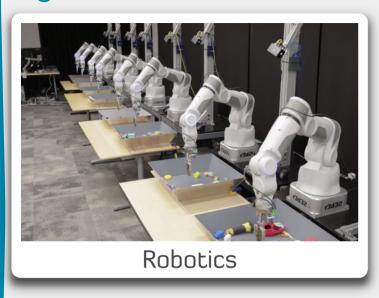
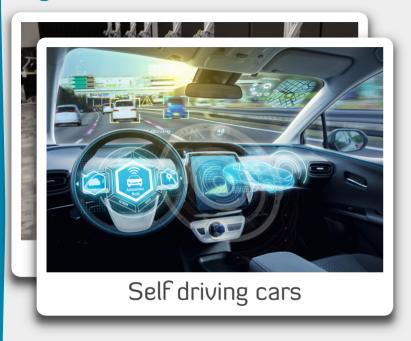
A modified Thompson sampling-based learning algorithm for unknown linear systems

Mukul Gagrani^a, Sagar Sudhakara^b, Aditya Mahajan^c, Ashutosh Nayyar^b, Ouyang Yi^d

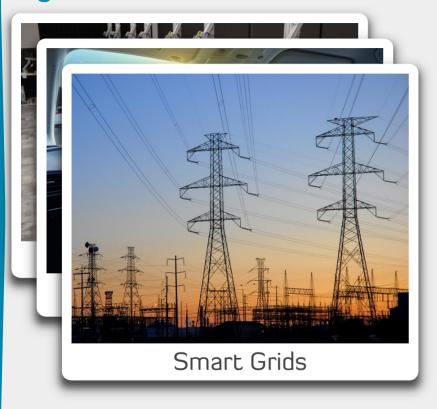
^aQualcomm, ^bUSC, ^cMcGill, ^dPreferred Networks

IEEE Conference on Decision and Control 9 December 2022









Simplest setting: Linear quadratic regulation

- Different classes of RL algorithms
- Provide different performance guarantees under different assumptions on the uncertainty

Simplest setting: Linear quadratic regulation

- Different classes of RL algorithms
- Provide different performance guarantees under different assumptions on the uncertainty

Relax the assumptions on uncertainty for a specific class of RL algorithms

Linear Quadratic Regulation

$$x_{t+1} = A_{\theta}x_t + B_{\theta}u_t + w_t, \quad w_t \sim N(0, \sigma_w^2 I)$$

 $c(x_t, u_t) = x_t^T Q x_t + u_t^T R u_t.$

Given $\theta^{\mathsf{T}} = [A_{\theta}, B_{\theta}]$, choose a policy π to minimize

$$J(\pi; \theta) = \limsup_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=1}^{T} c(x_t, w_t) \right].$$

Linear Quadratic Regulation

$$x_{t+1} = A_{\theta}x_t + B_{\theta}u_t + w_t, \quad w_t \sim N(0, \sigma_w^2 I)$$

 $c(x_t, u_t) = x_t^{\mathsf{T}} Q x_t + u_t^{\mathsf{T}} R u_t.$

Given $\theta^{\mathsf{T}} = [A_{\theta}, B_{\theta}]$, choose a policy π to minimize

$$J(\pi; \theta) = \limsup_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=1}^{T} c(x_t, w_t) \right].$$

Optimal solution

When θ is known and (A_{θ}, B_{θ}) is stabilizable, optimal policy π^* is given by $u_t = G(\theta) x_t$

- $G(\theta) = -(R + B_{\theta}^{\mathsf{T}} S_{\theta} B_{\theta})^{-1} B_{\theta}^{\mathsf{T}} S_{\theta} A_{\theta}$
- S_{θ} is the solution of the algebraic Riccati eqn Moreover: $J(\pi_{\theta}^{\star}; \theta) = \sigma_{w}^{2} Tr(S_{\theta})$.

Linear Quadratic Regulation

$$x_{t+1} = A_{\theta}x_t + B_{\theta}u_t + w_t, \quad w_t \sim N(0, \sigma_w^2 I)$$

$$c(x_t, u_t) = x_t^{\mathsf{T}} Q x_t + u_t^{\mathsf{T}} R u_t.$$

Given $\theta^{\mathsf{T}} = [A_{\theta}, B_{\theta}]$, choose a policy π to minimize

$$J(\pi; \theta) = \limsup_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=1}^{T} c(x_t, w_t) \right].$$

Learning setup

- True parameter θ_{\star} is unknown
- Regret of any learning-based policy π :

$$R(T; \pi) = \mathbb{E}^{\pi} \left[\sum_{t=1}^{T} c(x_t, u_t) - TJ(\pi_{\theta_{\star}}^{\star}, \theta_{\star}) \right].$$

Optimal solution

When θ is known and (A_{θ}, B_{θ}) is stabilizable, optimal policy π^{\star} is given by $u_t = G(\theta) x_t$

where

- $\bullet \quad G(\theta) = -(R + B_{\theta}^{\mathsf{T}} S_{\theta} B_{\theta})^{-1} B_{\theta}^{\mathsf{T}} S_{\theta} A_{\theta}$
- S_{θ} is the solution of the algebraic Riccati eqn Moreover: $J(\pi_{\theta}^{\star}; \theta) = \sigma_{w}^{2} Tr(S_{\theta})$.

Linear Quadratic Regulation

$$x_{t+1} = A_{\theta}x_t + B_{\theta}u_t + w_t, \quad w_t \sim N(0, \sigma_w^2 I)$$

$$c(x_t, u_t) = x_t^{\mathsf{T}} Q x_t + u_t^{\mathsf{T}} R u_t.$$

Given $\theta^{\mathsf{T}} = [A_{\theta}, B_{\theta}]$, choose a policy π to minimize

$$J(\pi; \theta) = \limsup_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=1}^{T} c(x_t, w_t) \right].$$

Learning setup

- True parameter θ_* is unknown
- Regret of any learning-based policy π :

$$R(T; \pi) = \mathbb{E}^{\pi} \left[\sum_{t=1}^{T} c(x_t, u_t) - TJ(\pi_{\theta_{\star}}^{\star}, \theta_{\star}) \right].$$

Optimal solution

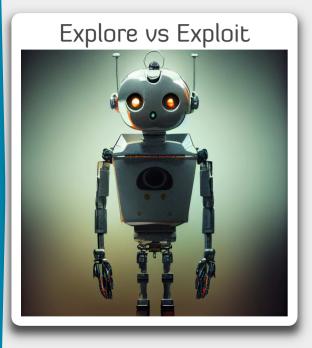
When θ is known and (A_{θ}, B_{θ}) is stabilizable, optimal policy π^* is given by $\mathfrak{u}_t = G(\theta) \mathfrak{x}_t$

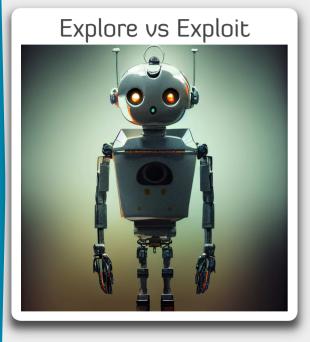
where

- $\bullet \quad G(\theta) = -(R + B_{\theta}^{\mathsf{T}} S_{\theta} B_{\theta})^{-1} B_{\theta}^{\mathsf{T}} S_{\theta} A_{\theta}$
- S_{θ} is the solution of the algebraic Riccati eqn Moreover: $J(\pi_{\theta}^{\star}; \theta) = \sigma_{w}^{2} Tr(S_{\theta})$.

Key research question

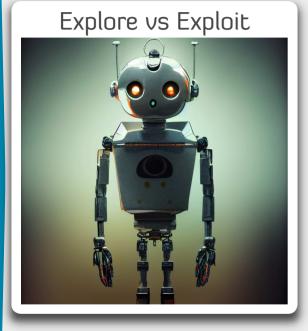
▶ How does regret scale with horizon T?





Certainty equivalence

- ightharpoonup Generate estimate $\hat{\theta}_t$ based on past observations
- Use controller: $u_t = G(\hat{\theta}_t) x_t + \varepsilon_t$ (exploration noise)

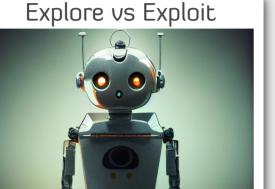


Certainty equivalence

- \triangleright Generate estimate $\hat{\theta}_t$ based on past observations
- Use controller: $u_t = G(\hat{\theta}_t) x_t + \varepsilon_t$ (exploration noise)

Upper Confidence Bound (UCB)

- \triangleright Generate UCB estimate $\bar{\theta}_t$ based on past observations.
- \triangleright Use controller: $\mathfrak{u}_t = G(\bar{\theta}_t) x_t$



Certainty equivalence

- \triangleright Generate estimate $\hat{\theta}_t$ based on past observations
- Use controller: $u_t = G(\hat{\theta}_t) x_t + \varepsilon_t$ (exploration noise)

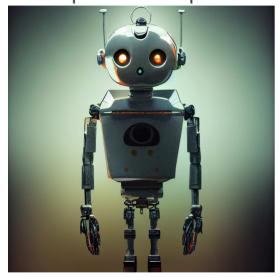
Upper Confidence Bound (UCB)

- > Generate UCB estimate $\bar{\theta}_t$ based on past observations.
- \triangleright Use controller: $u_t = G(\bar{\theta}_t) x_t$

Posterior/Thompson sampling

- Maintain posterior μ_t on θ_*
- \triangleright Sample $\tilde{\theta}_t \sim \mu_t$
- \triangleright Use controller: $u_t = G(\tilde{\theta}_t) x_t$

Explore vs Exploit



Certainty equivalence

- \triangleright Generate estimate $\hat{\theta}_t$ based on past observations
- Use controller: $u_t = G(\hat{\theta}_t) x_t + \varepsilon_t$ (exploration noise)

Upper Confidence Bound (UCB)

- Senerate UCB estimate $\bar{\theta}_t$ based on past observations.
- ightharpoonup Use controller: $u_t = G(\bar{\theta}_t) x_t$

Posterior/Thompson sampling

- > Maintain posterior μ_t on θ_\star
- ightharpoonup Sample $\tilde{\theta}_{t} \sim \mu_{t}$
- lackbrack Use controller: $u_t = G(\tilde{\theta}_t) x_t$

[Ouyang, Gagrani, Jain 2020]

- Bayesian RL algorithm
- ▶ Generalization on Thompson sampling (or posterior sampling) for bandits
- ▶ Very simple algorithm which requires no hyper-parameter tuning and works well in practice

[Ouyang, Gagrani, Jain 2020]

- Bayesian RL algorithm
- ▶ Generalization on Thompson sampling (or posterior sampling) for bandits
- ▶ Very simple algorithm which requires no hyper-parameter tuning and works well in practice

Assumptions on the true parameter

 \triangleright θ_{\star} lies in a compact set.

[Ouyang, Gagrani, Jain 2020]

- Bayesian RL algorithm
- ▶ Generalization on Thompson sampling (or posterior sampling) for bandits
- > Very simple algorithm which requires no hyper-parameter tuning and works well in practice

Assumptions on the true parameter

- \triangleright θ_* lies in a compact set.
- Independent truncated Gaussian prior on each row of θ_{\star}^{\top} :

$$\bar{\mu}_1(\theta) = \left[\prod_{i=1}^n N(\hat{\theta}_1(i), \Sigma_1) \right]$$

[Ouyang, Gagrani, Jain 2020]

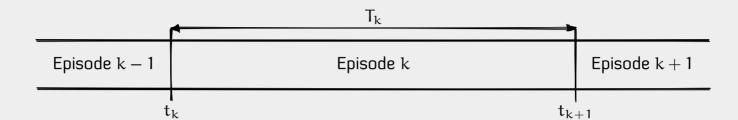
Properties of the posterior

Posterior
$$\mu_t$$
 is also truncated Gaussian with $\mu_t(\theta) = \left[\prod_{i=1}^n N(\hat{\theta}_t(i), \Sigma_t)\right]_0$ where

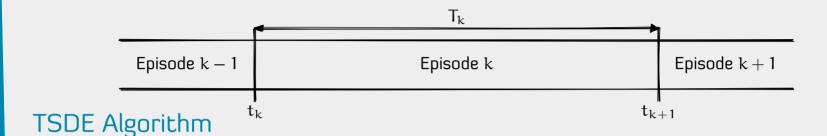
$$\begin{split} \widehat{\theta}_{t+1}(i) &= \widehat{\theta}_{t}(i) + \frac{\Sigma_{t}z_{t}(x_{t+1}(i) - \widehat{\theta}_{t}(i)^{\top}z_{t})}{\sigma_{w}^{2} + z_{t}^{\top}\Sigma_{t}z_{t}} \\ \Sigma_{t+1}^{-1} &= \Sigma_{t}^{-1} + \frac{1}{\sigma_{w}^{2}}z_{t}z_{t}^{\top}. \end{split}$$

where $z_t = \text{vec}(x_t, u_t)$.

Thompson sampling with dynamic episodes (TSDE) [Ouyang, Gagrani, Jain 2020]

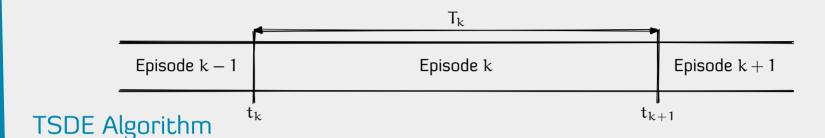


Thompson sampling with dynamic episodes (TSDE) [Ouyang, Gagrani, Jain 2020]



- ▶ At start of episode: Sample $\tilde{\theta}_k \sim \mu_{t_k}$
- ▶ During the episode: Use $u_t = G(\tilde{\theta}_k) x_t$
- ▶ Terminate episode if: $(t t_k > T_{k-1})$ or $(\det \Sigma_t < \frac{1}{2} \det \Sigma_{t_k})$

Thompson sampling with dynamic episodes (TSDE) [Ouyang, Gagrani, Jain 2020]



- ▶ At start of episode: Sample $\tilde{\theta}_k \sim \mu_{t_k}$
- **During the episode:** Use $u_t = G(\tilde{\theta}_k) x_t$
- ▶ Terminate episode if: $(t t_k > T_{k-1})$ or $(\det \Sigma_t < \frac{1}{2} \det \Sigma_{t_k})$

Intuition: $\det \Sigma_t < \frac{1}{2} \det \Sigma_{t_k}$ implies that current posterior is much better than the posterior at the start of the episode. Resample to exploit this knowledge

[Ouyang, Gagrani, Jain 2020]

Assumption A1

There exists an $\delta \in (0,1)$ such that for any $\theta, \varphi \in \Omega$, $\|A_{\theta} + B_{\theta}G(\varphi)\| \leq \delta$.

[Ouyang, Gagrani, Jain 2020]

Assumption A1

There exists an $\delta \in (0,1)$ such that for any $\theta, \varphi \in \Omega$, $\|A_{\theta} + B_{\theta}G(\varphi)\| \leq \delta$.

Discussion on assumptions

- ▶ A1 is a strong assumption.
- Requires that close loop system dynamics under any mismatched controller should have spectral norm less than one.

[Ouyang, Gagrani, Jain 2020]

Assumption A1

There exists an $\delta \in (0,1)$ such that for any $\theta, \varphi \in \Omega$, $\|A_{\theta} + B_{\theta}G(\varphi)\| \leq \delta$.

Theorem

Under A1, $R(T; TSDE) \le C\sqrt{T} (\log T)^q$

Discussion on assumptions

- ▶ A1 is a strong assumption.
- Requires that close loop system dynamics under any mismatched controller should have spectral norm less than one.

[Ouyang, Gagrani, Jain 2020]

Assumption A1

There exists an $\delta \in (0,1)$ such that for any $\theta, \varphi \in \Omega$, $\|A_{\theta} + B_{\theta}G(\varphi)\| \leq \delta$.

Theorem

Under A1, $R(T; TSDE) \le C\sqrt{T} (\log T)^q$

Discussion on assumptions

- ▶ A1 is a strong assumption.
- Requires that close loop system dynamics under any mismatched controller should have spectral norm less than one.

Discussion on the results

- The regret is Bayesian regret, i.e., includes an expectation over the prior.
- Different from frequentist regret, which provides a high-probability bound on regret for the true parameter.

Thompson sampling for LQ-(Gagrani et. al.)

Ouyang, Gagrani, Jain 2020]

Assumptio

Why bother with TSDE

- Works very well in practice. Requires no parameter tuning.
- ▶ Continues to work well when A1 is violated.

Theorem

Under A1, $R(T; TSDE) \leq C\sqrt{T} (\log T)^{\alpha}$

Discussion on assumptions

- ► A1 is a strong assumption
- Requires that close loop system dynamics under any mismatched controller should have spectral norm less than one.

Discussion on the results

- ► The regret is Bayesian regret, i.e., includes an expectation over the prior.
- Different from frequentist regret, which provides a high-probability bound on regret for the true parameter.

Thompson sampling for LQ—(Gagrani et. al.)

The strong assumption appears to be a limitation of the proof technique (and not the algorithm).

Can we relax it?

How should the stability assumption be relaxed?

Ideally, should only require the true θ_* to be stabilizable

Bayesian equivalent:

$$\mathbb{P}(\theta \in \Omega : \theta \text{ is stabilizable}) = 1$$

How should the stability assumption be relaxed?

Ideally, should only require the true θ_* to be stabilizable

Bayesian equivalent:

$$\mathbb{P}(\theta \in \Omega : \theta \text{ is stabilizable}) = 1$$

- ...and be able to construct a stabilizing controller in finite time
 - Don't know how to do that in Bayesian setting
 - ▶ Guaranteeing stability with high probability is not sufficient

How should the stability assumption be relaxed?

Ideally, should only require the true θ_* to be stabilizable

Bayesian equivalent:

 $\mathbb{P}(\theta \in \Omega : \theta \text{ is stabilizable}) = 1$

...and be able to construct a stabilizing controller in finite time

- Don't know how to do that in Bayesian setting
- ▶ Guaranteeing stability with high probability is not sufficient

First step in weakening the stability assumption

- > Assumption A1 is defined in terms of spectral norm
- ▶ A natural relaxation is to replace spectral norm by spectral radius.
- ▶ . . . which is what we do in this paper

This paper: Natural relaxation of Assumption A1

Assumption A2

There exists an $\delta \in (0, 1)$ such that for any $\theta, \varphi \in \Omega$, $\rho(A_{\theta} + B_{\theta}G(\varphi)) \leq \delta$.

- \triangleright Controller for system ϕ stabilizes system θ
- > Still a strong assumption, but weaker (and more natural) than A1.

This paper: Natural relaxation of Assumption A1

Assumption A2

There exists an $\delta \in (0, 1)$ such that for any $\theta, \varphi \in \Omega$, $\rho(A_{\theta} + B_{\theta}G(\varphi)) \leq \delta$.

- \triangleright Controller for system ϕ stabilizes system θ
- > Still a strong assumption, but weaker (and more natural) than A1.

Proof of regret bound of TSDE breaks down

- ightharpoonup Proof relies on showing that there is some constant α_0 such that
 - $(\star) \qquad \mathbb{E}\left[\max_{1 \leq t \leq T} \|x_t\|\right] \leq \sigma_w + \alpha_0 \mathbb{E}\left[\max_{1 \leq t \leq T} \|w_t\|\right]$
- ▶ Under (A1), $\mathbb{E}[||x_{t+1}||] \leq \delta \mathbb{E}[||x_t||] + \mathbb{E}[||w_t||]$, which implies $\alpha_0 = 1/(1 \delta)$.
- Such a bound does not work under (A2).

Need to modify the algorithm

Modified TSDE

Intuition

- Under (A2), in each episode the system is asymptotically stable.
- Asymptotic stability implies exponential stability.
- ▶ So, if the episode is sufficiently large, we can show that

$$\mathbb{E}[\|\mathbf{x}_{\mathsf{t}_{k+1}}\|] \leq \beta \mathbb{E}[\|\mathbf{x}_{\mathsf{t}_{k}}\|] + \bar{\alpha} \mathbb{E}\big[\max_{\mathsf{t}_{k} \leq \mathsf{t} \leq \mathsf{t}_{k+1}} \|w_{\mathsf{t}}\|\big]$$

which implies (*).

Modified TSDE

Intuition

- Under (A2), in each episode the system is asymptotically stable.
- Asymptotic stability implies exponential stability.
- ▶ So, if the episode is sufficiently large, we can show that

$$\mathbb{E}[||\mathbf{x}_{\mathsf{t}_{k+1}}||] \leq \beta \mathbb{E}[||\mathbf{x}_{\mathsf{t}_k}||] + \bar{\alpha} \mathbb{E}\big[\max_{\mathsf{t}_k \leq \mathsf{t} \leq \mathsf{t}_{k+1}} ||w_\mathsf{t}||\big]$$

which implies (*).

Proposed modification

- ► To ensure that each episode is sufficiently large, do not stop in the first T_{min} steps of an episode
- \blacktriangleright See paper for choice of T_{min} .

Modified TSDE

Intuition

- Under (A2), in each episode the system is asymptotically stable.
- Asymptotic stability implies exponential stability.
- So, if the episode is sufficiently large, we can show that

$$\mathbb{E}[\|\mathbf{x}_{\mathsf{t}_{k+1}}\|] \leq \beta \mathbb{E}[\|\mathbf{x}_{\mathsf{t}_{k}}\|] + \bar{\alpha} \mathbb{E}\left[\max_{\mathsf{t}_{k} \leq \mathsf{t} \leq \mathsf{t}_{k+1}} \|\mathbf{w}_{\mathsf{t}}\|\right]$$

which implies (*).

Proposed modification

- To ensure that each episode is sufficiently large, do not stop in the first T_{min} steps of an episode
- \blacktriangleright See paper for choice of T_{min} .

Implication

- The second stopping condition is not triggered for the T_{min} steps of each episode.
- Requires other changes in the proof argument. See paper for details.

Thompson sampling for LQ—(Gagrani et. al.)

Main results

Assumption A2

There exists an $\delta \in (0,1)$ such that for any $\theta, \varphi \in \Omega$, $\rho(A_{\theta} + B_{\theta}G(\varphi)) \leq \delta$.

Theorem

Under A2, $R(T; m-TSDE) \le C\sqrt{T} (\log T)^q$

Main results

Assumption A2

There exists an $\delta \in (0,1)$ such that for any $\theta, \varphi \in \Omega$, $\rho(A_{\theta} + B_{\theta}G(\varphi)) \leq \delta$.

Theorem

Under A2, $R(T; m-TSDE) \le C\sqrt{T} (\log T)^q$

Conclusion

- ▶ Relaxed a technical assumption for TSDE.
- ▶ Although A2 is weaker than A1, it still a strong assumption.
- Numerical experiments suggest that regret scales $\tilde{O}(\sqrt{T})$ even when A2 is not satisfied.
- ▶ Open question: How to further relax the stability assumption?

Thompson sampling for LQ-(Gagrani et. al.)

Thank you