that of variation ; a slight modification of the information states leads to a
sequential decomposition for the infinite--horizon problems.

In the next two chapters we apply the results of this chapter to specific applica-
tions. We consider real-time communication in Chapter  and networked control
systems in Chapter . We show that simple models of real-time communication and
networked control systems can be considered as two-agent teams; this allows us to
use the results derived in this chapter to optimally design real-time communication
and networked control systems.
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Chapter 

Real-time communication

. Introduction

What is real-time communication
Consider a point-to-point communication system consisting of a first order Markov
source, a causal encoder, and a causal decoder. At each time, the decoder needs to
estimate the output of the source that was generated δ steps earlier. The quality of
the estimate is measured by a given distortion function. The objective is to design
the encoder and the decoder to minimize the total expected distortion over a finite
horizon.

When delay δ is zero, the problem is called zero-delay communication; when
delay δ is finite but non-zero, the problem is called finite-delay communication;
real-time communication is a generic term for both zero- and finite-delay commu-
nication.

There are four kinds of real-time communication systems depending on the na-
ture of the communication channel between the encoder and the decoder:

. When the encoder and the decoder are connected over a one-way noiseless
communication link, the system is equivalent to a real-time source coding sys-
tem.

. When the encoder and the decoder are connected over a one-way noisy com-
munication link, the system is equivalent to a real-time joint source-channel
coding system.
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. When the encoder and the decoder are connected over a two-way commu-
nication link with a noisy forward channel and noiseless backward channel,
the system is equivalent to a real time joint source-channel coding system with
noiseless feedback.

. When the encoder and the decoder are connected over a two-way communi-
cation link with noisy forward and backward channels, the system is equiv-
alent to a real-time joint source-channel coding system with noisy feedback.

Motivation
In many informationally decentralized systems, the nodes of the system need to
communicate with one another to improve the system performance; this commu-
nication must take place within bounded delay. For example, in transportation net-
works, the sensors need to communicate their observations to a controller in a time-
ly manner so that the controller can efficiently control the flow of traffic. Other ex-
amples include multimedia streaming over wired and wireless networks, distribut-
ed routing, decentralized resource allocation, information flow in sensor networks,
and consensus in partially synchronous systems. The operation of all of the above
described systems include a real-time communication component. So, in order to
understand how to design such systems it is necessary to understand real-time com-
munication of information.

Conceptual difficulties
The real-time constraint on information transmission makes the real-time commu-
nication problem drastically different from the classical information theoretic for-
mulation (Shannon, ) which has no delay constraint. Information theory is
an asymptotic theory; the fundamental concepts of information theory like source
entropy and channel capacity are asymptotic concepts; the performance bounds
of information theory are tight only for asymptotically large values of delay. Re-
al-time communication is not asymptotic. Hence, the concepts and results from
information theory are not appropriate for real-time communication. In particular,
separate source and channel coding is not optimal and joint source-channel coding
strategies must be considered.
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Real-time communication can be considered as a multi-stage sequential team
with two agents—the encoder and the decoder. Due to the noise in the commu-
nication channel, the encoder does not know the information available at the de-
coder and vice-versa; thus, the two agents have different information. Due to this
decentralization of information, solving the real-time communication problem as
an optimization problem is outside the domain of Markov decision theory (Kumar
and Varaiya, ) since Markov decision theory is only applicable to stochastic op-
timization problems with centralized information. However, the solution method-
ology developed in the previous chapter can be used to obtain a sequential decom-
position for real-time communication problems.

Literature Overview
There are three approaches to real-time communication; each of them have received
attention in the literature.

. Performance bounds of finite delay or real--time communication systems

The first approach aims at identifying performance bounds of real-time com-
munication systems. This approach is inspired by information theory. Various
methods have been used to derive performance bounds of real-time communi-
cation systems including mathematical programming, forward flow of infor-
mation, conditional mutual information, determination of non-anticipatory
rate distortion function, randomizing over a family of encoders-decoders in
Witsenhausen (), Teneketzis (), Munson (), Gorbunov and Pins-
ker (, ), Pinsker and Gorbunov (), Ho et al. (), Tatikonda
(), Tatikonda and Mitter (a) and Merhav and Kontoyiannis ().
However, these bounds are not tight for small values of delay.

A weaker constraint of causal source coding was investigated in Lloyd (),
Piret (), Neuhoff and Gilbert () and Linder and Zamir (). The
performance bounds of causal source coding are an upper bound on the per-
formance bounds of real-time source coding.
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. Asymptotically efficient real--time encoding and decoding of individual se-
quences

The second approach aims at identifying asymptotically efficient real-time
communication schemes when no statistical information is available about the
source. This approach is inspired by universal source coding. For noiseless
channels (i.e., for real-time source coding problem) asymptotically efficient
communication strategies were derived in Linder and Lugosi (), Weiss-
man and Merhav () and Gyorgy et al. (); for noisy channels such
strategies were derived in Matloub and Weissman ().

. Optimal real--time encoding and decoding of Markov sources

The third approach aims at identifying qualitative properties of optimal re-
al-time communication schemes when the source statistics are known; it is
usually assumed that the source is first-order Markov; for higher-order Mar-
kov sources, the source is transformed into a first-order Markov source and
then the qualitative properties of optimal real-time communication strategies
for first-order Markov sources can be translated to higher-order sources. This
approach also aims at identifying algorithms to efficiently search for optimal
communication schemes. This approach is inspired by Markov decision the-
ory. Qualitative properties of real-time decoders for noisy observations of a
Markov source were considered in Drake () and Devore (). Qualita-
tive properties of optimal real--time encoders for transmitting Markov sources
over a noiseless channel were derived in Witsenhausen (), Gaarder and
Slepian (, ) and Borkar et al. (). Qualitative properties of opti-
mal real-time encoders and decoders for transmitting Markov sources over
noisy channels with noiseless feedback and a methodology for determining
globally optimal encoding and decoding strategies were derived in Walrand
and Varaiya (a), Lipster and Shiryayev () and Basar and Bansal (,
). Qualitative properties of optimal real--time encoders and decoders for
transmitting Markov sources in systems with noisy channels and no feedback
was considered in Teneketzis ().

In this chapter we follow the philosophy of the third approach. Specifically, we
seek to find techniques for efficient search of an optimal communication scheme.
So far, most of the research along the lines of the third approach has focussed on
systems with either a noiseless forward channel or with a noisy forward channel
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and noiseless feedback. In both these cases, the encoder knows everything that
is known to the receiver. We concentrate on the other two cases: a noisy forward
channel with no feedback; and a noisy forward channel with noisy feedback. We
model these real-time communication systems as two-agent sequential teams and
use the methodology of Chapter  to obtain a sequential decomposition.

Outline of the approach
In this chapter we consider four models for real-time communication.

. Real-time communication over noiseless forward channel.

. Real-time communication over noisy forward channel

. Real-time communication over noisy forward channel noiseless backward
channels.

. Real-time communication over noisy forward and backward channels.

These models are shown in Figure .. We will consider the simplest instance of
these models.

All the four models consist of a source, an encoder and a receiver. A communi-
cation channel, which is either noiseless or noisy, exists between the encoder and
the receiver. For models  and  a communication channel, which is either noise-
less or noisy, exists between the receiver and the encoder. For all four models, we
assume that the source is first order Markov; the encoder and the receiver operate
in real-time; the noisy communication channels are memoryless; and distortion is
measured by a given metric that accepts zero delay.

These models can be generalized to more realistic models; the distortion metric
may accept a fixed finite delay; the source may be higher-order Markov; the chan-
nels may have memory.

In model  if the forward channel is noiseless then the model reduces to mod-
el . In model  if the backward channel is noiseless then the model reduces to
model . In this chapter, we show that models  and  are special cases of the
two-agent team model considered in Chapter . This also implies that models 
and  are special cases of the two-agent team model considered in Chapter . Thus,
we can use the results of Chapter  to obtain a sequential decomposition of all four
models of real-time communication considered in this chapter.
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Source Encoder Decoder
Xt Zt X̂t

Model : Real-time communication over noiseless
forward channel

Source Encoder Channel Decoder
Xt Zt Yt

Nt

X̂t

Model : Real-time communication over noisy forward channel

Source Encoder Channel Decoder
Xt Zt Yt

Nt

Yt

X̂t

Model : Real-time communication over noisy forward and
noiseless backward channels

Source Encoder Forward
Channel

Backward
Channel

Decoder
Xt Zt Yt

Nt

Z̃tỸt

Ñt

X̂t

Model : Real-time communication over noisy forward and
backward channels

Figure .: Four models for point-to-point real-time communication systems

For all four models, we also consider four variations of infinite horizon problems
along the lines of variations – of Chapter  depending on whether the encoder
and the receiver have finite memory or perfect recall. For variations , , and 
of these models, we can search for optimal design of the encoder and the decoder
using the results of Chapter .

The remainder of this chapter is organized as follows. In Section . we formally
define model , show how it can be considered as a special instance of the two-
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agent team model of Chapter , and show how to obtain a sequential decomposi-
tion of this model. In Section . we consider model  and show how the sequential
decomposition of model  simplifies in this case. In Sections . and . we consid-
er models  and , respectively. In Section . we compare the philosophy of our
approach to real-time communication with the philosophy of information theory
and coding theory. We conclude in Section ..

. Model : real-time communication over noisy
channels

Source Encoder Channel Decoder
Xt Zt Yt

Nt

X̂t

Figure .: Real-time communication over noisy forward channel

Problem formulation
Consider the system of model  shown in Figure .. The source is first-order Mar-
kov; it produces a random sequence {Xt, t = 1, . . . ,T}. For simplicity of exposition
we assume that Xt takes values in a finite alphabetX. Let PX1 denote the PMF (proba-
bility mass function) of the first source output X1, and PXt+1|Xt denote the transition
probability at time t.

At each stage t, the encoder generates an encoded symbol Zt taking values in a
finite alphabetZ as follows:

Zt = ct(Xt,St−1), (.)

where ct is the encoding function and St−1 ∈ St−1 is the state or memory of the
encoder. The size of the encoder’s memory can increase with time; so, this model
includes the case when the encoder has perfect recall. The encoder updates its
memory according to

St = dt(Xt,St−1), (.)

where dt is the encoder’s memory-update rule.
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The encoded symbol Zt is transmitted over a |Z|-input |Y|-output DMC (discrete
memoryless channel) producing a channel output Yt which belongs to a finite al-
phabetY. The channel can be described by

Yt = ht(Zt,Nt), (.)

where ht(·) denotes the channel function at time t, and Nt, which belongs to N ,
denotes the channel noise at time t. We assume that {Nt, t = 1, . . . ,T} is a sequence
of independent random variables and denote the PMF (probability mass function)
of Nt by PNt . We also assume that {Nt, t = 1, . . . ,T} is independent of the source
output {Xt, t = 1, . . . ,T}.

The receiver generates an estimate X̂t of the source according to

X̂t = gt(Yt,Mt−1), (.)

where X̂t ∈ X̂, gt is the decoding function and Mt−1 ∈ Mt−1 is the state or memory
of the receiver. The size of the receiver’s memory can increase with time; so, this
model includes the case when the receiver has perfect recall. The receiver updates
its memory according to

Mt = lt(Yt,Mt−1), (.)

where lt is the receiver’s memory-update rule.

The performance of the system is determined by a sequence of distortion func-
tions, ρt : X× X̂ → [0, ρmax], where ρmax < ∞. The function ρt(Xt, X̂t) measures the
distortion at stage t.

The collection C := (c1, . . . , cT) of encoding rules for the entire horizon is called
an encoding strategy; the collection D := (d1, . . . , dT) of encoder’s memory-update
rules is called the encoder’s memory-update strategy. Similarly, G := (g1, . . . , gT)

is called a decoding strategy and L := (l1, . . . , lT) is called the receiver’s memory
update strategy. Further, the choice (C,D,G,L) of communication rules for the en-
tire horizon is called a communication strategy or a design. The performance of
a communication strategy is quantified by the expected total distortion under that
strategy and is given by
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JT(C,D,G,L) := E

 T∑
t=1

ρt(Xt, X̂t)

∣∣∣∣∣∣∣ C,D,G,L
 . (.)

We are interested in the following optimization problem

Problem .. Assume that the encoder and the receiver know the time horizon T, the
statistics of the source (i.e., the PMF of X1 and the transition probabilities PXt+1|Xt), the chan-
nel function ht, the statistics PNt of the noise, the distortion function ρt(·, ·), t = 1, . . . ,T.
Determine a communication strategy (C∗,D∗,G∗,L∗) that is optimal with respect to the per-
formance criterion of (.), i.e.,

JT(C∗,D∗,G∗,L∗) = J ∗T := min
C∈C T

D∈DT

G∈G T

L∈L T

JT(C,D,G,L), (.)

where C T := C1 × · · · × CT; Ct is the family of functions from Xt × St−1 to Z; DT :=

D1 × · · · ×DT; Dt is the family of functions from Xt × St−1 to St; G T := G1 × · · · × GT; Gt

is the family of functions fromYt×Mt−1 to X̂; L T := L1× · · · ×LT; and Lt is the family
of functions fromYt ×Mt−1 toMt.

Reduction to the model of Chapter 
Consider an instance of a two-agent team of Chapter  with the following restric-
tions:

. The plant function ft does not depend on control actions of the two agents,
i.e.,

Xt+1 = ft(Xt,Wt). (.a)

. The observation channel of agent  is noiseless; the observation channel of
agent  does not depend on the state of the plant, i.e.,

Y1
t = Xt, Y2

t = h2
t (U1

t ,N
2
t ). (.b)

and therefore the control laws can be written as

U1
t = g1

t (Xt,S1
t−1), U2

t = g2
t (Y2

t ,S
2
t−1). (.c)
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. The state-update functions of both agents do not depend on the control actions
of the agents, i.e.,

S1
t = l1t (Xt,S1

t−1), S2
t = l2t (Y2

t ,S
2
t−1). (.d)

. The instantaneous cost does not depend on the control action of agent , and
is given by ρt(Xt,U2

t ).

This instance of the two-agent problem of Section . is equivalent to model  of
real-time communication over noisy channels. The relation between the variables
of the two models is shown in Table ..

Component Variable Two-agent team Model 

Plant State Xt Xt

Observation Y1
t Xt

Agent  Control action U1
t Zt

State S1
t St

Observation Y2
t Yt

Agent  Control action U2
t X̂t

State S2
t Mt

Table .: Model  as an instance of two-agent team. In model , the Markov
source is the plant, the encoder is agent , and the receiver is agent .

Information states and global optimization
Substituting the above described reduction in Definition ., we get that the infor-
mation states for model  are given by

1πt = Pr
(
Xt,St−1,Mt−1

∣∣∣ 1ϕt−1
)

(.a)

2πt = Pr
(
Xt,Zt,St−1,Mt−1

∣∣∣ 2ϕt−1
)

(.b)

3πt = Pr
(
Xt,Yt,St,Mt−1

∣∣∣ 3ϕt−1
)

(.c)

4πt = Pr
(
Xt,Yt, X̂t,St,Mt−1

∣∣∣ 4ϕt−1
)

(.d)
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The time evolution of these information states is given by Lemma .; the trans-
formations 1Qt, 2Qt, 3Qt and 4Qt and the cost ρ̂t in Lemma . can be simplified
by incorporating the above described reduction in their definitions. Consequent-
ly, the sequential decomposition of Problem . is given by the nested optimality
equations of Theorem ..

Infinite horizon problems
We can consider the following three variations of the time-homogeneous infinite-
horizon version of model  :

. Both the encoder and receiver have finite memory;
. The encoder has perfect recall while the receiver has finite memory;
. The encoder has finite memory while the receiver has perfect recall.

These are equivalent to the variations of the two-agent teams considered in Chap-
ter . Thus, the fixed-point equations for the two infinite horizon criteria derived
for variations , , and  in Chapter  are also applicable to the corresponding
variations of the real-time communication problem of model .

Variation 
For variation , the results of the finite and infinite horizon problems can be simpli-
fied further. Recall that in variation  agent  (the encoder) has perfect recall and
agent  (the receive) has time-invariant state. We first derive qualitative properties
by looking at the system from the point of view of the encoder. In model , the
encoder observes the source output (the state of the plant). Therefore, the beliefs of
agent  given by Definition . can be simplified to

iB1
t = Pr

(
Xt,Mt−1

∣∣∣ iJ1
t

)
≡

(
Xt,Pr

(
Mt−1

∣∣∣ iJ1
t

) )
.

Consequently, the structural results of variation  (Theorem .) imply that there
is no loss of optimality to restrict attention to encoders of the form

Zt = ct
(
Xt,Pr

(
Mt−1

∣∣∣ 1J1
t

) )
(.)

Hence, for variation , the information states simplify to



 

 



1πt = Pr
(
Xt,

1B̃1
t ,Mt−1

∣∣∣∣ 1ϕt−1
)

(.a)

2πt = Pr
(
Xt,Zt,

2B̃1
t ,Mt−1

∣∣∣∣ 2ϕt−1
)

(.b)

3πt = Pr
(
Xt,Yt,

3B̃1
t ,Mt−1

∣∣∣∣ 3ϕt−1
)

(.c)

4πt = Pr
(
Xt,Yt, X̂t,

4B̃1
t ,Mt−1

∣∣∣∣ 4ϕt−1
)

(.d)

where iB̃1
t := Pr

(
iO2

t

∣∣∣ iJ1
t

)
. This leads to the corresponding simplification of nested

optimality equations of Theorem ..

. Model : real-time communication over noiseless
channels

Source Encoder Decoder
Xt Zt X̂t

Figure .: Real-time communication over noiseless forward channel

Finite horizon problem
Model , which is shown in Figure ., is identical to model  except thatY = Z
and the forward channel ht is noiseless, i.e., in model  the communication channel
is given by

Yt = ht(Zt,Nt) := Zt (.)

instead of (.).

For this model the information states of model , given by (.), simplify to

1πt = Pr
(
Xt,St−1,Mt−1

∣∣∣ 1ϕt−1
)

(.a)

2πt = Pr
(
Xt,Zt,St−1,Mt−1

∣∣∣ 2ϕt−1
)

(.b)

3πt = Pr
(
Xt,Zt,St,Mt−1

∣∣∣ 3ϕt−1
)

(.c)

4πt = Pr
(
Xt,Zt, X̂t,St,Mt−1

∣∣∣ 4ϕt−1
)

(.d)
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The time evolution of the information states (Lemma .) simplify further due
to the noiseless nature of ht. Optimal encoding and decoding strategies can be de-
termined by the nested optimality equations of Theorem ..

Infinite horizon problem
For the infinite horizon problem we can consider variations , , and  as for
model ; optimal encoding and decoding strategies are given by the fixed point
equations for variations , , and  derived in Chapter .

Variation 
For variation , the results of the finite and infinite horizon can be simplified fur-
ther. The encoder (agent ) perfectly observes the Markov source (the plant) and
the observations of the receiver (agent ). Consequently, the belief of agent  (see
Definition .) simplify to

iB1
t = Pr

(
Xt,Mt−1

∣∣∣ iJ1
t

)
≡ (Xt,Mt−1).

Therefore, the structural results of variation  (Theorem .) imply that there is no
loss of optimality to restrict attention

Zt = ct(Xt,Mt−1) (.)

Hence, for variation , the information states simplify to

1πt = Pr
(
Xt,Mt−1

∣∣∣ 1ϕt−1
)

(.a)

2πt = Pr
(
Xt,Zt,Mt−1

∣∣∣ 2ϕt−1
)

(.b)

3πt = Pr
(
Xt,Zt,Mt−1

∣∣∣ 3ϕt−1
)
= 2πt (.c)

4πt = Pr
(
Xt,Zt, X̂t,Mt−1

∣∣∣ 4ϕt−1
)

(.d)

This leads to the corresponding simplification of the nested optimality equations
of Theorem ..
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Source Encoder Forward
Channel

Backward
Channel

Decoder
Xt Zt Yt

Nt

Z̃tỸt

Ñt

X̂t

Figure .: Real-time communication over noisy forward and backward
channels

. Model : real-time communication over noisy
channels with noisy feedback

Problem formulation
Consider the system of model  shown in Figure .. The source is first-order
Markov; it produces a random sequence {Xt, t = 1, . . . ,T}. For simplicity of exposi-
tion we assume that Xt takes values in a finite alphabet X. Let PX1 denote the PMF

(probability mass function) of the first output X1, and PXt+1|Xt denote the transition
probability at time t.

At each stage t, the encoder generates an encoded symbol Zt taking values in a
finite alphabetZ as follows:

Zt = ct(Xt, Ỹt−1,St−1), (.)

where ct is the encoding function, Ỹt−1 ∈ Ỹ is the output of the backward channel,
and St−1 ∈ St−1 is the state or memory of the encoder. The size of the encoder’s
memory can increase with time; so, this model includes the case when the encoder
has perfect recall. The encoder updates its memory according to

St = dt(Xt, Ỹt−1,St−1), (.)

where dt is the encoder’s memory-update rule.



 

 



The encoded symbol Zt is transmitted over a |Z|-input |Y|-output DMC (discrete
memoryless channel) producing a channel output Yt which belongs to a finite al-
phabetY. The channel can be described by

Yt = ht(Zt,Nt), (.)

where ht(·) denotes the channel function at time t, and Nt, which belongs to N ,
denotes the channel noise at time t. We assume that {Nt, t = 1, . . . ,T} is a sequence
of independent random variables and denote the PMF (probability mass function)
of Nt by PNt . We also assume that {Nt, t = 1, . . . ,T} is independent of the source
output {Xt, t = 1, . . . ,T}.

The receiver generates an estimate X̂t of the source according to

X̂t = gt(Yt,Mt−1), (.)

where X̂t ∈ X̂, gt is the decoding function and Mt−1 ∈ Mt−1 is the state or memory
of the receiver. The size of the receiver’s memory can increase with time; so, this
model includes the case when the receiver has perfect recall. The receiver generates
a feedback symbol according to

Z̃t = c̃t(Yt,Mt−1), (.)

where c̃t is the feedback function. The receiver then updates its memory according
to

Mt = lt(Yt,Mt−1), (.)

where lt is the receiver’s memory-update rule.

The feedback symbol is transmitted over a |Z̃|-input |Ỹ| output DMC producing
a channel output Ỹt which belongs to a finite alphabet Ỹ. The backward channel is
described by

Ỹt = h̃t(Z̃t, Ñt), (.)

where h̃t(·) denotes the backward channel at time t, and Ñt, which belongs to Ñ ,
denotes the channel noise at time t. We assume that {Ñt, t = 1, . . . ,T} is a sequence of
independent random variables with PMF PÑt

. We also assume that {Ñt, t = 1, . . . ,T}
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is independent of the noise in the forward channel {Nt, t = 1, . . . ,T} and the source
output {Xt, t = 1, . . . ,T}.

The performance of the system is determined by a sequence of distortion func-
tions, ρt : X× X̂ → [0, ρmax], where ρmax < ∞. The function ρt(Xt, X̂t) measures the
distortion at stage t.

The collection C := (c1, . . . , cT) of the encoding rules for the entire horizon is
called an encoding strategy; the collection D := (d1, . . . , dT) of the encoder’s mem-
ory-update rules is called an encoder’s memory-update strategy. Similarly, G :=

(g1, . . . , gT) is called a decoding strategy, C̃ := (c̃1, . . . , c̃T) is called a feedback strat-
egy, and L := (l1, . . . , lT) is called a receiver’s memory update strategy. Further, the
choice (C,D,G, C̃,L) of communication rules for the entire horizon is called a com-
munication strategy or a design. The performance of a communication strategy is
quantified by the expected total distortion under that strategy and is given by

JT(C,D,G, C̃,L) := E

 T∑
t=1

ρt(Xt, X̂t)

∣∣∣∣∣∣∣ C,D,G, C̃,L
 . (.)

We are interested in the following optimization problem

Problem .. Assume that the encoder and the receiver know the time horizon T, the sta-
tistics of the source (i.e., the PMF of X1 and the transition probabilities PXt+1|Xt), the channel
functions ht and h̃t, the statistics PNt and PÑt

of the noise, the distortion function ρt(·, ·),
t = 1, . . . ,T. Determine a communication strategy (C∗,D∗,G∗, C̃∗,L∗) that is optimal with
respect to the performance criterion of (.), i.e.,

JT(C∗,D∗,G∗, C̃∗,L∗) = J ∗T := min
C∈C T

D∈DT

C̃∈C̃ T

G∈G T

L∈L T

JT(C,D,G, C̃,L), (.)

where C T := C1 × · · · × CT; Ct is the family of functions from Xt × St−1 to Z; DT :=

D1 × · · · ×DT; Dt is the family of functions from Xt × St−1 to St; G T := G1 × · · · × GT; Gt

is the family of functions from Yt ×Mt−1 to X̂; C̃ T := C̃1 × · · · × C̃T; C̃t is the family of
functions from Yt ×Mt−1 to Z̃; L T := L1 × · · · ×LT; and Lt is the family of functions
fromYt ×Mt−1 toMt.
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Reduction to the model of Chapter 
Consider an instance of a two-agent team of Chapter  with the following restric-
tions:

. The state of the plant consists of two components Xt and X̃t; the control action
of agent  consists of two components U2

t and Ũ2
t ; and the plant disturbance

consists of two components Wt and Ñt. The plant update function does not
depend on the control action of agent . Further, the two components of the
state of the plant evolve as follows:

(Xt+1, X̃t+1) = ft
(
(Xt, X̃t),U1

t , (U
2
t , Ũ

2
t ), (Wt, Ñt)

)
:=

(
f̃t(Xt,Wt), h̃t(U2

t , Ñt)
)

(.a)

. The observation channel of agent  is noiseless; the observation channel of
agent  does not depend on the state of the plant, i.e.,

Y1
t = (Xt, X̃t), Y2

t = h2
t (U1

t ,N
2
t ). (.b)

and therefore the control laws can be written as

U1
t = g1

t (Xt, X̃t,S1
t−1), (U2

t , Ũ
2
t ) = g2

t (Y2
t ,S

2
t−1). (.c)

. The state-update functions of both agents do not depend on the control actions
of the agents, i.e.,

S1
t = l1t (Xt,S1

t−1), S2
t = l2t (Y2

t ,S
2
t−1). (.d)

. The instantaneous cost does not depend on the control action of agent , and
is given by ρt(Xt,U2

t ).

This instance of the two-agent problem of Section . is equivalent to model 
of real-time communication over noisy channels with noisy feedback: the Markov
source and the feedback from the receiver is the plant, the encoder is agent , and
the receiver is agent , respectively. The relation between the variables of the mod-
els is shown in Table ..
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Component Variable Two-agent team Model 

Plant State Xt (Xt, Ỹt−1)

Observation Y1
t (Xt, Ỹt−1)

Agent  Control action U1
t Zt

State S1
t St

Observation Y2
t Yt

Agent  Control action U2
t (X̂t, Z̃t)

State S2
t Mt

Table .: Model  as an instance of two-agent team. In model , the Markov
source and the backward channel are the plant, the encoder is agent , and the

receiver is agent .

Information states and global optimization
Substituting the above described reduction in Definition ., we get that the infor-
mation states for Model  are given by

1πt = Pr
(
Xt, Ỹt−1,St−1,Mt−1

∣∣∣ 1ϕt−1
)

(.a)

2πt = Pr
(
Xt, Ỹt−1,Zt,St−1,Mt−1

∣∣∣ 2ϕt−1
)

(.b)

3πt = Pr
(
Xt, Ỹt−1,Yt,St,Mt−1

∣∣∣ 3ϕt−1
)

(.c)

4πt = Pr
(
Xt, Ỹt−1,Yt, X̂t, Ỹt,St,Mt−1

∣∣∣ 4ϕt−1
)

(.d)

In the system equations (.), the component Ỹt−1 of the state X̃t only affects
the observation of agent . So, it can be discarded after time 2t, when agent  has
updated its state. Thus, the information states can be further simplified to

1πt = Pr
(
Xt, Ỹt−1,St−1,Mt−1

∣∣∣ 1ϕt−1
)

(.a)

2πt = Pr
(
Xt, Ỹt−1,Zt,St−1,Mt−1

∣∣∣ 2ϕt−1
)

(.b)

3πt = Pr
(
Xt,Yt,St,Mt−1

∣∣∣ 3ϕt−1
)

(.c)

4πt = Pr
(
Xt,Yt, X̂t, Ỹt,St,Mt−1

∣∣∣ 4ϕt−1
)

(.d)
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The time evolution of these information states is given by Lemma .; the trans-
formations 1Qt, 2Qt, 3Qt and 4Qt and the cost ρ̂t in Lemma . can be simplified
by incorporating the above described reduction in their definitions. Consequent-
ly, the sequential decomposition of Problem . is given by the nested optimality
equations of Theorem ..

Infinite horizon problems
We can consider the following three variations of the time-homogeneous infinite-
horizon version of Model 

. Both the encoder and receiver have finite memory;
. The encoder has perfect recall while the receiver has finite memory;
. The encoder has finite memory while the receiver has perfect recall.

These are equivalent to the variations of the two-agent teams considered in Chap-
ter . Thus, the fixed-point equations for the two infinite horizon criteria derived
for variations , , and  in Chapter  are also applicable to the corresponding
variations of the real-time communication problem of model .

Variation 
For variation , the results of the finite and infinite horizon can be simplified fur-
ther. The encoder (agent ) perfectly observes (Xt, Ỹt−1) which is equivalent to the
state of the plant. Therefore, the beliefs of agent  given by Definition . simplify
to

iB1
t = Pr

(
Xt, Ỹt−1,Mt−1

∣∣∣ iJ1
t

)
≡

(
Xt, Ỹt−1,Pr

(
Mt−1

∣∣∣ iJ1
t

) )
.

Consequently, the structural results of variation  (Theorem .) imply that there
is no loss of optimality to restrict attention to encoders of the form

Zt = ct
(
Xt, Ỹt−1,Pr

(
Mt−1

∣∣∣ 1J1
t

) )
(.)

Hence, for variation , the information states simplify to
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Source Encoder Channel Decoder
Xt Zt Yt

Nt

Yt

X̂t

Figure .: Real-time communication over noisy forward and noiseless
backward channels

1πt = Pr
(
Xt, Ỹt−1,

1B̃1
t ,Mt−1

∣∣∣∣ 1ϕt−1
)

(.a)

2πt = Pr
(
Xt, Ỹt−1,Zt,

2B̃1
t ,Mt−1

∣∣∣∣ 2ϕt−1
)

(.b)

3πt = Pr
(
Xt,Yt,

3B̃1
t ,Mt−1

∣∣∣∣ 3ϕt−1
)

(.c)

4πt = Pr
(
Xt,Yt, X̂t, Z̃t,

4B̃1
t ,Mt−1

∣∣∣∣ 4ϕt−1
)

(.d)

where iB̃1
t := Pr

(
Mt−1

∣∣∣ iJ1
t

)
. This leads to the corresponding simplification of nested

optimality equations of Theorem ..

. Model : real-time communication over noisy
channels with noiseless feedback

Finite horizon problem
Model , which is shown in Figure ., is identical to model  except that Ỹ =
Z̃ = Y, the output of the forward channel is fed back into the backward channel,
and the backward channel h̃t is noiseless, i.e., in model  the backward channel is
given by

Z̃t = c̃t(Yt,Mt−1) := Yt (.)

instead of (.) and

Ỹt = h̃t(Z̃t, Ñt) := Z̃t (.)

instead of (.). Thus, Ỹt = Yt.
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For this model the information states of model , given by (.), simplify to
1πt = Pr

(
Xt,Yt−1,St−1,Mt−1

∣∣∣ 1ϕt−1
)

(.a)

2πt = Pr
(
Xt,Yt−1,Zt,St−1,Mt−1

∣∣∣ 2ϕt−1
)

(.b)

3πt = Pr
(
Xt,Yt,St,Mt−1

∣∣∣ 3ϕt−1
)

(.c)

4πt = Pr
(
Xt,Yt, X̂t,St,Mt−1

∣∣∣ 4ϕt−1
)

(.d)

The time evolution of the information states (Lemma .) simplify further due
to the noiseless nature of h̃t. Optimal encoding and decoding strategies can be de-
termined by the nested optimality equations of Theorem ..

Infinite horizon problem
For the infinite horizon problem we can consider variations , , and  as in
model ; optimal encoding and decoding strategies are given by the fixed point
equations for variations , , and  derived in Chapter . For variation , a fur-
ther simplification can be made. Agent  (the encoder) perfectly observes the state
of the plant (the Markov source and the output of the channel) and consequently
observes the observations of agent  (the receiver) after one unit of delay. As a re-
sult, agent  knows the state of the agent . Consequently, the belief of agent  (see
Definition .) simplify to

iB1
t = Pr

(
Xt, Z̃t−1,Mt−1

∣∣∣ iJ1
t

)
≡ (Xt,Yt−1,Mt−1).

Therefore, the structural results of variation  (Theorem .) imply that there is no
loss of optimality to restrict attention

Zt = ct(Xt,Yt−1,Mt−1). (.)

Hence, for variation , the information states simplify to
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1πt = Pr
(
Xt,Yt−1,Mt−1

∣∣∣ 1ϕt−1
)

(.a)

2πt = Pr
(
Xt,Yt−1,Zt,Mt−1

∣∣∣ 2ϕt−1
)

(.b)

3πt = Pr
(
Xt,Yt,Mt−1

∣∣∣ 3ϕt−1
)
= 2πt (.c)

4πt = Pr
(
Xt,Yt, X̂t,Mt−1

∣∣∣ 4ϕt−1
)

(.d)

This leads to the corresponding simplification of the nested optimality equations
of Theorem ..

. Comparison with the philosophy of information
theory and coding theory

This chapter takes a drastically different approach to the design of a communication
system than the traditional approach of information theory and coding theory. In
this section we explain the reason for taking this different approach; we also explain
the step that needs to be added to our approach in order to provide a complete
solution methodology to determining good communication strategies for real-time
communication systems.

The objective of the design of a communication system is to find communication
strategies that perform nearly optimally and are easy to implement. For communi-
cation systems with no restriction on communication delay, information theory and
coding theory break down the design of a communication system into two steps:

. First, information theory is used to determine the fundamental limits of per-
formance of a communication system.

. Then, coding theory investigates codes that are easy to implement and per-
form close to the fundamental performance limits determined by information
theory.

This approach works even for communication systems with finite but sufficiently
large delay constraints. However, this approach fails for communication systems
with small delay constraints because for information theoretic bounds are not tight
for small values of delay and consequently, fundamental limits of performance are
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not known. As a result, there is no benchmark for performance evaluation of com-
munication strategies, and we cannot determine whether or not a particular family
of codes performs close to optimal.

Given the current state of knowledge, one can take two approaches to the design
of real-time communication systems: either determine tight bounds on optimal per-
formance (and then find codes that come close to those bounds), or use some other
technique to find good codes. In this chapter we follow the second approach. We
formulate the real-time communication problem as a decentralized stochastic opti-
mization problem and develop a methodology to systematically search for an op-
timal communication strategy. This methodology drastically simplifies the search
for an optimal solution. In spite of this simplification, numerically solving the re-
sultant optimality equations is a formidable task. As explained in Chapter , for
variation  we can efficiently approximate the optimal solution; for variation 
and , we are not aware of any good approximation techniques. If such approxi-
mation techniques are discovered, only then would the results of this chapter along
with those techniques provide a complete methodology to determining communi-
cation strategies that perform well for small delays.

. Conclusion
We considered two models of point-to-point real-time communication systems: re-
al-time communication over noisy channels, and real-time communication over
noisy channels with noisy feedback. (The other two models of real-time commu-
nication, viz., real-time communication over noiseless channels, and real-time com-
munication over noisy channels with noiseless feedback have already been consid-
ered in the literature and are special cases of the models considered in this chapter.)
We showed that both these models are special instances of two-agent teams con-
sidered in Chapter ; hence, the results on sequential decomposition of finite and
infinite horizon two-agent team problems derived in Chapter  are also applicable
to real-time communication systems.

The qualitative/structural properties of optimal encoders for variation  of
models , , and  have been considered in Witsenhausen (), Walrand and
Varaiya (a) and Teneketzis (), respectively. In this chapter we showed that
the structural properties of general two agent teams can be used to obtain these
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qualitative properties directly. This shows the usefulness of the structural results
for variations  and  derived in Chapter .

Parts of the results of this chapter have appeared in different publications. For
model , variation  was considered in Mahajan and Teneketzis (b) and vari-
ation  along with several extensions was considered in Mahajan and Teneketzis
(a); for model  variation  was considered in Mahajan and Teneketzis (,
).

In models  and , the decisions of the receiver (agent ) do not affect the ob-
servations of the encoder (agent ) or the time-evolution of the source. In models 
and , the decisions of the agent affect the observations of the encoder (agent ),
but they do not affect the time-evolution of the source. Thus, in all four cases, the de-
cisions of the receiver do not affect the time evolution of the source. In the next chap-
ter we consider networked control systems where the decisions of agent  affect the
time-evolution of the plant.
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Chapter 

Optimal feedback control over noisy
communication

. Introduction

Motivation
In today’s world, networking capabilities—both wired and wireless—are ubiqui-
tous. This has motivated the study of control systems where the plant and the
controller are located geographically apart and connected over a network. Such sys-
tems, called networked control system (NCS), have given rise to new and interesting
problems in control and communications and have spurred considerable research
interest including special issues in IEEE control systems magazine (Bushnell, ),
IEEE transactions on automatic control (Antsaklis and Baillieul, ), proceedings
of the IEEE (Antsaklis and Baillieul, ) and IEEE journal on special areas in com-
munication (Franceshchetti et al., ).

In the simplest setup, a NCS consists of a sensor located at a plant and a remotely
located controller. The sensor can communicate with the controller over a (possi-
bly noisy) communication channel and the controller can send its actions to the
plant over a (possibly noisy) communication channel. Depending on the applica-
tion, the design objective can either be stability or optimal performance. Stability
is an asymptotic concept where we want to ensure that eventually the state of the
plant will belong to a safe region. Thus, for stability analysis only the steady state
behavior of the system is important. For optimal performance, both the transient
and the steady state behavior is important; usually optimal performance problems
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assume that an instantaneous cost in incurred at each time step and the objective is
to minimize an expected total cost.

Literature overview
Stability analysis of NCS has received considerable attention in the literature. The
problem of stabilization of a plant with finite data rate feedback was investigated in
Delchamps (), Wong and Brockett (), Baillieul (, ), Elia and Mitter
(), Brockett and Liberzon (), Peterson and Savkin (), Ishii and Fran-
cis (), Liberzon (), Nair and Evans (, , ), Nair et al. ()
and Martins et al. (). A unified overview of stabilization with finite data rate
feedback is presented in Nair et al. (). LQG stability of various systems (deter-
ministic LQ, stochastic, stable, unstable) under various kinds of communication con-
straints (noisy and noiseless channel) was considered in Tatikonda (), Tatikon-
da and Mitter (a, b) and Tatikonda et al. (). Stability of an unsta-
ble plant over AWGN channel subject to input power constraints was considered
in Braslavsky et al. (). Fundamental asymptotic limitations of feedback for a
linear time invariant plant and arbitrary time-invariant causal feedback were inves-
tigated in Martins and Dahleh () and Martins et al. () using an information
theoretic formulation.

The problem of optimal performance has received less attention than stabiliza-
tion in the literature. The problems considered in the literature can be classified
on the basis of their plant dynamics (linear or non-linear), the nature of the com-
munication channel (rate-limited noiseless channel or noisy channel), and the in-
formation structure (classical or non-classical information structures). Optimal per-
formance of a linear plant with rate-limited noiseless communication channel was
considered in Matveev and Savkin (): in Matveev and Savkin () the plant
disturbance is Gaussian and the controller is memoryless; in Savkin () the plant
is undisturbed and the controller has perfect recall. Optimal performance of a lin-
ear plant with Gaussian disturbance, either a rate-limited noiseless channel or a
Gaussian memoryless channel, and various information structures at the encoder
was considered in Tatikonda et al. (). Optimal performance of a non-linear
plant with a noisy forward channel and noiseless feedback from the output of the
channel to the encoder was considered in Walrand and Varaiya (b).
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Conceptual difficulties
While analyzing stability, most results show a connection between the rate or capac-
ity of the channel and the sum of unstable eigenvalues of the plant. In retrospect,
the connection between stability and information theory is not surprising since sta-
bility as well as the information theoretic notions of source entropy and channel
capacity are asymptotic concepts. This however, is not the case with optimal per-
formance where the asymptotic notions of source entropy and channel capacity,
and the asymptotic results on stability are not appropriate.

The most important feature in problems of optimal performance of NCS is whether
the encoder/sensor knows the information available at the decoder/controller or
not. We can classify problems into two cases on the basis of the presence or absence
of this feature: case , when the encoder has access to all the information available
at the decoder/controller, and case , when it does not. In case  the problem of
determining optimal performance can be reduced to a centralized stochastic con-
trol problem from the encoder’s point of view. Such a reduction is not possible in
case . In case  the encoder knows how the decoder/controller will interpret its
messages; in case , it does not. Therefore, efficient communication between the
encoder and decoder/controller is easier in case  than in case . Hence, determin-
ing optimal strategies for the encoder and the controller in case  is a considerably
more difficult problem than in case .

The models of Matveev and Savkin () and Walrand and Varaiya (, b)
and the instances in Tatikonda et al. () where there are noiseless channels as
well as the instance of information pattern A (see Tatikonda et al. (, pg. )
for definition of information pattern A) belong to case . In all these situations opti-
mal encoding and control strategies have been determined. The model in Tatikonda
et al. () with information pattern B (see Tatikonda et al. (, pg. ) for defi-
nition of information pattern B) belong to case . In this situation only sub-optimal
encoding and control strategies have been proposed. Thus, the optimal strategies
for case  are not known.

Outline of the approach
In this chapter we consider a non-linear plant with a noisy communication channel.
Our model belongs to case . We study the simplest NCS—a network with only
two nodes with a noisy communication link between them. We show that optimal
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performance of NCS is a special case of two-agent team considered in Chapter . As
such, the results of Chapter  can be used to obtain optimal communication and
control strategies for the NCS under consideration.

. Optimal performance of NCS

Plant Sensor Comm.
Channel

Obs.
Channel

Backward
Channel

Controller
Xt X̃t

Ñt

Zt Yt

Nt

UtÛt

N̂t

Figure .: A simple two-node networked control system

Problem formulation
Consider a system, shown in Figure ., which operates in discrete time for a finite
horizon T. For the ease of exposition, we assume that all system variables are finite
valued. The state of the plant at time t is Xt and takes values in X. The initial state
X1 has a PMF PX1 . The plant evolves as follows:

Xt+1 = ft(Xt, Ũt,Wt) (.)

where ft denotes the plant function and Ũt ∈ Ũ denotes the control input to the
plant (which may be different from the control action taken by the controller) and
Wt ∈ W denotes the plant disturbance. The PMF of Wt is given by PWt . We assume
that {Wt, t = 1, . . . ,T} is a sequence of independent random variables that are also
independent of X1.

A sensor is co-located with the plant and observes the state of the plant in a
noisy manner. The observations X̃t of the sensor take values in X̃ and are generated
according to

X̃t = h̃t(Xt, Ñt) (.)
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where h̃t denotes the observation channel and Ñt ∈ Ñ denotes the observation
noise. The PMF of Ñt is given by PÑt

. We assume that {Ñt, t = 1, . . . ,T} is a sequence
of independent random variables that is also independent of {Wt, t = 1, . . . ,T} and
X1.

The sensor encodes its observations and transmits the encoded symbol over a
noisy communication channel to the controller. The sensor has a memory Mt at
time t. The size of the sensor’s memory can increase with time; so this model in-
cludes the case when the sensor has perfect recall. The encoded symbol Zt takes
values inZ and is generated as follows

Zt = ct(X̃t,Mt−1) (.)

where ct is the encoding function of the sensor. The sensor then updates its memory
according to

Mt = dt(X̃t,Mt−1) (.)

where dt is the sensor’s memory update function.

The encoded symbol Zt is transmitted over a |Z|-input |Y|-output discrete mem-
oryless channel to produce a channel output Yt according to

Yt = ht(Zt,Nt) (.)

where ht denotes the communication channel between the sensor and the controller,
and Nt denotes the channel noise. The PMF of Nt is PNt . We assume that {Nt, t =

1, . . . ,T} is independent of {Wt, Ñt, t = 1, . . .T} and X1.

The controller observes Yt and takes a control action Ut ∈ U as follows:

Ut = gt(Yt,St−1) (.)

where gt is the control law and St−1 denotes the controller’s memory contents at
time t − 1. St takes values in St. The size of the controller’s memory can increase
with time; so, this model includes the case when the controller has perfect recall.
The controller’s memory is updated according to

St = lt(Yt,St−1) (.)
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where lt is the controller’s memory update rule.

The control action Ut is transmitted over a backward channel which is a |U|-
input |Û|-output DMC and generates an output Ût ∈ Û as follows

Ût = ĥt(Ut, N̂t) (.)

where ĥt denotes the backward communication channel and N̂t denotes the chan-
nel noise. The PMF of N̂t is given by PN̂t

. We assume that {Nt, t = 1, . . . ,T}t is a
sequence of independent random variables that are also independent of {Wt, Ñt,Nt,
t = 1, . . .T} and X1.

The output of the backward channel acts as a control input to the plant and
the state of the plant gets updated according to (.). At each instant of time an
instantaneous cost ρt(Xt,Zt,Ut) is incurred.

The collection (C,D,G,L), where C := (c1, . . . , cT), D := (d1, . . . , dT), G := (g1, . . . , gT),
and L := (l1, . . . , lT), is called a design of the system. The performance of a design is
quantified by the expected total cost under that design and is given by

JT(C,D,G,L) := E

 T∑
t=1

ρt(Xt,Zt,Ut)

∣∣∣∣∣∣∣ C,D,G,L
 (.)

We are interested in the following optimization problem.

Problem .. Assume that the sensor and the controller know the plant function ft, the
observation, forward and backward channels h̃t, ht and ĥt, respectively, the statistics of plant
disturbance and noise in the observation, forward, and backward channels, and the distor-
tion function ρt. Determine a design (C∗,D∗,G∗,L∗) that is optimal with respect to the
performance criterion of (.), i.e.,

JT(C∗,D∗,G∗,L∗) = J ∗T := min
C∈C T

D∈DT

G∈G T

L∈L T

JT(C,D,G,L), (.)

where C T := C1 × · · · × CT; Ct is the family of functions from Xt × St−1 to Z; DT :=

D1 × · · · ×DT; Dt is the family of functions from Xt × St−1 to St; G T := G1 × · · · × GT; Gt

is the family of functions fromYt×Mt−1 to X̂; L T := L1× · · · ×LT; and Lt is the family
of functions fromYt ×Mt−1 toMt.
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Salient features of the model
The above described model captures the realistic features of NCS. In particular,

. The plant can be non-linear and its evolution can be stochastic.
. The sensor observes the state of the plant in a noisy manner which is usually

the case in practice.
. The sensor can have a small memory; this models the situation when the sen-

sor is a low-complexity device.
. The forward channel is noisy; this models the situation when the sensor has

limited power and therefore must communicate with limited power.
. Encoding and control are done in a causal manner.
. The instantaneous cost depends on the encoded symbol. This can be used to

model average power constraint on the communication channel.

Reduction to the model of Chapter 
We can reduce the NCS modeled above into the two-agent team considered in Chap-
ter , Section . by assuming that the backward channel is part of the plant. That
is, we can combine (.) and (.) to give

Xt+1 = ft(Xt, ĥt(Ut, N̂t),Wt)

=: f̂t(Xt,Ut, (N̂t,Wt)) (.)

The system given by (.) and (.)—(.) is a special case of the model of the two
agent team of Chapter  in which the sensor is the first agent, the controller is the
second agent, and the plant update does not depend on the action of agent . The
relation between the variables of the two models is shown in Table ..

Information states and global optimization
Substituting the above described reduction in Definition ., we get that the infor-
mation states for this model of NCS are given by
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Component Variable Two-agent team Model 

Plant State Xt Xt

Observation Y1
t X̃t

Agent  Control action U1
t Zt

State S1
t Mt

Observation Y2
t Yt

Agent  Control action U2
t Ut

State S2
t St

Table .: The simple NCS model as an instance of two-agent team. In the NCS
model, the plant and the backward channel corresponds to the plant of two-agent

team, the sensor corresponds to agent , and the controller corresponds to
agent .

1πt := Pr
(
Xt, X̃t,Mt−1,St−1

∣∣∣ 1ϕt−1
)
, (.a)

2πt := Pr
(
Xt, X̃t,Zt,Mt−1,St−1

∣∣∣ 2ϕt−1
)
, (.b)

3πt := Pr
(
Xt,Yt,Zt,Mt,St−1

∣∣∣ 3ϕt−1
)
, (.c)

4πt := Pr
(
Xt,Yt,Zt,Ut,Mt,St−1

∣∣∣ 4ϕt−1
)
. (.d)

The time evolution of these information states is given by Lemma .; the trans-
formations 1Qt, 2Qt and 3Qt and the cost ρ̂t in Lemma . can be simplified by in-
corporating the above described reduction in their definitions. Consequently, the
sequential decomposition of Problem . is given by the nested optimality equa-
tions of Theorem ..

Infinite horizon problems
We can consider the following three variations of the time-homogeneous infinite-
horizon version of the NCS model:

. Both the sensor and the controller have finite memory;
. The encoder has perfect recall while the controller has finite memory;
. The encoder has finite memory while the controller has perfect recall.
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These are equivalent to the variations of the two-agent teams considered in Chap-
ter . Thus, the fixed-point equations for the two infinite horizon criteria derived
for variations , , and  in Chapter  are also applicable to the corresponding
variations of the networked control system modeled above.

. Conclusion
We considered a simple networked control system: a sensor co-located with a plant
that communicates over a noisy channel to a remote controller. We showed that
this system is a special instance of the two-agent team considered in Chapter ;
hence, the results on sequential decomposition of finite and infinite horizon two-
agent team problems derived in Chapter  are also applicable to networked con-
trol system. Results of this chapter for variation  have appeared in Mahajan and
Teneketzis (c, d).



 

 



Chapter 

Conclusion

In this thesis we studied two-agent teams with strictly non-classical information
structures and showed that an appropriate choice of an information state results in
a sequential decomposition of the problem. We described the properties that appro-
priate information states should satisfy and provided some guidelines on how to
identify information states with these properties. A sequential decomposition con-
verts a one shot optimization problem into a sequence of nested optimization prob-
lems. For some instances of the problem, this sequential decomposition provides
computationally tractable approximate solutions; for others, it provides a potential
approach for obtaining efficient computational methods. The sequential decom-
position can also potentially help in identifying additional qualitative properties
of optimal designs. We also considered real-time communication and networked
control systems and showed that they can be considered as special instances of
two-agent teams. The results of two-agent teams can be used to provide a solution
methodology for these applications.

In this chapter we conclude with some reflections on the solution framework
developed in this thesis and some possible future directions.

. Reflections
Decentralized teams have been studied since the early ’’s but so far there was
no solution framework to obtain a sequential decomposition for both finite and
infinite horizon problems. This thesis provides such a solution framework. We
highlight the philosophy of thinking and the modeling assumptions that enabled
us to obtain a solution framework, and some of the strengths and weaknesses of
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our solution framework. In this section, we reflect on the conceptual and practical
difficulties associated with sequential decomposition of decentralized teams. We
begin by explaining how we resolve the main conceptual difficulty in the design of
decentralized teams.

The philosophy of designing decentralized teams — resolving the
second guessing argument
In centralized system with partial observations (POMDPs), the control action is based
on the control agent’s belief about the rest of the system. In decentralized systems,
the control action of an agent cannot be based on its belief since other agents ob-
serve different data. Each agent can form a belief on other agents’ data, but then
each agent will not know the other agents’ belief on its own data. If each agent
forms a belief on the other agents’ belief on its own data, it will not know the other
agents’ beliefs on its belief on the other agents’ data. This process of forming the
belief on what the other agents are “thinking” will continue until the agents agree
on what everyone is thinking. This process is called the second guessing argument,3

and it has been the main conceptual difficulty in designing decentralized dynamic
systems.

Aumann () showed that two agents with inconsistent beliefs can only agree
on the common knowledge between them. Thus, the solution of the second guess-
ing argument will be the common knowledge between the agents. We resolve the
second guessing argument by starting from the common knowledge between two
agents and coarsening it to come up with appropriate information states.

In conclusion, optimal design of decentralized teams requires a paradigm shift
from the philosophy of optimal design of centralized dynamic systems. Instead
of reasoning in terms of the information available to individual agent, we must
reason in terms of the information that is common knowledge to all agents.

In the next section we revisit the standard form of Witsenhausen (), which
provided a sequential decomposition for finite horizon sequential teams.

Comparison with Witsenhausen’s standard form
Witsenhausen () proposed a standard form for sequential stochastic control.
He showed that any sequential team can be converted into a standard form and

The term “second guessing argument” is due to Hans Witsenhausen.
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developed a solution methodology to obtain a sequential decomposition of any
problem in standard form; thereby providing a solution methodology for obtaining
a sequential decomposition of any sequential team. To the best of our knowledge,
this was the first and so far the only result that shows how to obtain a sequential
decomposition of any sequential team problem.

For finite horizon problems, the model of two-agent team considered in this
thesis can be considered as a special case of the model of standard form. Compared
Witsenhausen’s model (), which does not make any assumptions other than
assuming sequentiality and a common objective, our model makes the following
“simplifying” assumptions:

. The system has two agents that act cyclically (that is first agent  acts, then
agent , then agent , and so on). In Witsenhausen’s model (), each action
is assumed to be taken by a different agent.

. In our model, the state Xt of the system is a controlled Markov process con-
trolled by past control actions U1

t−1 and U2
t−1 (this follows from the plant up-

date equation (.)). Witsenhausen () does not make a Markov assump-
tion on the state evolution of the system.

. In our model the primitive random variables of the system are independent.
Witsenhausen () assumes that all randomness is due to one intrinsic ran-
dom variable (or intrinsic event); no assumption is made regarding the proba-
bility space on which the intrinsic random variable is defined. In our model,
this would be equivalent to assuming that the primitive random variables
are correlated.

. In our model the cost is additive; at each time an instantaneous cost, which
depends on the current state of the system and the current control actions of
the agents, is incurred. The total cost is the sum of instantaneous costs for the
entire horizon. Witsenhausen () does not assume an instantaneous cost;
rather assumes that a terminal cost, which depends on the intrinsic random
variable and all the control actions taking in the entire horizon, is incurred
at the end of the horizon.

In () assuming that there are only two agents is a restriction (although our frame-
work could be extended to multiple agents to remove this restriction). Assuming
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that the agents act cyclically is not a restriction; any two-agent sequential systems
can be made cyclic by introducing dummy actions for the agents.

Assumptions () and () are also not real restrictions. Any dynamic system
can be made to satisfy these assumptions by a suitable expansion of the state spaces.

The real restriction in our model is (). However, assumption , which is a
standard assumption in Markov decision theory, is a mild assumption; most appli-
cations satisfy this assumption. This assumption buys us the following two simpli-
fications:

. Our information states take values in a smaller space as compared to the in-
formation states of the standard form. Due to () and (), in our model the
information states should be sufficient to determine a measure on the current
state of the system and the current control actions of the agents; in the stan-
dard form the information states should be sufficient to determine a measure
on the intrinsic random variable and all the past control actions of all agents.

. In our model we can formulate and solve infinite horizon problems. However,
Witsenhausen’s model () cannot be extended to infinite horizon due to
the assumption of a terminal cost.

Nevertheless, Witsenhausen () was the first to provide a solution framework
for optimally designing finite-horizon decentralized sequential teams. Surprisingly,
the result was virtually ignored in the literature. Most publications that appeared
in the literature in the subsequent  years assumed that a general sequential team
cannot be solved. We believe that this was due to two reasons. Firstly, Witsenhausen
() was a difficult and tersely written paper; there was no explanation of why
we are able to obtain a sequential decomposition of a system in standard form. Sec-
ondly, and perhaps more importantly, the computational solution of the nested
optimality equations of Witsenhausen () was not explored in any subsequent
paper. As a result, it was difficult to appreciate the practical significance of the
sequential decomposition proposed by Witsenhausen.

In this thesis, we have shown how existing computational methods for POMDPs
could be used for solving the nested optimality equations that arise in our models.
Next we present the salient features of the numerical results.
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Numerical solution of the optimality equations
As mentioned earlier, two-agent teams can be thought of as POMDPs where the state
sufficient for input-output mapping is the unobserved state of the POMDP and the
control and state-update functions are the control actions of the POMDP. Thus, we
can leverage on the existing computational techniques for POMDPs to numerically
solve the optimality equations of two-agent teams. However, there is one funda-
mental difference between the optimality equations of POMDPs and those of two-
agent teams. Each step of the nested optimality equations is a parametric (scalar)
optimization problem in POMDPs while it is a functional optimization problem in
two-agent teams. This difference increases the complexity of solving the optimality
equations of two-agent teams using the computational techniques for POMDPs.

Suppose that all the system variables are finite valued. Then finite horizon prob-
lems and variation  of infinite horizon problem for two-agent teams are equiva-
lent to POMDPs with finite state and action spaces. Such POMDPs can be solved
efficiently for both finite and infinite horizon (see Cassandra et al. () and Rust
()). The solution algorithms for POMDPs are polynomial in the size of the state
and action spaces. When we look at two-agent teams as POMDPs, the action space
is a space of functions; although it is finite, its size is exponential in the system
variables. Therefore, even good computational algorithms for POMDPs may not be
efficient for two-agent teams with large alphabets.

Variations  and  of the infinite horizon problems for two-agent teams are
equivalent to POMDPs with uncountable state and action spaces. There are not many
efficient algorithms to numerically solve such POMDPs.

Limitations of the existing computational techniques motivate the study of nu-
merical algorithms for POMDPs (and MDPs) with specific features that are present in
optimality equations of two-agent teams. These features include the deterministic
evolution of the information states, lack of observations by the “controller” (or the
designer), and the optimality equation at each step being a functional optimization
problem. It is possible that some of the computational techniques for deterministic
open loop optimization problems (e.g., traveling salesman or shortest path in net-
works) could be extended to the case of uncountable state space and be useful for
computationally solving optimality equations of two- and multi-agent teams.
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There are two sources of difficulty in the numerical solution of the optimality
equations of two-agent teams. The first is the functional rather than parametric
nature of the each step of the nested optimality equations. The second is the un-
countable nature of the state for input-output mapping that arise in variations 
and  of the infinite horizon problems. In the next two sections, we take a critical
look at the reason behind these difficulties.

The communication aspect of control
We have shown that an appropriate choice of an information state converts a decen-
tralized team into a MDP. However, we end up with optimality equations where
each step is a functional optimization problem. This makes the numerical solution
of the optimality equations more complicated. The reader may wonder if we could
have chosen a different information state to come up with a sequential decomposi-
tion where each step was a parametric optimization problem. We believe that such
an information state cannot be found due to the communication aspect of control.

The fundamental difficulty in communication between two agents in a decentral-
ized system is the following. Consider a time instant when agent  communicates
with agent  over a noisy communication channel. In order to determine the effect
of his control action of the instantaneous cost, agent  needs to form a belief on
agent ’s data; to form such a belief, he needs to know control actions that agent 
would have chosen for all possible values of his (agent ’s) data. Thus, agent  needs
to know agent ’s control law. Therefore, a sequential decomposition for a decen-
tralized team with strictly non-classical information structure will always result in
functional optimization problems. Depending on the specifics of the model it may
be possible to obtain simpler optimality equations. For example, see Walrand and
Varaiya (a) and Mahajan et al. ().

In the next section we explain the modelling assumptions that lead to uncount-
able state spaces in variations  and .

The assumption of perfect recall
Perfect recall at an agent is an impractical assumption. In single-agent stochastic
control problems, perfect recall at the controller implies that the system has classi-
cal information structure, which makes the analysis of the problem simpler. How-
ever, in two-agent (or multi-agent) teams with noisy channels between the agents,
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assuming perfect recall at each agent does not imply a classical information struc-
ture. Further, it makes the problem analytically and computationally more difficult.
For example, compare variations  and . In variation , we assume that both
agents have fixed finite memory; in variation , we assume that agent  has per-
fect recall. The analysis of variation  is more difficult than that of variation .
In variation , we need to first establish qualitative properties of optimal control
laws of agent  which transform the model of variation  into one where the size
of the state space of agent  is not changing with time. In contrast, in variation 
we start with an assumption that the state space of both agents is not changing with
time. Further, the optimality equations of variation  are equivalent to those of a
POMDP with finite (unobserved) state and action space while those of variation 
are equivalent to a POMDP with uncountable (unobserved) state and action spaces.
So, when we go from the realistic assumption of fixed finite memory at both agents
(variation ) to unrealistic assumption of perfect recall at agent  (variation )
or at agent  (variation ), the problem becomes harder to analyze and harder to
solve computationally. Further, when we assume perfect recall at both agents (varia-
tion ) we do not know how to solve a general infinite horizon problem. Therefore,
we must carefully reconsider the modeling assumptions of single-agent centralized
stochastic control problems before adopting them for multi-agent decentralized
team problems.

In the next section, we mention some possible research problems that can be
considered in the future, based on the results of this thesis.

. Future Directions
As mentioned earlier, there are two difficulties associated with multi-agent teams
with strictly non-classical information structures: conceptual and computational.
This thesis helps resolve some of the conceptual difficulties and suggests a few pos-
sibilities of resolving the computational difficulties. However, many computational
and conceptual difficulties remain unresolved. We highlight some of them in this
section.
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Scalable sequential decomposition for multi-agent teams
In this thesis we have focussed on two-agent teams. The intuition behind the choice
of information states presented in Section . make it evident that the idea can be
easily extended to multi-agent team problems. We need to find a state sufficient
for input output mapping, and consider the joint measure on this state as the infor-
mation state. This will also work for infinite horizon problems when all the agents
have finite memory. However, the complexity of solving the optimality equations
of multi-agent systems would increase exponentially with the number of agents.
So, the solution methodology presented in this chapter would not scale with the
number of agents. We believe that, in general, it is not possible to obtain sequential
decomposition that scale well with the number of agents. Nevertheless, it should
be possible to obtain a scalable solution methodologies under certain modelling
assumptions. Two such possibilities are systems with symmetric agents and sys-
tems with asymptotically large number of agents. For both these systems, it should
be possible to come up with a more compact representation of the state sufficient
for input-output mapping, and thereby a more compact representation of the infor-
mation states. It would be worthwhile to investigate the above-mentioned or any
other modelling assumptions that would lead to a sequential decomposition that
is scalable with the number of agents.

Structural properties for multi-agent systems
To obtain a sequential decomposition for infinite horizon teams, we need to have
a time-invariant state for each agent. In the four instances of infinite horizon prob-
lems that we considered for two-agent teams, variation  has a time-invariant state
for both agents, variations  and  has a time-invariant state for one agent, and
variation  does not have a time-invariant state for any agent. For variations 
and  we obtained structural/qualitative properties of optimal control laws for
the agent that does not have a time-invariant state; these structural properties pro-
vided a time-invariant state representation of optimal control strategies for these
agents. However, in general, it is not easy to obtain a structural properties for a gen-
eral multi-agent system. A case in point is variation  of two-agent teams where
we could not obtain structural properties for either agent. It will be useful to find
examples of multi-agent systems where we can obtain structural properties of op-
timal designs and use these examples to determine general models of multi-agent
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systems where structural properties of optimal control laws can be obtained. One
such is example appears in Nayyar and Teneketzis () who consider a three-
agent team that arises in real-time communication and obtain structural properties
of optimal control strategies for all agents; these structural properties are used to
obtain a sequential decomposition of the optimization problem associated with the
three agent team.

Logical systems with minimax cost criterion
In this thesis, we considered stochastic systems where the performance criterion is
given by an expected cost. Dynamic systems can also be modelled as logical sys-
tems with a (worst-case) minimax cost criterion. For centralized systems, Markov
decision theory also provides a sequential decomposition for logical systems. We
believe that it is possible to extend the results of this thesis, at least for finite hori-
zon problem and variation  of infinite horizon problems, to logical systems. This
is because the key concepts of our solution framework—the notion of information
state and common knowledge—are fundamental ideas in dynamic systems that are
independent of the modelling framework. In logical systems the information states
would be the reachable set of the state sufficient for input-output mapping.

Class of problems with parametric information states
It is important to identify special cases in which the information states can be re-
stricted to a parametric family of distributions. In centralized stochastic control
problems, LQG systems possess such a property—the information state can be re-
stricted to Gaussian distributions. This is because in LQG systems with classical in-
formation pattern, without any loss of optimality we can restrict attention to affine
control laws, which implies that the state of the plant is always Gaussian. Thus,
the information state—which is the conditional probability of the state of the plant,
conditioned on all the past observations and all the past control actions of the con-
troller—is also Gaussian and can be characterized only by its mean and variance
(which is data independent). This simplifies the search for an optimal design. Un-
fortunately, in decentralized systems non-linear control laws can outperform affine
control laws even in linear systems where all primitive random variables are Gaus-
sian, as illustrated by the Witsenhausen counterexample (Witsenhausen, ). So,
the state of the plant may not be Gaussian and hence the information state need
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not be Gaussian. However, there may be other special cases for which informa-
tion states in a decentralized system belong to a parametric family of distributions.
Finding such special cases remains a challenging open problem.

. Final thoughts
For two-agent teams this thesis has resolved all conceptual difficulties except the
case of infinite horizon problem when both agents have perfect recall. For multi-
agent teams finding structural properties of optimal control laws remains a chal-
lenge.

From a practical view-point there are two possible directions. One direction is to
find bounds for optimal performance, which can be evaluated without identifying
an optimal design. For centralized systems some initial results were presented in
Witsenhausen (, ). Such bounds will make it easier to bound the degree
of suboptimality of a heuristic policy. Another possible direction is to find good
suboptimal algorithms where the degree of suboptimality can be bound.

For decentralized systems with large number of agents modular and hierarchi-
cal control architectures may not be desirable. To the best of our knowledge, the
optimal design of modular and/or hierarchical architectures for sequential dynam-
ic teams is still an open problem.

In general, decentralized systems is an intellectually stimulating area which is
of great practical importance. We believe it will remain an exciting and challenging
research field for years to come.
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