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Learning in unknown linear systems
Linear Quadratic Regulation

Xe+1 = Apx¢ + Boug +wy, Wi ~ N(0, 021)

c(x¢, Ue) = x{ Qx¢ + u Ruy.

Given 67 = [Ag, Bgl, choose a policy 7t to minimize

.
J(m; 0) = limsup% E !Z c(xy, wt)] .
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e Sp is the solution of the algebraic Riccati eqn
Moreover: J(7y; 0) = 02, Tr(Se).

t=1

Learning setup
e True parameter 6, is unknown Ke research uestion

e Regret of any learning-based policy 7

T D How does regret scale with horizon T7?
R(T> 7[) — ]ET[ [Z C(Xt) ut) - Tl(ﬂég e*)] 0
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Different learning frameworks

Certaintz eguivalence

> Generate estimate 0 based on past observations

Explore vs Exploit
| I B> Use controller: uy = G(@t)xt + ¢+ (exploration noise)

UEeer Confidence Bound (UCB)

> Generate UCB estimate 6, based on past observations.
> Use controller: uy = G(0¢)x¢

Posterior/Thomson samlin

B> Maintain posterior py on 0,
B> Sample 8¢ ~ i
> Use controller: u, = G(0;)x¢
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[Ouyang, Gagrani, Jain 2020]
B> Bayesian RL algorithm
B> Generalization on Thompson sampling (or posterior sampling) for bandits

P> Very simple algorithm which requires no hyper-parameter tuning and works well in practice

ASSUIT]EUOHS on the true Earameter

B> 0, lies in a compact set.

> Independent truncated Gaussian |
e Q

prior on each row of 0, : |

Compact set

i1,(0) = HN(&m,zn]
i=1

Q
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Thompson sampling with dynamic episodes (TSDE)
[Ouyang, Gagrani, Jain 2020]
Properties of the posterior

B> Posterior , is also truncated Gaussian with (0 et Zt)] where

Q

tht(xt—H( ) — et( )Tz
0‘%\, + z{ Zizy

0er1(1) = 6(1) +

1
W

where z; = vec(xy, wy).
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Ty

Episode k — 1

Episode k

Episode k + 1
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[Ouyang, Gagrani, Jain 2020]

Ty

Episode k — 1 Episode k Episode k + 1

TSDE Algorithm b fer

> At start of episode: Sample 8y ~ ¢,

> During the episode: Use u; = G(ék)xt

B> Terminate episode if: (t —tx > Tx_1) or (det X < %det i)

Intuition: det Z; < %det L., implies that current posterior is much better than the
posterior at the start of the episode. Resample to exploit this knowledge
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ACEIT o] (e [y WAMERE There exists an & € (0, 1) such that forany 6, ¢ € Q, [|Ag + BoG(d) || < 6.

Under Al, R(T;TSDE) < CyT (logT)4

Discussion on assumetions Discussion on the results

P> Al is a strong assumption. B> The regret is Bayesian regret, i.e., includes an

, , expectation over the prior.
P> Requires that close loop system dynamics P P

under any mismatched controller should have > Different from frequentist regret, which

spectral norm less than one. provides a high-probability bound on regret
for the true parameter.
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Thompson sampling with dynamic episodes (TSDE)

Why bother with TSDE

> Works very well in practice. Requires no parameter tuning.

P> Continues to work well when Al is violated.
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The strong assumption appears to be a limitation
of the proof technique (and not the algorithm).

Can we relax it?




How should the stability assumption be relaxed?
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P(0 € Q: 0 is stabilizable) = 1
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How should the stability assumption be relaxed?

Ideally, should only require the true 0, to be stabilizable
> Bayesian equivalent:

P(0 € Q: 0 is stabilizable) = 1

...and be able to construct a stabilizing controller in finite time
P> Don’t know how to do that in Bayesian setting
P> Guaranteeing stability with high probability is not sufficient

First step in weakening the stability assumption
B> Assumption Al is defined in terms of spectral norm
P> A natural relaxation is to replace spectral norm by spectral radius.
B> ... which is what we do in this paper
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This paper: Natural relaxation of Assumption Al
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This paper: Natural relaxation of Assumption Al

ACEIN o] (s [y WAV2R There exists an & € (0, 1) such that forany 8, ¢ € Q, p(Ag + BoG(d)) < 5.

P> Controller for system ¢ stabilizes system 6

P> Still a strong assumption, but weaker (and more natural) than AL

Proof of regret bound of TSDE breaks down

B> Proof relies on showing that there is some constant o, such that

(+)  E[ max [xl]] < 0w+ aoE[ max [well
1<t<T 1<t<T

> Under (A1), El[lx¢s1ll] < SE[l[x¢ll] + Elllwell], which implies oo = 1/(1 — ).
> Such a bound does not work under (A2).
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Need to madify the algorithm




Modified TSDE .

Episode k — 1 Episode k

Episode k + 1

Intuition i
]

P> Under (A2), in each episode the system is asymptaotically stable.

P> Asymptotic stability implies exponential stability.
B> So, if the episode is sufficiently large, we can show that

Ellcs,.., ] < BElbe, I+ XE[,_max fw]

which implies ().
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Modified TSDE .

Episode k + 1

Episode k — 1 in Episode k
Intuition

tr
> Under (A2), in each episode the system is asymptotically stable.
P> Asymptotic stability implies exponential stability.

B> So, if the episode is sufficiently large, we can show that

Ellcs,.., ] < BElbe, I+ XE[,_max fw]

which implies ().

Proosed modification

B> To ensure that each episode is sufficiently
large, do not stop in the fArst T, steps of an
episode

B> See paper for choice of Tin.
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Modified TSDE .

-

Episode k — 1 'H Episode k Episode k + 1
Intuition

tr tiet+1

B> Under (A2), in each episode the system is asymptotically stable.
> Asymptotic stability implies exponential stability.
D> So, if the episode is sufficiently large, we can show that

Ellcs,.., ] < BElbe, I+ XE[,_max fw]

which implies ().

Proosed modification ImElication

D> To ensure that each episode is sufficiently P> The second stopping condition is not
large, do not stop in the fArst T, steps of an triggered for the T, steps of each episode.

episode B> Requires other changes in the proof

B> See paper for choice of Tin. argument. See paper for details.
S ——
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Main results
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G To A (e, WAVRRN There exists an § € (0, 1) such that forany 6, € Q, p(Ag +BeG(d)) < 8.

Under A2, R(T;m-TSDE) < CyT (logT)9

Conclusion

|
P> Relaxed a technical assumption for TSDE.

P> Although A2 is weaker than Al, it still a strong assumption.

B> Numerical experiments suggest that regret scales O(y/T) even when A2 is not satisfed.

> Open question: How to further relax the stability assumption?
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