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Abstract— In this paper, we consider learning and control
problem in an unknown Markov jump linear system (MJLS)
with perfect state observations. We first establish a generic
upper bound on regret for any learning based algorithm. We
then propose a certainty equivalence-based learning algorithm
and show that this algorithm achieves a regret of O(

√
T log(T ))

relative to a certain subset of the sample space. As part
of our analysis, we revisit the switched least squares system
identification algorithm of [1], [2] for autonomous MJLS and
generalize it to controlled MJLS, establishing strong consistency
and almost sure rates of convergence of this method.

I. INTRODUCTION

The main goal of reinforcement learning and adaptive
control is simultaneous learning and control of unknown
dynamical systems. Due to continuity and unboundedness
of the state and action spaces in control setups, classi-
cal reinforcement learning algorithms do not achieve good
performance. Recently, there has been a surge of interest
in designing reinforcement learning algorithms for linear
quadratic regulators (LQR) and analyzing the performance of
these algorithms [3]–[9]. These results exploit the linearity,
time-invariancy, and structure of the cost function in the
proposed algorithms and analysis.

Markov jump systems are a mathematical formulation
which model time-varying dynamical systems with abrupt
and stochastic changes in the dynamics. These systems
find application in cyber-physical system [10], networked
control systems [11], [12], etc. In this paper, we investigate
the problem of simultaneous learning and controlling an
unknown Markov jump linear system (MJLS). We use the
switched least squares method proposed in [1], [2] in the
closed-loop setup for the system identification and use the
system estimates in a certainty equivalence controller.

The problem of learning and controlling MJLS systems
has recently received some attention in the literature. The
sensitivity analysis of certainty equivalence controller to the
system parameter is investigated in [13]. Based on the results
of [13], a system identification algorithm and a certainty
equivalence controller is proposed in [14] where it is shown
that the proposed method achieves the regret of Õ(

√
T )

with high probability, where T denotes the time horizon,
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and notation Õ hides logarithmic factors of T . It is shown
in [15] that policy gradient method converges to the optimal
policy for MJLS systems. The performance of Thompson
sampling algorithm in controlling networked control systems
as a special case of switched linear systems is investigated in
[16]. The problem of system identification of Markov jump
linear systems from a single trajectory is investigated in [1],
[2] and [14].

A. Contributions

• We characterize the almost sure (relative to a certain
subset of the noise process and the algorithm ran-
domization) regret bounds for general class of linear
adaptive polices.

• We use switched least squares method for closed-loop
system identification of MJLS systems, show that this
method is strongly consistent, and establish that its rate
of convergence is O(

√
log(T )/T ).

• We propose a version of certainty equivalence controller
based on the switched least squares system identification
method, and show that this algorithm achieves a regret
of O(

√
T log(T )) relative to a certain subset of the

sample space.
• We show that there exists a finite identification horizon

T0 for which this algorithm achieves the almost sure
regret of O(

√
T log(T )) on the entire sample space.

B. Organization

The rest of the paper is organized as follows. In Sec II,
we review some standard results about MJLS systems that
are useful in our analysis. In Sec. III, we characterize the
notion of almost sure regret criteria. In Sec. V, we present
our system identification method and reinforcement learning
algorithm. The main results are presented in Sec. VI. We
concluded our results in Sec. VII.

C. Notation

Given a matrix A, A(i, j) denotes its (i, j)-th element,
λmax(A) and λmin(A) denote the largest and smallest mag-
nitudes of right eigenvalues, σmax(A) =

√
λmax(A

⊺A)
denotes the spectral norm. For a square matrix Q, Tr(Q)
denotes the trace. When Q is symmetric, Q ⪰ 0 and Q ≻ 0
denote that Q is positive semi-definite and positive definite,
respectively. For two square matrices, Q1 and Q2 of the
same dimension, Q1 ⪰ Q2 means Q1 −Q2 ⪰ 0. Given two
matrices A and B, A⊗B denotes the Kronocher product of
the two matrices.



Given a sequence of positive numbers {at}t≥0, aT =
O(T ) means that lim supT→∞ aT /T < ∞, and aT = o(T )
means that lim supT→∞ aT /T = 0. Given a sequence of
vectors {xt}t∈T , vec(xt)t∈T denotes the vector formed by
vertically stacking {xt}t∈T . Given a sequence of random
variables {xt}t≥0, x0:t is a short hand for (x0, · · · , xt)
and σ(x0:t) denotes the sigma field generated by random
variables x0:t. When describing values that are taken by
consecutive variables, for example st and st+1, we use s to
denote a generic value of st and s+ to denote a generic values
of st+1. Given a probability space {Ω,F ,P}, Ω denotes the
sample space, ω ∈ Ω denotes a generic elementary event,
P(·) denotes the probability measure and E[·] denotes the
expectation operator.
R and N denote the sets of real and natural numbers.

For a set T , |T | denotes its cardinality. For a vector x, ∥x∥
denotes the Euclidean norm. For a matrix A, ∥A∥ denotes
the spectral norm and ∥A∥∞ denotes the element with
the largest absolute value. diag(A1, A2, . . . , An) denotes
the block diagonal matrix, where the blocks are matrices
A1, A2, . . . , An.

II. BACKGROUND ON MARKOV JUMP LINEAR SYSTEMS

We start by a review of stability of autonomous Markov
Jump Linear Systems and the basic results for optimal control
of Markov Jump Linear Systems.

A. Stability of autonomous Markov Jump Linear Systems

Consider an autonomous discrete-time MJLS with con-
tinuous state xt ∈ Rn and the discrete state st ∈ S =
{1, 2, . . . , d}. The system starts with a known initial state
(x1, s1). The continuous state evolves over time according
to

xt+1 = Astxt, t ≥ 1, (1)

where the set {As ∈ Rn×n}s∈S consists of the system
dynamics matrices. The discrete state evolves in a time-
homogeneous Markov manner according to a transition ma-
trix H . We will refer to the above system as MJLS system
({As}s∈S , H).

We assume that the Markov chain {st}t≥1 is irreducible
and aperiodic, and therefore, has a stationary distribution
{ρs}s∈S .

Definition 1. The MJLS system (1) is called Mean
Square Stable (MSS) if for any initial state (x1, s1),
limt→∞ ∥E[xt]∥ = 0, and limt→∞ ∥E[xtx

⊺
t ]∥ = 0.

The following characterizations of MSS follow from [17,
Theorem 3.9]:

Proposition 1. The following conditions are equivalent:

1) The MJLS system in (1) is MSS.
2) Transition probability matrix H and matrices {As}s∈S

satisfy:

λmax

(
(H

⊺ ⊗ In2) diag(A1 ⊗A1, . . . , Ad ⊗Ad)
)
< 1.

3) The MJLS system (1) is exponentially stochastically
stable , i.e., there exists β ≥ 1 and 0 < ζ < 1 such
that for any initial state (x1, s1), we have

E[∥xt∥2] ≤ βζt∥x0∥2, t ≥ 1.

4) The MJLS system (1) is stochastically stable (SS), i.e.,
for all initial state (x1, s1), we have

∞∑
t=0

E[∥xt∥2] < ∞.

B. Optimal control of Markov Jump Linear Systems

Consider a discrete-time MJLS with continuous state xt ∈
Rn, discrete state st ∈ S , control input ut ∈ Rm, and
disturbance wt ∈ Rn. The system starts with a known
initial state (x1, s1). The continuous state evolves over time
according to:

xt+1 = Astxt +Bstut + wt, t ≥ 1, (2)

where {As ∈ Rn×n}s∈S and {Bs ∈ Rn×m}s∈S are the
system dynamics matrices, and {wt}t≥1 is an i.i.d. process
with E[wt] = 0 and E[wtw

⊺
t ] = σ2

wI . The discrete state
evolves in a time-homogeneous Markov manner, independent
of {wt}t≥1, according to a transition matrix H . We assume
that the Markov chain {st}t≥1 is irreducible and aperiodic,
and therefore, has a stationary distribution {ρs}s∈S .

The system incurs a per-step cost

c(xt, st, ut) := x
⊺
tQstxt + u

⊺
tRstut, (3)

where {Qs ∈ Rn×n}s∈S and {Rs ∈ Rm×m}s∈S are posi-
tive definite matrices. The objective is to design a controller
which observes the state of the system and chooses control
inputs to minimize the long term average cost given by

lim
T→∞

1

T
E

[ T∑
t=1

c(xt, st, ut)

]
. (4)

1) Stochastic stabilizability and stochastic detectability:
We now define two important properties of MJLS systems:

Definition 2. The MJLS system (2) is stochastically stabi-
lizable, if there exists gain matrices {Fs ∈ Rm×n}s∈S such
that the autonomous MJLS system ({As −BsFs}s∈S , H) is
MSS.

Definition 3. The MJLS system (2) is stochastically de-
tectable , if there exists gain matrices {Ks ∈ Rn×n}s∈S such
that the autonomous MJLS system ({As −KsQ

1/2
s }s∈S , H)

is MSS.

Note that one can check stochastic stability and stochastic
detectability via Linear Matrix inequalities (LMIs). For in-
stance, a check for stochastic stabilizability is given by [17,
Proposition 3.42].

Proposition 2. The MJLS system (2) is stochastically stabi-
lizable if and only if there exist matrices {W 2

s ∈ Rn×m}s∈S



and positive semi-definite matrices {W 1
s ∈ Rn×n}s∈S and

{W 3
s ∈ Rm×m}s∈S such that:∑

s∈S
Hss′(AsW

1
sA

⊺
s +Bs(W

2
s )

⊺
A

⊺
s

+AsW
2
sB

⊺
s +BsW

3
sB

⊺
s ) < W 1

s′ ∀s′ ∈ S,[
W 1

s W 2
s

(W 2
s )

⊺ W 3
s

]
≥ 0, ∀s ∈ S,

W 1
s > 0, ∀s ∈ S.

A similar test for stochastic detectability follows by re-
placing Bs by (Q

1/2
s )⊺ in the above proposition.

2) Optimal control of MJLS: We assume that the system
satisfies the following:

Assumption 1. The MJLS system in (2) is stochastically
stabilizable and stochastically detectable.

The following result follows from [18, Theorem 45 and
Theorem 51].

Theorem 1. Under Assumption 1, the minimum value of the
average cost (4) is

σ2
w

∑
s∈S

∑
s+∈S

ρsHss+ Tr(Ps+) (5)

and is achieved by the feedback policy

ut = −Lstxt, t ≥ 1, (6)

where the gains {Ls}s∈S are given by

Ls = (Rs +B
⊺
s P̄sBs)

−1B
⊺
s P̄sAs, s ∈ S (7)

and {Ps}s∈S is the solution of the following set of algebraic
Riccati equations:

P̄s =
∑
s+∈S

Hss+Ps+ , s ∈ S, (8)

Ps = Qs +A
⊺
s P̄sAs (9)

−A
⊺
s P̄sB

⊺
s (Rs +B

⊺
s P̄sBs)

−1B
⊺
s P̄sAs, s ∈ S. (10)

As established in [18, Theorem 45], the optimal control
law is stabilizing in the following sense.

Proposition 3. The autonomous system MJLS system ({As−
BsLs}s∈S , H) is MSS.

Remark 1. The result of Proposition 3 in [18, Lemma 45]
states that the system ({As−BsLs}s∈S , H) is stochastically
stable. As established in Proposition 1, stochastic stability is
equivalent to MSS, so we have stated Prop. 3 in terms of
MSS.

III. THE LEARNING PROBLEM

A. Some remarks on notation

1) Notation for probability spaces: We need a some-
what elaborate notation to describe our notion of regret.
The MJLS system described above is a stochastic system
with two stochastic inputs: the noise process {wt}t≥1 and
the switching process {st}t≥1. In addition, the learning
algorithm may randomize while choosing control actions as

well. We assume that the noise process and randomization
done by the algorithm are defined on a probability space
(Ω1,F1, µ1) and the switching process is defined on a
separate probability space (Ω2,F2, µ2). Since the processes
{wt}t≥1 and {st}t≥1 and the randomization done by the
algorithm are independent, we consider the probability space

(Ω,F , µ) = (Ω1 × Ω2,F1 ⊗F2, µ1 ⊗ µ2),

where F1⊗F2 is the product sigma algebra given by σ(D1×
D2 : D1 ∈ F1, D2 ∈ F2), and µ1⊗µ2 is the product measure
on F1⊗F2, i.e., for any D1 ∈ F1, D2 ∈ F2, we have µ(D1×
D2) = µ1(D1)µ2(D2). We will use the tuple (Ω,F , µ) as
the probability space to define all the system variables. We
abbreviate almost surely with respect to measure µ(·) as µ-
a.s. and almost surely with respect to measure µ1(·) as µ1-
a.s..

2) Notation for policy dependent sample paths: To avoid
confusion, we also use a slightly elaborate notation to
indicate sample paths of state and action corresponding
to a specific policy. Let θ = {As, Bs}s∈S denote the
parameters of the system dynamics. Suppose the con-
trol input ut is chosen as a function of the history of
state and actions (x1:t, s1:t, u1:t−1) according to a pos-
sibly randomized history-dependent measurable policy π.
Then for any ω = (ω1, ω2) ∈ Ω, we use the notation
{xπ

t (ω), st(ω2), u
π
t (ω)}t≥1 to denote the states and the con-

trol actions along the sample path ω for the system when
the controller is following policy π. Note that the discrete
component of state, st(ω2) only depends on ω2 and does not
depend on the policy π.

When it is clear from the context, we will not explicitly
indicate the dependence on θ, π, and ω.

B. Regret definition

We are interested in the setting where the system parame-
ters θ are unknown and the cost parameters {(Qs, Rs)}s∈S
and transition matrix H are known. A learning agent ob-
serves the state (xt, st) of the system and chooses the
control input ut according to a possibly history-dependent
randomized measurable policy π. For any fixed realization
ω1 ∈ Ω1 of the system noise and possible randomization by
the algorithm, let

Jπ
T (ω1) =

∫
Ω2

T∑
t=1

c(xπ
t (ω1, ω2), st(ω2), u

π
t (ω1, ω2))µ2(dω2)

denote the performance of policy π along the sample path
ω1 for the horizon T averaged over the realizations of mode
switching.

The (frequentist) regret of policy π is given by

Rπ
T (ω1) = Jπ

T (ω1)− J
π∗
θ

T (ω1)

where π∗
θ is the optimal policy corresponding to parameters

θ.
Note that the notion of regret can be defined at different

degrees of granularity. In particular, regret may be defined
as a random variable which depends on the realization of



the noise sequences and the randomizations done by the
algorithm. Or it may be defined in terms of expectation
over noise and algorithm randomization. In this paper, we
take an intermediate approach: we define regret as a random
variable which depends on the realization of the process
noise and the randomizations done by the algorithm, but take
the expectation over the discrete switching sequence.

IV. AN UPPER BOUND ON REGRET FOR ADAPTIVE
LINEAR POLICIES WITH PERSISTENCE OF EXCITATION

Let Ft = σ(x1:t−1, s1:t−1, u1:t−1) denote the sigma al-
gebra generated by the observations of the history of states
and actions of the learning agent at the beginning of time t.
Motivated by the structure of the optimal policy presented in
Theorem 1, we restrict attention to adaptive linear policies
defined below.

Definition 4 (Adaptive linear policy). An adaptive linear
policy π with persistence of excitation is characterized
by a sequence of gains {L̂s(t) ∈ Rm×n}s∈S,t≥1, where
{L̂s(t)}s∈S is Ft-measurable, and an independent noise
process {νt}t≥1, νt ∈ Rn, where νt ∼ N (0, σ2

t I). The
control input chosen by policy π at time t is given by
ut = −L̂st(t)xt + νt.

Theorem 2. Consider an adaptive linear policy π with per-
sistence of excitation with gains {L̂s(t)}s∈S,t≥1 and noise-
level {σ2

t }t≥1. The regret of policy π may be decomposed as
follows

Rπ
T (ω1) = O

(
Rπ

1,T (ω1)
)
+O

(
Rπ

2,T (ω1)
)
+Rπ

3,T (ω1) (11)

where

Rπ
1,T (ω1) =

∫
Ω2

T∑
t=1

rπ1,t(x
π
t (ω1, ω2), st(ω2))µ2(dω2)

with rπ1,t(xt, st) given by

x
⊺
t (L̂st(t)− Lst)

⊺
[Rst +Bst P̄stBst ](L̂st(t)− Lst)x

⊺
t ,

and

Rπ
2,T (ω1) =

∫
Ω2

T∑
t=1

rπ2,t(νt(ω1), st(ω2))µ2(dω2)

with rπ2,t(νt, st) given by ν⊺t [Rst +Bst P̄stBst ]νt, and

Rπ
3,T (ω1) =

∫
Ω2

rπ3,t(x
π
T+1(ω), x

π∗
θ

T+1(ω), sT+1(ω2))µ2(dω2)

with ω = (ω1, ω2) and rπ3,t(xT+1, x
π∗
θ

T+1, sT+1) given by
(x

π∗
θ

T+1)
⊺PsT+1

x
π∗
θ

T+1 − x⊺
T+1PsT+1

xT+1, where recall that
xπ∗

θ denotes the state corresponding to the optimal policy
π∗
θ .

The proof is presented in Appendix I.

V. A CERTAINTY EQUIVALENCE BASED LEARNING
ALGORITHM

A. Overview of the learning algorithm
We consider a specific type of certainty equivalence-based

learning algorithm and analyze its regret by using Theorem 2.
The algorithm consists of two phases: a system identification
phase which lasts for a fixed time T (0); and an adaptation
phase, which last for the remainder of the time that the
system is running. The adaptation phase runs in episodes,
and the length of k-th episode is ⌊αkT (0)⌋, where α > 1 is
a constant. We use t(k) to denote the start time of episode k
and use T (k) to denote the length of episode k.

Before describing the two phases in detail, we need to
define the notion of stabilizing gains.

Definition 5. A set of gain matrices {L̄s ∈ Rm×n}s∈S
is said to be stabilizing for the MJLS system (2) if the
autonomous system ({As −BsL̄s}s∈S , H) is MSS.

We make the following assumption:

Assumption 2. The learning agent has access to a set of
stabilizing controllers {L̄s}s∈S .

Assumption 2 is a common assumption in the literature of
reinforcement learning for LQR systems [4], [7]–[9], [14].
During the system identification phase, the control input
is chosen as ut = −L̄stxt + νt, where νt is i.i.d., zero
mean Gaussian random noise with covariance I/

√
T (0). We

then use the system identification algorithm used in the next
section to generate an initial estimate θ̂(0).

During episode k of the adaption phase, at time t(k), we
pick control gains {L̂(k)

s }s∈S to be the optimal control gains
corresponding to the estimate θ̂(k−1). During the episode,
we choose the control input as ut = −L̂

(k)
st xt+νt, where νt

is i.i.d., zero mean Gaussian random noise with covariance
I/

√
T (k). At the end of the k-th episode, we use the system

identification algorithm described in the next section to
generate a new estimate θ̂(k) based on all the data seen in
episode k.

A detailed description of the learning algorithm is pre-
sented in Algorithm 1.

B. The system identification algorithm
In this section, we describe the system identification

algorithm used in both phases. This algorithm is a variation
of the switched least squares system identification algorithm
presented in [1], [2] for autonomous system.

For uniformity of notation, we allow k = 0 to mean the
system identification phase and set t(0) = 1 and L̂

(0)
s =

L̄s for s ∈ S. Now consider a generic k-th episode, k ∈
{0, 1, . . . }, which is of length T (k). During this episode, the
control input is chosen as

ut = −L̂(k)
st xt + νt,

where νt is random noise chosen as νt ∼ N (0, σ2
(k)I), where

σ2
(k) = 1/

√
T (k). Thus, Eq. (2) may be written as

xt+1 = Astxt −BstL̂
(k)
st xt +Bstνt + wt (12)



Algorithm 1: Certainty equiv. based learning algorithm

input : A set of stabilizing controllers {L̄s}s∈S
Time T (0); Scaling factor α > 1.

System ID :
Initialize L̂

(0)
s = L̄s, for all s ∈ S.

Initialize t(0) = 1.
for time t ∈ {t(0), . . . , t(0) + T (0) − 1} do

Sample νt ∼ N (0, σ2
(0)I), where σ2

(0) = 1/
√
T (0).

Apply control input ut = L̂
(0)
st xt + νt.

end

Generate estimate θ̂(0) using (14) and (15).

Adaptation:
for episode k = 1, 2, . . . do

Initialize t(k) = t+ 1; T (k) = ⌊αkT (0)⌋.
Choose {L̂(k)

s }s∈S using (7) for system θ̂(k−1).
Set σ2

(k) = 1/
√
T (k).

for time t ∈ {t(k), . . . , t(k) + T (k) − 1} do
Sample νt ∼ N (0, σ2

(k)I).

Apply control input ut = L̂
(k)
st xt + νt.

end
Generate estimate θ̂(k) using (14) and (15)

end

or, equivalently,

xt+1 = η(k)st zt + wt. (13)

where {η(k)s ∈ Rn×(n+m)}s∈S is given by

η(k)s := [As −BsL̂
(k)
s , Bs], s ∈ S,

and z⊺t := [x⊺
t , ν

⊺
t ] ∈ Rn+m.

At the end of the episode, we generate estimates η̂(k) :=

{η̂(k)s ∈ Rn×(n+m)}s∈S by solving the following switched
least squares problem:

η̂(k) = argmin
η(k)={η(k)

s :s∈S}

t(k)+T (k)−1∑
t=t(k)

∥xt+1 − η(k)st zt∥2. (14)

We then compute estimates {B̂(k)
s }s∈S and {Â(k)

s }s∈S as:

B̂(k)
s = η̂(k)s

[
0n×n

Im×n

]
, Â(k)

s = η̂(k)s

[
In×n

L̂
(k)
s

]
, s ∈ S.

(15)
We denote the estimated parameters as θ̂

(k)
s := [Â

(k)
s , B̂

(k)
s ],

s ∈ S and use θ̂(k) := {θ̂(k)s }s∈S to denote the estimated
parameters of the model.

VI. THE MAIN RESULTS

A. Asymptotic regret of certainty equivalence algorithm

In our analysis, we need to assume that the proposed
learning algorithm at all times generates estimates such
that the gains corresponding to those estimates stabilize the
original system.

Definition 6. Given the set of stabilizing controllers
{L̄s}s∈S , time T0 and scaling factor α, let A0 be the set of
all sample paths ω1 ∈ Ω1 such that for almost all ω2 ∈ Ω2

and k ≥ 1 the gains {L̂(k)
s (ω1, ω2)}s∈S are stabilizing for

MJLS system (2).

Assumption 3. We assume µ1(A0) > 0.

In our results below, we restrict attention to the sample
paths ω1 ∈ A0. Note that the process {st}t≥0 remains
Markov on the set A0 × Ω2 with the same transition prob-
abilities. We assume that µ1(A0) > 0, which is weaker
than the stability assumption implicitly imposed in [4] for
(non-switching) LQR model, where it was assumed that
µ(A0) = 1.

By an argument similar to that used in [2] for autonomous
systems, we can show that if the controller used in an episode
is stable and the episode is asymptotically large, the estimates
generated by switched least squares system identification
algorithm described in Sec. V-B converge almost surely to
the correct parameters. We can also characterize the rate of
convergence, as shown below:

Theorem 3. On the set A0, the estimate θ̂(k) is strongly
consistent, i.e. limk→∞ ∥θ̂(k) − θ∥ = 0, µ1-a.s. Further-
more, the error of the system identification method is upper
bounded by:

lim sup
k→∞

∥θ̂(k) − θ∥√
log(T (k))/σ(k)T (k)

< ∞, µ1-a.s. (16)

The proof is presented in Appendix II.
Following theorem establishes the regret bound for Algo-

rithm 1. This regret matches with the regret of LQR problems
established in [3]–[5], [7], [9] and the regret of MJLS-LQR
established in [14].

Theorem 4. On the set A0, the regret of Algorithm 1 is
given by:

Rπ̂
T ≤ O(

√
T log(T )) µ1-a.s.

The proof is presented in Appendix III.

B. Sufficient conditions for stability

In characterizing the almost sure regret of adaptive control
problems, ensuring the stability of the system is a challenging
problem. Our results in Theorems 3 and 4 are derived on the
set A0. In this section, we try to weaken this requirement by
characterizing a set which is larger than A0. For the MJLS
system in (2) with parameters θ, let Lθ = {Lθ

s}s∈S denote
the set of optimal control gains. Define:

Bϵ(L
θ) :=

{
{L̂s}s∈S : ∥L̂s − Lθ

s∥ ≤ ϵ, ∀s ∈ S
}
,

as a ball in the space of gain matrices with radius ϵ centered
at Lθ.

Lemma 1. [14, Lemma C.1] For the MJLS in (2), there
exists a radius ϵθ such that all the gains {L̂s}s∈S ∈ Bϵθ (L

θ)
are stabilizing for θ.



We define Bδ(θ) :=
{
{θ̂s}s∈S : ∥θ̂s − θs∥ ≤ δ, ∀s ∈ S

}
.

Now let δθ be the radius such that if θ̂ ∈ Bδθ (θ) then Lθ̂ ∈
Bϵθ (Lθ) .

We now characterize the connection between the assump-
tions on the stability and length of the identification phase
T (0). Consider a system identification setup in which we use
adaptive linear policy {L̊s}s∈S with persistent of excitation
νt ∼ N (0, σ̊2I), where {L̊s}s∈S is a stabilizing controller.
We get xt+1 = η̊stzt + wt, where η̊s := [As − BsL̊s, Bs].
We estimate ˆ̊ηT := {ˆ̊ηs,T ∈ Rn×(n+m)}s∈S by solving:

ˆ̊ηT = argmin
η̊={η̊s:s∈S}

T∑
t=1

∥xt+1 − η̊stzt∥2. (17)

We generate the estimate θ̂T from ˆ̊ηT similarly to (15). To
explicitly emphasize the functional dependence of θ̂T on L̊ =
{L̊s}s∈S and ω ∈ Ω, we use the notation θ̂T (L̊, ω). Similar
to Theorem 3, we can establish that if {L̊s}s∈S is stabilizing
controller, then limT→∞ ∥θ̂T (L̊, ω)−θ∥ = 0, µ-a.s. and the
error of the system identification is upper bounded by:

lim sup
T→∞

∥θ̂T (L̊, ω)− θ∥√
log(T )/σ̊2T

< ∞, µ-a.s. (18)

Now for any generic stabilizing gain L̃ = {L̃s}s∈S , define

Tδθ (L̃, ω) := inf{T ∈ N : ∀t ≥ T, ∥θ̂T (L̃, ω)− θ∥ ≤ δθ},
T̄δθ (ω) := sup

L̃∈Bϵθ
(Lθ)

Tδθ (L̃, ω).

A consequence of the result in (18) is that for any stabilizing
L̃, P(Tδθ (L̃, ω) < ∞) = 1 and consequently P(T̄δθ (ω) <
∞) = 1. For any T > 0, define

Aδθ (T ) := {ω ∈ Ω : T̄δθ (ω) ≤ T − 1}.

Proposition 4. The set Aδθ (T ) satisfies following properties:
1) If T < T ′, we have Aδθ (T ) ⊆ Aδθ (T

′).
2) For any ω ∈ Ω, there exists a T0 such that: ω ∈

Aδθ (T0) ⊆ Ω, µ-a.s.
3) There exists a T0 < ∞ such that Ω = Aδθ (T0), µ-a.s.

The proof is omitted due to space constraints; however,
this proposition is a consequence of the result in Theorem 3.

Theorem 5. (Sufficient condition for stability) Suppose the
initial stabilizing controller {L̄s}s∈S ∈ Bϵθ (L

θ), then the
results of Theorem 3 and 4 are valid on the set Aδθ (T

(0)).

The proof is presented in IV.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we investigate the problem of simultaneous
learning and control of a Markov jump linear system using
complete state observation. We derive an almost sure regret
decomposition for the general class of adaptive linear poli-
cies with persistence of excitation. We propose a version of
certainty equivalence controller which uses the switched least
squares method for the closed-loop system identification.
Our analysis shows that the error of the system identifica-
tion method is O(

√
log(T )/T ), and the regret of certainty

equivalence controller reaches O(
√
T log(T )) almost surely.

Our guarantees are stated for specific subset of Ω. We
show we can make this subset arbitrary large by increasing
T (0). Finding an algorithm with performance guarantees
independent of the set Aδθ (T

(0)), extending these results to
the case of partial observation and analyzing algorithms such
as Thompson sampling with the tool developed in Theorem 2
is left for future works.
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APPENDIX I
PROOF OF THEOREM 2

We start with the completion of squares lemma.

Lemma 2. For x ∈ Rn and u ∈ Rm and matrices
A,B, S,R with appropriate dimensions, we have

u
⊺
Ru+ (Ax+Bu)

⊺
P (Ax+Bu) + x

⊺
Qx =

(u+ L(P,R,A,B)x)
⊺
[R+B

⊺
PB](u+ L(P,R,A,B)x)

+ x
⊺
K(P,A,B,R,Q)x,

where

L(P,R,A,B) := −(R+B
⊺
PB)−1B

⊺
PA.

K(P,A,B,R,Q) := Q+A
⊺
PA

−A
⊺
PB(R+B

⊺
PB)−1B

⊺
PA.

Remark 2. Notice that in (8), we have:

Ls = L(P̄s, Rs, As, Bs), Ps = K(P̄s, As, Bs, Rs, Qs).

We assume that π and ω1 are fixed and do not explicitly
include their dependence on the terms. Instead, we will use
xt as a short-hand for xπ

t (ω) and x∗
t as a short-hand for

x
π∗
θ

t (ω). We also use s̃t instead of st(ω2), where we use the
superscript tilde to highlight the fact that we are not referring
to a specific realization of the discrete state at time t rather
marginalizing over all possible realizations. By recursively
applying completion of squares (Lemma 2), we can show
the following:

Lemma 3. For any policy π we have

∫
Ω2

[ T∑
t=1

c(xt, st, ut) + x
⊺
T+1PsT+1

xT+1

]
µ2(dω2)

=

∫
Ω2

[
x
⊺
1 P̄s̃1x1

+

T∑
t=1

(ut + Ls̃txt)
⊺
[Rs̃t +B

⊺
s̃t P̄s̃tBs̃t ](ut + Ls̃txt)

+

T∑
t=1

[
2w

⊺
t P̄s̃t(As̃txt +Bs̃tut) + w

⊺
t P̄s̃twt

]]
µ2(dω2).

(19)

Using the decomposition in (19) in the expression for
regret, and substituting ut = −L̂s̃t(t)xt + νt for policy π
and substituting ut = −Ls̃txt for policy π∗, we get the
following:

Lemma 4. For any adaptive linear policy π with persistence
of excitation, we have

Rπ
T (ω1) =

∫
Ω2

[ T∑
t=1

x
⊺
t (L̂s̃t(t)− Ls̃t)

⊺
[Rs̃t +B

⊺
s̃t P̄s̃tBs̃t ]

(L̂s̃t(t)− Ls̃t)xt

+

T∑
t=1

[
ν
⊺
t [Rs̃t +B

⊺
s̃t P̄s̃tBs̃t ]νt

+2ν
⊺
t [Rs̃t +B

⊺
s̃t P̄s̃tBs̃t ](L̂s̃t(t)− Ls̃t)xt

]
+

T∑
t=1

2w
⊺
t P̄s̃t

[
(As̃t −Bs̃tLs̃t)(xt − x∗

t )

−Bs̃t(L̂s̃t(t)− Ls̃t)xt +Bs̃tνt
]

+ [(x∗
T+1)

⊺
P̄s̃T+1

x∗
T+1 − x

⊺
T+1P̄s̃T+1

xT+1]

]
µ2(dω2).

(20)

We first recall the following result [19, Corollary 10]

Lemma 5. Given a filtration {Ft}t≥1, suppose wt is a
martingale difference process adapted to {Ft}t≥1 and yt+1

is Ft-measurable. Then,
T∑

t=1

y
⊺
t wt = O

(√
YT log(YT )

)
, a.s.

where YT =
∑T

t=1 y
⊺
t yt.

An implication of Lemma 5 is that∫
Ω2

[ T∑
t=1

w
⊺
t P̄s̃tBs̃t(L̂s̃t(t)− Ls̃t)xt

]
µ2(dω2)

= O
(√

Rπ
1,T (ω1) logRπ

1,T (ω1)
)
, (21)

where Rπ
1,T (ω1) is defined in Theorem 2. By the same

argument, we also have∫
Ω2

[ T∑
t=1

ν
⊺
t P̄s̃tBs̃t(L̂s̃t(t)− Ls̃t)xt

]
µ2(dω2)

= O
(√

Rπ
1,T (ω1) logRπ

1,T (ω1)
)
, (22)

and ∫
Ω2

[ T∑
t=1

2w
⊺
t P̄s̃tBs̃tνt

]
µ2(dω2)

= O
(√

Rπ
2,T (ω1) logRπ

2,T (ω1)
)
. (23)

Now, by Prop. 3, the autonomous MJLS system ({As −
BsLs}s∈S , H) is MSS. Based on the fact that MSS implies
exponential stochastic stability (Prop. 1), we can show that∫

Ω2

[ T∑
t=1

w
⊺
t P̄s̃t(As̃t −Bs̃tLs̃t)(xt − x∗

t )

]
µ2(dω2)

= O
(∫

Ω2

[ T∑
t=1

w
⊺
t P̄s̃tBs̃t(L̂s̃t(t)− Ls̃t)xt

]
µ2(dω2)

)
(24)

which is therefore also upper bounded by the right hand
side of (21). The result of Theorem 2 then follows from
substituting (21)–(24) in Lemma 4.



APPENDIX II
PROOF OF THEOREM 3

The proof of this theorem is based on a notion of stability
called stability in the average sense in [1].

Definition 7. Let {xt}t≥1 denote the state process cor-
responding to the MJLS system Astxt + wt. We say this
system is stable in the average sense, if:

∑T
t=1 ∥xt∥2 =

O(T ) µ-a.s.,

Proposition 5. [1, Proposition 3] If the MJLS system
({As}s∈S , H) is MSS, then the MJLS system: Astxt+wt is
stable in the average sense.

By the assumptions in Theorem 3, we know ({As −
BsLs}s∈S , H) is MSS; therefore, by Proposition 5, and the
fact that σ2

t is finite, we get that MJLS xt+1 = (Ast −
BstL̂

(k)
st )xt+Bstνt+wt is stable in the average sense. Recall

that η(k)st :=
[
Ast −BstL̂

(k)
st , Bst

]
, and zt :=

[
xt

νt

]
, and we

have:

xt+1 = η(k)st zt + wt. (25)

Let T (k)
i,T = {t(k) ≤ t < t(k) + T : st = i} denote the

time indices until the time T , when the discrete state of the
system equals i at the k-th episode. Note that for t ∈ T (k)

i,T ,
ηst = ηi. Therefore, we have:

η̂
(k)
i,T := argmin

η

∑
t∈T (k)

i,T

∥xt+1 − ηizt∥2, ∀i ∈ {1, . . . , d}.

Let Zi,T denote
∑

t∈T (k)
i,T

ztz
⊺
t , which we call the unnormal-

ized empirical covariance of the augmented state process
when st = i. Now we look at λmax(

∑
t∈T (k)

i,T

ztz
⊺
t ) and

λmin(
∑

t∈T (k)
i,T

ztz
⊺
t ). We have:

λmax(
∑

t∈T (k)
i,T

ztz
⊺
t ) ≤ tr(

∑
t∈T (k)

i,T

ztz
⊺
t )

=
∑

t∈T (k)
i,T

∥zt∥2 ≤
T∑

t=1

∥zt∥2

By Proposition 5, we know
∑T

t=1 ∥xt∥2 = O(T )µ-a.s. and
by [19, Eq. 3.1] we know

∑T
t=1 ∥νt∥2 = O(T )µ-a.s., which

implies:

λmax(
∑

t∈T (k)
i,T

ztz
⊺
t ) = O(T ) µ-a.s.

On the other hand, we have:

ztz
⊺
t =

[
xtx

⊺
t xtν

⊺
t

νtx
⊺
t νtν

⊺
t

]
Similar to [1, Lemma 3], we can show

∑
t∈T (k)

i,T

∥xtν
⊺
t +

νtx
⊺
t ∥ = o(T )µ-a.s.; therefore,

λmin(
∑

t∈T (k)
i,T

ztz
⊺
t )

= O
(
min

{
λmin(

∑
t∈T (k)

i,T

xtx
⊺
t ), λmin(

∑
t∈T (k)

i,T

νtν
⊺
t )
})

µ-a.s.

By [1, Proposition 1-P2], we know
lim infT→∞ λmin(

∑
t∈Ti,T

xtx
⊺
t )/T

(k)
i,T ≥ 0 µ-a.s., and since

σ2
(k) > 0, we get lim infk→∞ λmin(

∑
t∈T (k)

i,T

νtν
⊺
t )/T

(k)
i,T ≥ σ2

(k)

µ-a.s. Therefore,

λmin(
∑

t∈T (k)
i,T

ztz
⊺
t ) > σ2

(k)Ti,T µ-a.s.

Given a filtration {Gt}t≥0, consider the following regres-
sion model:

yt = β
⊺
zt + wt, t ≥ 0, (26)

where β ∈ Rn is an unknown parameter, zt ∈ Rn is Gt−1-
measurable covariate process, yt is the observation process,
and wt ∈ R is a noise process. Then the least squares
estimate β̂T of β is given by:

β̂T = argmin
β⊺

T∑
τ=0

∥yτ − β
⊺
zτ∥2. (27)

The following result by [20] characterizes the rate of con-
vergence of β̂T to β in terms of unnormalized covariance
matrix of covariates ZT :=

∑T
τ=0 zτz

⊺
τ .

Theorem 6 (see [20, Theorem 1]). Suppose the following
conditions are satisfied: (S1) λmin(ZT ) → ∞, a.s. and
(S2) log(λmax(ZT )) = o(λmin(ZT )), a.s. Then the least
squares estimate in (27) is strongly consistent with the rate
of convergence:

∥β̂T − β∥∞ = O
(√

log
[
λmax(ZT )

]
λmin(ZT )

)
a.s.

Therefore, by Theorem 6, and the fact that σ2
(k)Ti,T =

O(σ2
(k)T ) we get that:

lim
k→∞

∥θ̂(k) − θ∥ = O
(√

log(T (k))/σ(k)T (k)
)

µ1-a.s.

APPENDIX III
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Lemma 6. The regret in the k-th episode satisfies:

lim sup
k→∞

∫
Ω2

[∑t(k)+T (k)−1
τ=t(k) c(xτ , sτ , uτ )

]
µ2(dω2)

(T (k−1))1/2 log(T (k−1))
< ∞ µ-a.s.

Proof. (Sketch) In the k-th episode, L̂(k)
s is computed based

on the estimate θ̂(k−1). Assumption 3 implies that on the
set A0, the set of the gains {L̂(k)

s }s∈S is stabilizing for all
k ≥ 0. Setting σ2

(k−1) = 1/
√
T (k−1) in Theorem 3 implies:

lim sup
k→∞

∥θ̂(k−1) − θ∥√
log(T (k−1))/(T (k−1))1/4

< ∞, µ-a.s. (28)



By the continuity of the gains L̂
(k)
s in the parameter θ̂(k−1)

we get,

lim sup
k→∞

∥L̂(k)
s − Ls∥√

log(T (k−1))/(T (k−1))1/4
< ∞, µ-a.s. (29)

In the proof of Theorem 3, we established that

t(k)+T (k)−1∑
τ=t(k)

∥xt∥2 = O(T (k)) µ-a.s.

The gain L̂
(k)
s is fixed during the episode. Therefore by plug-

ging in ∥L̂(k)
s − Ls∥,

∑t(k)+T (k)−1
τ=t(k) ∥xt∥2 in the Rπ

1,T (ω1),

and
∑t(k)+T (k)−1

τ=t(k) ∥νt∥2 = O(
√
T (k)) in Rπ

2,T , we get the
desired result.

Let T̃ (k) =
∑k

m=0 T
(m) = T (0)(αk+1−1)/(α−1), which

implies k = O(logα(T̃
(k)/T (0)).

Proof of Theorem 4 follows by adding the terms in
previous lemma. Due to the limited space, the proof is
omitted.

APPENDIX IV
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We prove this result by induction. We show on the set
Aδθ (T

(0)) if θ̂(k) ∈ Bδθ (θ), then θ̂(k+1) ∈ Bδθ (θ). As
the basis of induction, since {L̄s}s∈S ∈ Bϵθ (Lθ), then
Theorem 3 and the definition of Aδθ (T

(0)) imply that θ̂(0) ∈
Bδθ (θ).

Now assume that θ̂(k) ∈ Bδθ (θ). Lemma 1 implies that
{L̂(k)

s }s∈S is stabilizing. Moreover, since T (k) ≥ T (0),
Theorem 3 and definition of Aϵθ (T

(0)) imply that ∥θ̂(k+1)−
θ∥ ≤ ϵθ. Hence θ̂(k+1) ∈ Bδθ (θ). This completes the proof
of the induction step.


