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Abstract—In this article, we investigate the problem of sys-
tem identification for autonomous Markov jump linear systems
(MJS) with complete state observations. We propose switched
least squares method for identification of MJS, show that this
method is strongly consistent, and derive data-dependent and
data-independent rates of convergence. In particular, our data-
independent rate of convergence shows that, almost surely, the
system identification error is O(

√
log(T )/T ) where T is the

time horizon. These results show that the switched least squares
method for MJS has the same rate of convergence as the least
squares method for autonomous linear systems. We derive our
results by imposing a general stability assumption on the model
called stability in the average sense. We show that stability in
the average sense is a weaker form of stability compared with
the stability assumptions commonly imposed in the literature. We
present numerical examples to illustrate the performance of the
proposed method.

Index Terms—Autonomous systems, parameter estimation, sta-
tistical learning, switching systems, system identification.

I. INTRODUCTION

Markov jump linear systems (MJS) are a good approximation of
nonlinear time-varying systems arising in various applications includ-
ing networked control systems [2] and cyber-physical systems [3],
[4]. There is a rich literature on the stability analysis (e.g., [5], [6],
and [7]) and optimal control (e.g., [8]) of MJS. However, most of the
literature assumes that the system model is known. The question of
system identification, i.e., identifying the dynamics from data, has not
received much attention in this setup.

The problem of identifying the system model from data is a key
component for control synthesis for both offline control methods and
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online control methods including adaptive control and reinforcement
learning [9], [10]. There are four main approaches for system identifi-
cation of linear systems.
1) Maximum likelihood estimation, which maximizes the likelihood

function of the unknown parameter given the observation (e.g.,
see [11]);

2) minimum prediction error methods, which minimize the estimation
error (residual process) according to some loss function (e.g.,
see [12] and [13]);

3) subspace methods, which find a minimum state space realization
given the input, output data (e.g., see [14] and [15]); and

4) least squares method, which estimates the unknown parameter by
considering the model as a regression problem (e.g., see [16] and
[17]).

These methods differ in terms of structural assumptions on the
model (e.g., system order), hypotheses on the stochastic process, and
convergence properties and guarantees.

Structural assumptions require the system to be stable in some
sense (e.g., mean square stable (MSS), exponentially stable, etc.), and
stochastic hypotheses restrict the noise processes to be of a certain
type, [e.g., Gaussian, subGaussian, or martingale difference sequences
(MDS)].

Convergence properties characterize the asymptotic behavior of
system identification methods. The basic requirements for any system
identification method is its consistency, asymptotic normality and rates
of convergence, that is, to establish that estimates converge asymp-
totically to the true unknown parameter and characterize the rate of
convergence. System identification methods can be weakly consistent
(i.e., estimates converge in probability) or strongly consistent (i.e.,
estimates converge almost surely). For linear systems, there is a vast
literature that establishes the consistency and rates of convergence for
a variety of methods (e.g., see [10] and [17] for a unified overview).
Another characterization of the convergence is finite-time guarantees,
which provide lower bounds on the number of samples required so
that estimates have a specified degree of accuracy with a specified
high probability [18], [19], [20], [21], [22], [23], [24], [25], [26]. As
the number of samples grow to infinity, these results establish weak
consistency of the proposed methods.

System identification of MJS and switched linear systems (SLS)
has received less attention in the literature. There is some work on
designing asymptotically stable controllers for unknown SLS [27],
[28], [29] but these papers do not establish rates of convergence for
system identification. There are some recent papers, which provide
finite time guarantees and rate of convergence for SLS [30], [31], [32]
and MJS [33]. System identification of a globally asymptotically stable
SLS with controlled switching signal is investigated in [31], whereas the
system identification of an unknown order SLS using subspace methods
is investigated in [32]. Both these methods are developed for SLS and
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are not directly applicable to MJS. The model analyzed in [33] is an
MJS system. Under the assumption that the system is MSS, the switch-
ing distribution is ergodic, and the noise is independent identically
distributed (i.i.d.) subGaussian, it is established that the convergence
rate is O(

√
log T/T ) with high probability. Then, a certainty equiva-

lence control algorithm is proposed and its regret is analyzed. Note that
if we let the number of samples go to infinity, these results imply weak
consistency of the proposed methods for MJS systems. As far as we are
aware, there is no existing result which establishes strong consistency
of a method for system identification of MJS.

A. Contributions

1) We propose switched least squares method for system identification
of an unknown (autonomous) MJS and provide data-dependent and
data-independent rates of convergence for this method.

2) Our assumptions on the noise and stability of the system are
weaker than those imposed in parallel works. We assume noise is
a martingale difference process with finite α > 2 moment. For the
stability, we introduce the notion of stability in the average sense for
the MJS systems, and assume the system is stable in the average
sense. Under these assumptions, we prove strong consistency of
the switched least squares method along with O(

√
log(T )/T )

rate of convergence. In contrast to the existing high-probability
convergence guarantees in the literature, our results show that the
estimates converge to the true parameters almost surely.

3) We highlight the technical difficulties that arise in system iden-
tification of MJS systems (compared with nonswitched systems)
and their interplay with stability of the systems. We show how
the notion of stability in the average sense circumvents this
difficulty.

4) We establish that stability in the average sense is a weaker notion
of stability compared with the commonly imposed assumptions
in the literature. In particular we show if a system is MSS, then
the system is stable in the average sense. Furthermore, we show
that the spectral conditions imposed in [1] as a sufficient condition
for almost sure stability also imply stability in the average sense.
As a consequence, our results are applicable to broader families
of the MJS systems investigated in the literature including MSS
systems.

B. Organization

The rest of this article is organized as follows. In Section II,
we present the system model, assumptions, and the main results. In
Section III-C, we prove the main results. In Section IV, we explain
the connection of stability in the average sense with mean square
stability and almost sure stability. We present an illustrative example in
Section V. Finally, Section VI concludes this article.

C. Notation

Given a matrix A, A(i, j) denotes its (i, j)th element, λmax(A)
and λmin(A) denote the largest and smallest magnitudes of right
eigenvalues, respectively, and σmax(A) =

√
λmax(A

ᵀA) denotes the
spectral norm. For a square matrixQ,Tr(Q) denotes the trace. WhenQ
is symmetric, Q � 0 and Q � 0 denote that Q is positive semidefinite
and positive definite, respectively. For two square matrices, Q1 and
Q2 of the same dimension, Q1 � Q2 means Q1 −Q2 � 0. Given two
matrices A and B, A⊗B denotes the Kronecker product of the two
matrices.

Given a sequence of positive numbers {at}t≥0, aT =O(T ) means
that lim supT→∞ aT /T < ∞, andaT = o(T )means that lim supT→∞

aT /T = 0. Given a sequence of vectors {xt}t∈T , vec(xt)t∈T denotes
the vector formed by vertically stacking {xt}t∈T . Given a sequence of
random variables {xt}t≥0, x0:t is a short hand for (x0, . . . , xt) and
σ(x0:t) denotes the sigma field generated by random variables x0:t.
Given a probability space {Ω,F ,P}, Ω denotes the sample space, ω ∈
Ω denotes elementary events, P(·) denotes the probability measure,
E[·] denotes the expectation operator, and 1{·} denotes the indicator
of an event.

R andN denote the sets of real and natural numbers. For a set T , |T |
denotes its cardinality. For a vector x, ‖x‖ denotes the Euclidean norm.
For a matrix A, ‖A‖ denotes the spectral norm and ‖A‖∞ denotes the
element with the largest absolute value. diag(·) is the block diagonal
matrix. Convergence in almost sure sense is abbreviated as a.s.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a discrete-time (autonomous) MJS. The state of the sys-
tem has two components: a discrete component st ∈ S := {1, . . . , k}
and a continuous component xt ∈ Rn. There is a finite set A =
{A1, . . . , Ak} of system matrices, where Ai ∈ Rn×n. The continuous
componentxt of the state starts at a fixed valuex0 and the initial discrete
state s0 starts according to a prior distribution π0. The continuous state
evolves according to

xt+1 = Astxt + wt+1, t ≥ 0 (1)

where {wt}t≥0, wt ∈ Rn is a noise process. The discrete component
evolves in a Markovian manner according to a time-homogeneous
irreducible and aperiodic transition matrix P , i.e., P(st+1 = j|st =
i) = Pij .

Let πt = (πt(1), . . . , πt(k)) denote the probability distribution of
the discrete state at time t and π∞ denote the stationary distribution. We
assume π∞(i) 
= 0 for all i. Let Ft = σ(x0:t, s0:t) denote the sigma-
algebra generated by the history of the complete state.

It is assumed that the noise process satisfies the following.
Assumption 1: The noise process {wt}t≥0 is a martingale

difference sequence with respect to {Ft}t≥0, i.e., E[|wt|] < ∞
and E[wt+1 | Ft] = 0. Furthermore, there exists a constant α >
2, such that supt≥0 E[‖wt+1‖α | Ft] < ∞ a.s. and there exists
a symmetric and positive definite matrix C ∈ Rn×n, such that
lim infT→∞

1
T

∑T−1
t=0 wtw

ᵀ
t = C a.s.

Assumption 1 is a standard assumption in the asymptotic analysis of
system identification of linear systems [16], [17], [34], [35], [36] and
allows the noise process to be nonstationary and have heavy tails (as
long as moment condition is satisfied). We use the following notion of
stability for the MJS system (1).

Definition 1: The MJS system (1) is called stable in the average
sense if almost surely

T∑
t=1

‖xt‖2 = O(T ) i.e., lim sup
T→∞

1

T

T∑
t=1

‖xt‖2 < ∞.

Assumption 2: The MJS system (1) is stable in the average sense.
The notion of stability in the average sense has been used in a few

papers in the literature of linear systems [37], [38]. However, in the
MJS literature, the commonly used notions of stability are mean square
stability and almost sure stability of noise-free system. We compare
stability in the average sense with both of these notions in Section IV.
Specifically, we show that mean square stability implies stability in
the average sense. Moreover, we show a common sufficient condition
for almost sure stability of noise-free system implies stability in the
average sense for MJS system (1). Therefore, the assumption of stability
in the average sense is weaker than the commonly imposed stability
assumptions imposed in the literature.
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A. System Identification and Switched Least Squares
Estimates

We are interested in the setting where the system dynamics A and
the switching transition matrixP are unknown. Let θᵀ = [A1, . . . , Ak]
∈ Rn×nk denote the unknown parameters of the system dynamics
matrices. We consider an agent that observes the complete state (xt, st)
of the system at each time and generates an estimate θ̂T of θ as a function
of the observation history (x0:T , s0:T ). A commonly used estimate in
such settings is the least squares estimate

θ̂
ᵀ
T = arg min

θᵀ=[A1,...,Ak]

T−1∑
t=0

‖xt+1 −Astxt‖2. (2)

The components [Â1,T , . . . , Âk,T ] = θ̂ᵀT of the least squares esti-
mate can be computed in a switched manner. Let Ti,T = {t ≤ T | st =
i} denote the time indices until time T when the discrete state of the
system equals i. Note that for each t ∈ Ti,T , Ast = Ai. Therefore, we
have

Âi,T := arg min
Ai∈Rn×n

∑
t∈Ti,T

‖xt+1 −Aixt‖2 ∀i ∈ {1, . . . , k}. (3)

Let Xi,T denote
∑

t∈Ti,T xtx
ᵀ
t , which we call the unnormalized em-

pirical covariance of the continuous component of the state at time T
when the discrete component equals i. Then, Âi,T can be computed
recursively as follows:

Âi,T+1 = Âi,T +

[
X−1

i,TxT (xT+1 − Âi,TxT )
ᵀ

1 + x
ᵀ
TX

−1
i,TxT

]
1{sT+1 = i} (4)

where Xi,T may be updated as Xi,T+1=Xi,T +
[
xT+1x

ᵀ
T+1

]
1{sT+1 = i}. Due to the switched nature of the least squares estimate,
we refer to above estimation procedure as switched least squares system
identification.

A common way of estimating the transition matrix P is to use
empirical counts, i.e.,

P̂ij,T =

∑T
t=1 1(st−1 = i, st = j)∑T

t=1 1(st−1 = i)
∀i, j ∈ S.

Using [39, Lemma 7] and Borel–Cantelli Lemma, it is straightforward
to show that the empirical estimator P̂ij,T converges almost surely. In
particular

‖P̂ij,T − Pij‖ ≤ O
(√

log2(T )/T

)
, a.s. ∀i, j ∈ S.

So, in the rest of this article, we focus on the convergence of the switched
least squares estimator.

B. Main Results

A fundamental property of any sequential parameter estimation
method is strong consistency, which we define below.

Definition 2: An estimator θ̂T of parameter θ is called strongly
consistent if limT→∞ θ̂T = θ, a.s.

Our main result is to establish that the switched least squares
estimator is strongly consistent. We do so by providing two differ-
ent characterizations of the rate of convergence. We first provide a
data-dependent rate of convergence, which depends on the spectral
properties of the unnormalized empirical covariance. We, then, present
a data-independent characterization of rate of convergence which only
depends on T . All the proofs are presented in Section III-C.

Theorem 1: Under Assumptions 1 and 2, the switched least squares
estimates {Âi,T }ki=1 are strongly consistent, i.e., for each i ∈ S , we

have: limT→∞
∥∥Âi,T −Ai

∥∥
∞ = 0, a.s. Furthermore, the rate of con-

vergence is upper bounded by

∥∥Âi,T −Ai

∥∥
∞ ≤ O

(√
log [λmax(Xi,T )]

λmin(Xi,T )

)
, a.s.

Remark 1: Theorem 1 is not a direct consequence of the decoupling
procedure in the switched least squares method. The k least squares
problems have a common covariate process {xt}t≥1. Therefore, the
convergence of the switched least squares method and the stability of
the MJS are interconnected problems. Our proof techniques carefully
use the stability properties of the system to establish the consistency of
the system identification method.

We simplify the result of Theorem 1 and characterize the data
dependent result of Theorem 1 in terms of horizon T and the cardinality
of the set Ti,T .

Corollary 1: Under Assumptions 1 and 2, for each i ∈ S , we have

∥∥Âi,T −Ai

∥∥
∞ ≤ O

(√
log(T )/|Ti,T |

)
, a.s.

Remark 2: The assumption that π∞(i) 
= 0 implies that for suffi-
ciently large T , |Ti,T | 
= 0 almost surely, therefore, the expressions in
above bounds are well defined.

The result of Corollary 1 still depends on data. When system identi-
fication results are used for adaptive control or reinforcement learning,
it is useful to have a data-independent characterization of the rate of
convergence. We present this characterization in the next theorem.

Theorem 2: Under Assumptions 1 and 2, the rate of convergence of
the switched least squares estimator Âi,T , i ∈ S is upper bounded by

∥∥Âi,T −Ai

∥∥
∞ ≤ O

(√
log(T )/π∞(i)T

)
, a.s.

where the constants in theO(·) notation do not depend on Markov chain
{st}t≥0 and horizon T . Therefore, the estimation process {θ̂T }T≥1 is
strongly consistent, i.e., limT→∞

∥∥θ̂T − θ
∥∥
∞ = 0, a.s. Furthermore, the

rate of convergence is upper bounded by

∥∥θ̂T − θ
∥∥
∞ ≤ O

(√
log(T )/π∗T

)
, a.s.

where π∗ = minj∈S π∞(j).
Theorem 2 shows that Assumptions 1 and 2 guarantee that the

switched least squares estimator for MJS has the same rate of con-
vergence of O(

√
log(T )/T ) as nonswitched case established in [16].

Moreover, the upper bound in Theorem 2 shows that the estimation error
of Âi,T is proportional to 1/

√
π∞(i); therefore, the rate of convergence

of θ̂T is proportional to 1/
√
π∗, where π∗ is the smallest probability in

the stationary distribution π∞.
Remark 3: SLS is a special case of MJS in which the discrete state

evolves in an i.i.d. manner. The results presented in this section are
valid for the SLS after substituting stationary distribution π∞ with the
i.i.d. probability mass function of switching probabilities defined over
discrete state.

III. PROOFS OF THE MAIN RESULTS

A. Preliminary Results

We first state the strong law of large numbers for MDS.
Theorem 3: (see [40, Th. 3.3.1]) Suppose {Xτ}τ≥1is an MDS

with respect to the filtration {Fτ}τ≥1. Let aτ be Fτ−1 measur-
able for each τ ≥ 1 and we have 0 < aτ → ∞ as τ → ∞, a.s. If
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for some p ∈ (0, 2], we have
∑∞

τ=1 E[|Xτ |p|Fτ−1]/a
p
τ < ∞, then,

limT→∞
∑T

τ=1 Xτ/aT = 0, a.s.
Lemma 1: The assumptions on the process {st}t≥0 imply that

limT→∞ |Ti,T |/T = π∞(i), a.s.
Proof: {st}t≥0 is an aperiodic and irreducible Markov chain, hence,

by the ergodic theorem [41, Th. 4.1], {st}t≥0 is ergodic and, therefore,
limT→∞ |Ti,T |/T = π∞(i) a.s. �

Lemma 2: Assumptions 1 and 2 imply

∞∑
τ=1

‖xτ‖2/τ2 < ∞, a.s.

Proof: The result is a direct consequence of Abel’s lemma. Let
ST :=

∑T
τ=1 ‖xτ‖2, then we have

T∑
τ=1

‖xτ‖2
τ2

=
T∑

τ=1

Sτ − Sτ−1

τ2

=
ST

T 2
− S0

1
+

T∑
τ=2

Sτ−1

(
1

(τ − 1)2
− 1

τ2

)

(a)
=

ST

T 2
− S0

1
+

T∑
τ=2

O(τ − 1)

(
2τ − 1

τ2(τ − 1)2

)

=
ST

T 2
− S0

1
+

T∑
τ=2

O
(

1

τ2

)
< ∞

where (a) follows from Assumption 2. �
Lemma 3: We have the following:∥∥∥∥∥

T∑
τ=1

Asτ xτw
ᵀ
τ+1 + wτ+1x

ᵀ
τA

ᵀ
sτ

∥∥∥∥∥ = o(T ), a.s.

Proof: We prove the limit elementwise. The (l, p)th element of the
matrix Asτ xτw

ᵀ
τ+1 is [

∑n
j=1 Asτ (l, j)xτ (j)]wτ+1(p).

We calculate the term

E

⎡
⎣( n∑

j=1

Asτ (l, j)xτ (j)wτ+1(p)

)2
∣∣∣∣∣∣Fτ

⎤
⎦ . (5)

Let A∗ = maxi∈S ‖Ai‖∞, then

E

⎡
⎣( n∑

j=1

Asτ (l, j)xτ (j)

)2

w2
τ+1(p)

∣∣∣∣∣∣Fτ

⎤
⎦

(a)

≤ A2
∗ sup

τ
E[w2

τ+1(p)
∣∣Fτ ]

(
n∑

j=1

xτ (j)

)2

(b)

≤ nA2
∗ sup

τ
E
[
w2

τ+1(p)
∣∣Fτ

]
‖xτ‖2

where (a) uses the fact that sτ and xτ are Fτ− measurable, and that
|Asτ (l, j)| ≤ A∗ and (b) is by Cauchy–Schwarz’s inequality. Therefore

T∑
τ=1

E
[([∑n

j=1 Asτ (l, j)xτ (j)
]
wτ+1(p)

)2 ∣∣∣Fτ

]
τ2

≤ nA2
∗ sup

τ

{
E[w2

τ+1(p)|Fτ ]
} T∑

τ=1

‖xτ‖2
τ2

(c)

≤ ∞.

Since α > 2 in Assumption 1, and finiteness of higher order moments
imply finiteness of lower order moments, we get E[w2

τ+1(p)
∣∣Fτ ] is

uniformly bounded. This fact along with Lemma 2 imply (c). The result,
then, follows by applying Theorem 3 by setting at = t and p = 2. �

We characterize the asymptotic behavior of the matrix Xi,T .
Proposition 1: Under Assumptions 1 and 2, the following hold a.s.

for each i ∈ S:
(P1) λmax(Xi,T ) = O(T ), a.s.
(P2) lim infT→∞ λmin(Xi,T )/|Ti,T | > 0, a.s.
Remark 4: Property (P1) shows that when the system is stable in

the average sense, λmax(Xi,T ) cannot grow faster than linearly with
time. Therefore, the stability of the system controls the rate at which
Xi,T can grow. Property (P2) shows that when the noise has a minimum
covariance, λmin(Xi,T ) cannot grow slower than linearly with time.

Proof of (P1): The maximum eigenvalue of a matrix can be upper
bounded as follows:

λmax

⎛
⎝ ∑

t∈Ti,T

xtx
ᵀ
t

⎞
⎠ (a)

≤ Tr

⎛
⎝ ∑

t∈Ti,T

xtx
ᵀ
t

⎞
⎠ =

∑
t∈Ti,T

‖xt‖2

≤
T∑

t=1

‖xt‖2 = O(T )

where (a) follows from the fact that trace of a matrix is sum of its
eigenvalues and all eigenvalues of xtx

ᵀ
t are nonnegative. �

Proof of (P2): For τ ≥ 1, we have

xτx
ᵀ
τ = (Asτ−1

xτ−1 + wτ )(Asτ−1
xτ−1 + wτ )

ᵀ

= Asτ−1
xτ−1x

ᵀ
τ−1A

ᵀ
sτ−1

+ Asτ−1
xτ−1w

ᵀ
τ + wτx

ᵀ
τ−1A

ᵀ
sτ−1

+ wτw
ᵀ
τ .

Since Asτ−1
xτ−1x

ᵀ
τ−1A

ᵀ
sτ−1

is positive semidefinite, we have

xτx
ᵀ
τ � Asτ−1

xτ−1w
ᵀ
τ + wτx

ᵀ
τ−1A

ᵀ
sτ−1

+ wτw
ᵀ
τ .

By summing over τ ∈ Ti,T , we get

∑
τ∈Ti,T

xτx
ᵀ
τ �

∑
τ∈Ti,T

wτw
ᵀ
τ + x0x

ᵀ
01{s0 = i}

+
∑

τ∈Ti,T

[
Asτ−1

xτ−1w
ᵀ
τ + wτx

ᵀ
τ−1A

ᵀ
sτ−1

]

(a)

�
∑

τ∈Ti,T

wτw
ᵀ
τ + o(T ) a.s.

where (a) follows from Lemma 3 and x0x
ᵀ
01{s0 = i} � 0. Further-

more, since limT→∞ |Ti,T |/T = π∞(i) a.s. by Lemma 1 and π∞(i) 
=
0 by assumptions on {sτ}τ≥0, we have

lim inf
|Ti,T |→∞

∑
τ∈Ti,T xτx

ᵀ
τ

|Ti,T |

� lim inf
|Ti,T |→∞

∑
τ∈Ti,T wτw

ᵀ
τ

|Ti,T |
(b)
= C � 0 a.s.

where (b) holds by Assumption 1 and independence of {wτ}τ≥0 and
{sτ}τ≥0 processes. Therefore

lim inf
|Ti,T |→∞

λmin

(∑
τ∈Ti,T xτx

ᵀ
τ

|Ti,T |

)
� 0.

�
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B. Background on Least Square Estimator

Given a filtration {Gt}t≥0, consider the following regression model:

yt = β
ᵀ
zt + wt, t ≥ 0 (6)

where β ∈ Rn is an unknown parameter, zt ∈ Rn is Gt−1-measurable
covariate process, yt is the observation process, and wt ∈ R is a noise
process satisfying Assumption 1 withFt replaced byGt. Then, the least
squares estimate β̂T of β is given by

β̂T = argmin
β
ᵀ

T∑
τ=0

‖yτ − β
ᵀ
zτ‖2. (7)

The following result by [34] characterizes the rate of convergence
of β̂T to β in terms of unnormalized covariance matrix of covariates
ZT :=

∑T
τ=0 zτz

ᵀ
τ .

Theorem 4 (see [34, Th. 1]): Suppose the following conditions
are satisfied: (S1) λmin(ZT ) → ∞, a.s. and (S2) log(λmax(ZT )) =
o(λmin(ZT )), a.s. Then, the least squares estimate in (7) is strongly
consistent with the rate of convergence

‖β̂T − β‖∞ = O
(√

log [λmax(ZT )]

λmin(ZT )

)
a.s.

Theorem 4 is valid for all the Gt−1-measurable covariate processes
{zt}t≥0. For the switched least squares system identification, if we take
Gt to be equal to Ft and verify conditions (S1) and (S2) in Theorem 4,
then we can use Theorem 4 to establish its strong consistency and
rate of convergence. As mentioned earlier in Remark 1, the empirical
covariances are coupled across different components due to the system
dynamics.

C. Proof of Theorem 1

To prove this theorem, we check the sufficient conditions in Theo-
rem 4. First requirement that Xi,T is measurable w.r.t. FT−1, follows
by the definition of Xi,T . Conditions (S1) and (S2) are verified in the
following.
S1) By Proposition 1-(P2), we see that λmin(Xi,T ) → ∞ a.s.; there-

fore, (S1) in Theorem 4 is satisfied.
S2) Proposition 1-(P1) and 1-(P2) imply that there exist positive

constants C1, C2, such that

lim sup
T→∞

log(λmax(Xi,T ))

λmin(Xi,T )

≤ lim sup
T→∞

log(C1) + log(T )

C2|Ti,T |
= 0 a.s.

where the last equality follows by Lemma 1 (i.e., |Ti,T | = O(T ),
a.s.). Therefore, the second condition of Theorem 4 is satisfied.

Therefore, by Theorem 4, for each i ∈ S , we have

∥∥∥Âi,T −Ai

∥∥∥
∞
≤ O

(√
log [λmax(Xi,T )]

λmin(Xi,T )

)
, a.s. (8)

which proves the claim in Theorem 1.

D. Proof of Corollary 1

Corollary 1 is the direct consequence of Theorem 1 and Proposi-
tion 1. Proposition 1-(P1) implies that λmax(Xi,T ) = O(T ). By sub-
stitutingλmax(Xi,T )withO(T ) in the right-hand side of (8), we get that
for each i ∈ S , the estimation error ‖Âi,T −Ai

∥∥
∞ is upper-bounded

by O(
√

log(T )/|Ti,T |), a.s.

E. Proof of Theorem 2

We first establish the strong consistency of the parameter θ̂T . By
Theorem 1 and the fact that k < ∞, we get

∥∥∥θ̂T − θ
∥∥∥
∞
≤ max

i∈S
O
(√

log [λmax(Xi,T )]

λmin(Xi,T )

)
, a.s.

Therefore, the result follows by applying Theorem 1 to the argmax of
above equation. For the second part notice that by Lemma 1, we know
limT→∞ |Ti,T |/T = π∞(i), a.s. Now, by Corollary 1, we get

∥∥∥Âi,T −Ai

∥∥∥
∞
≤ O

(√
log(T )

|Ti,T |

)
= O

(√
log T

π∞(i)T

)
, a.s.

which is the claim of Theorem 2.

IV. DISCUSSION ON STABILITY IN THE AVERAGE SENSE

The main results of this article are derived under Assumption 2,
i.e., the MJS system (1) is stable in the average sense. In this section,
we discuss the connection between this notion of stability and more
common forms of stability, i.e., mean square stability and almost sure
stability.

A. Stability on the Average Sense and Mean Square Stability

A common assumption on the stability of MJS systems (e.g., [32]
and [33]) is mean square stability defined as following:

Definition 3: The MJS system (1) is called MSS, if there exists
a deterministic vector x∞ ∈ Rn and a deterministic positive definite
matrix Q∞ ∈ Rn×n, such that for any deterministic initial state x0

and s0, we have limτ→∞
∥∥E[xτ ]− x∞

∥∥→ 0 and limτ→∞
∥∥E[xτx

ᵀ
τ ]−

Q∞
∥∥→ 0.

Proposition 2 (see [7, Th. 3.9]): The system is MSS, if and only
if λmax((P

ᵀ ⊗ In2) diag(Ai ⊗Ai)) < 1.
Stability in the average sense is a weaker notion of stability than

MSS.
Proposition 3: If the MJS system (1) is MSS, then the system is

stable in the average sense.
The proof is presented in Appendix A.
Remark 5: Proposition 3 shows that MSS implies Assumption 2.

Therefore, the results of Theorem 1 and 2 also hold when Assumption 2
is replaced by the assumption that the system is MSS.

B. Stability in the Average Sense and Almost Sure Stability

Consider the noise free version of the MJS system (1) with the
following dynamics:

xt+1 = Astxt, t ≥ 0. (9)

Definition 4: The system (9) is called almost surely stable if, for any
deterministic initial state x0 and s0 we have

lim
t→∞

‖xt‖ = 0, a.s.

A common sufficient condition to check the almost sure stability of
MJS system (9) is given below.

Proposition 4 (see [7, Th. 3.47]): If the stationary distribution
π∞ = (π∞(1), . . . , π∞(k)) satisfies (C1) π∞(i) 
= 0 for all i and (C2)∏k

i=1 σmax(Ai)
π∞(i) < 1, then, the system (9) is almost surely stable.

We now show that (C1) and (C2) are also sufficient conditions for
stability in the average sense.

Proposition 5: If the MJS system (1) satisfies (C1) and (C2), then,
the system is stable in the average sense.
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Fig. 1. Performance of switched least squares method for the example
of Section V. The solid line shows the mean across 100 runs and the
shaded region shows the 25% to 75% quantile bound. (a) Error versus
time. (b) Log-error versus log-time.

Proof is presented in Appendix B.
Remark 6: Proposition 5 shows that (C1) and (C2) imply Assump-

tion 2. Therefore, the results of Theorems 1 and 2 also hold when
Assumption 2 is replaced by the assumption that the system satisfies
(C1) and (C2).

C. Discussion on Noncomparable Stability Assumption

The following examples illustrate that neither MSS nor conditions
(C1) and (C2) in Proposition 5 are stronger than the other.

Example 1: Let θ
ᵀ
= {A1, 0}, and p = (p1, p2) is an i.i.d. proba-

bility transition, with λmax(p1A1) > 1 and x0 
= 0. Then, E[xτ+1]
= E[Aστ xτ + wt+1] = p1A1E[xτ ] = · · · = (p1A1)

τE(x0), which
implies limτ→∞ E(xτ ) = ∞.Therefore, this system is not MSS. How-
ever, this system satisfies conditions (C1) and (C2) in Proposition 5 and,
therefore, is stable in the average sense.

Example 2: Consider nonswitched system with matrix A, with
λmax(A) < 1 and σmax(A) > 1. This system is MSS, but it does not
satisfy the conditions (C1) and (C2) in Proposition 5.

V. NUMERICAL SIMULATION

In this section, we illustrate the result of Theorem 1 via an exam-

ple. Consider an MJS with n = 2, k = 2, A1 =

[
1.5 0
0 0.2

]
, A2 =[

0.01 0.1
0.1 0.1

]
, probability transition matrix P =

[
0.5 0.5
0.75 0.25

]
, and

i.i.d. {wt}t≥0 with wt ∼ N (0, I). Note that the example satisfies
Assumption 1 and conditions (C1) and (C2) of Proposition 5 (and,
therefore, Assumption 2), but it is not MSS. We run the switched least
squares for a horizon of T = 106 and repeat the experiment for 100
independent runs. We plot the estimation error ei,T = ‖Âi,t −A1‖∞
versus time in Fig. 1(a). The plot shows that the estimation error
is converging almost surely even though the system is not MSS. In
Fig. 1(b), logarithm of the estimation error versus logarithm of the
horizon is plotted. The linearity of the graph along with approximate
slope of −0.5 shows that ei,T = Õ(1/

√
T ).

VI. CONCLUSION

In this article, we investigated system identification of (autonomous)
MJS. We proposed the switched least squares method, showed it is
strongly consistent and derived the almost sure rate of convergence
of O(

√
log(T )/T ). This analysis provides a solid first step toward

establishing almost sure regret bounds for adaptive control of MJS.
We derived our results assuming that system is stable in the average

sense and we showed that this is a weaker assumption compared with
mean square stability.

The current results are established for autonomous systems with
Markov switching when the complete state of the system is observed.
Interesting future research directions include relaxing these modeling
assumptions and considering controlled systems under partial state
observability and unobserved jump times.

APPENDIX A
PROOF OF PROPOSITION 3

Proof: Since the system is MSS, there exists a positive definite
matrix Q∞ ∈ Rn×n, such that limτ→∞ E[xτx

ᵀ
τ ] = Q∞, which

implies limτ→∞ Tr(E[xτx
ᵀ
τ ]) = Tr(Q∞). Since Tr(E[xx

ᵀ
]) =

E[Tr(xx
ᵀ
)] = E[x

ᵀ
x], MSS implies that sequence of real numbers

{E(‖xτ‖2)}τ≥0 converges to Tr(Q∞) and, therefore

lim
T→∞

1

T

T∑
τ=1

E(‖xτ‖2) = Tr(Q∞) < ∞. (10)

Define events

En =

{
ω ∈ Ω : lim sup

T→∞

1

T

T∑
τ=1

‖xτ‖2 ≤ n

}
∀n ∈ N

and

E =
∞⋃

n=0

En =

{
ω ∈ Ω : lim sup

T→∞

1

T

T∑
τ=1

‖xτ‖2 < ∞
}
.

Now, by the continuity of probability measure from below, we have

P(E) = P(
∞⋃

n=0

En) = lim
n→∞

P(En). (11)

Note that

P(En) = P

(
lim sup
T→∞

1

T

T∑
τ=1

‖xτ‖2 ≤ n

)

(a)

≥ lim sup
T→∞

P

(
1

T

T∑
τ=1

‖xτ‖2 ≤ n

)

(b)

≥ 1− lim sup
T→∞

(∑T
τ=1 E‖xτ‖2

)
Tn

(c)

≥ 1− Tr(Q∞)

n

where (a) follows from reverse Fatou’s lemma, (b) follows from the
Markov inequality, and (c) follows from (10). Substituting the above
in (10), we get

P(E) ≥ lim
n→∞

(
1− Tr(Q∞)

n

)
= 1.

Therefore P(E) = 1, and the system is stable in the average sense. �

APPENDIX B
PROOF OF PROPOSITION 5

A. Asymptotic Behavior of Continuous Component

To simplify the notation, we assume that x0 = 0, which does not
entail any loss of generality. Let Φ(t− 1, τ + 1) = Ast−1

· · ·Asτ+1

denote the state transition matrix where we follow the convention that
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Φ(t, τ) = I , for t < τ . Then, we can write the dynamics in (1) of the
continuous component of the state in convolutional form as

xt =

t−1∑
τ=0

Φ(t− 1, τ + 1)wτ+1. (12)

where ‖Φ(t− 1, τ + 1)‖ = ‖Ast−1
· · ·Asτ+1

‖, and

‖Ast−1
· · ·Asτ+1

‖ ≤ σst−1
· · ·σsτ+1

=: Γt−1,τ+1 (13)

where σst = σmax(Ast). In the following lemma, it is established that
the conditions (C1) and (C2) in Proposition 5 imply that the sum of
norms of the state-transition matrices are uniformly bounded.

Lemma 4 (see [1, Lemma 1]): Under the conditions (C1) and (C2)
in Proposition 5, there exists a constant Γ̄ < ∞, such that for all T > 1,∑T−1

τ=0 ‖Φ(T − 1, τ + 1)‖ ≤ Γ̄, a.s.
The following lemma shows the implication of Assumption 1 on the

growth rate of energy of the noise process.
Lemma 5 ([16, Eq. (3.1)]): Under Assumption 1,

∑T
τ=1 ‖wτ‖2 =

O(T ), a.s.
Using the convolution formula in (12), we can bound the norm of

the state ‖xt‖2 as following:

‖xt‖2 =

(∥∥ t−1∑
τ=0

Φ(t− 1, τ + 1)wτ+1

∥∥)2

(a)

≤
(

t−1∑
τ=0

‖Φ(t− 1, τ + 1)wτ+1‖
)2

(b)

≤
(

t−1∑
τ=0

‖Φ(t− 1, τ + 1)‖‖wτ+1‖
)2

(c)

≤
(

t−1∑
τ=0

Γt,τ+1‖wτ+1‖
)2

(14)

where (a) follows from triangle inequality and (b) follows from sub-
multiplicative property of the matrix norm, and (c) follows from (13).
Now for a fixed i, i ∈ S , we have

T∑
t=0

‖xt‖2 ≤
T∑

t=0

(
t−1∑
j=0

Γj+1,t−1‖wj+1‖
)2

(d)

≤
T∑

t=0

(
t−1∑
j=0

Γj+1,t−1

)(
t−1∑
j=0

Γj+1,t−1‖wj+1‖2
)

(e)

≤ Γ̄

T∑
t=0

(
t−1∑
j=0

Γj+1,t−1‖wj+1‖2
)

(f)

≤ Γ̄
T−1∑
j=0

(
T∑

t=0

Γj+1,t−1

)
‖wj+1‖2

(g)

≤ Γ̄2

T−1∑
j=0

‖wj+1‖2 = O(T ) a.s.

where (d) follows from Cauchy–Schwarz’s inequality, (e) follows from
Lemma 4, (f) follows from changing the order of summation, and
(g) follows from boundedness of sub-sums of

∑T−1
τ=0 Γτ+1,T−1, and

Lemma 4.
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