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RL has achieved considerable success...

|mage credit: MIT Techno|ogy review Image credit: Towards Data Science Image credit: Popular Science

® Model-free method © Learning is slow (takes ~ 10"9to 10”15
® Use policy search iterations to converge)

-
Can we exploit features of the model to make it learn faster? ...

Without sacrificing generality?
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An RL problem can be formulated as...

A, Ry, St41

. T

Infinite horizon Markov decision process (MDP) Model

State space S eSS

Action space A e A
Transition probability P(St+1’5t, At) — [P(At)]st,8t+1

Per-step reward R, = T(St, At, St_|_1)
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An RL problem can be formulated as...

Ay

— IR —

Rt7 St-l—l

Infinite horizon Markov decision process (MDP) Model

Unknown in RL

State space

S; €8S

Action space

A, e A

Transition probability

P(St41]5t, At) = [P(A¢)]5,,541

Per-step reward

Rt — T(Sta At7 St—l—l)
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Policy parametrization
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Policy parametrization
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Policy parametrization

e is a parametrized policy

exp(76(s,a))

,ug(a\s) — Z

. exp(70(s,a))
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Polic

arametrization

e is a parametrized policy

Gibbs (softmax) policy

exp(76(s,a))

“9(0"8) — Z

. exp(70(s,a))

Neural network (NN) policy

po(als) =

(9: weights of NN
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Policy gradient
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Policy gradient

Performance

Gradient
Estimate
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Policy gradient

©.@)
t
Performance Jo = E{ZV Rt’SO = S0, At ~ NG(St)}
Gradient t=0
Estimate
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Policy gradient
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Policy gradient
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Policy gradient

©.)
t
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Policy gradient

Performance
Gradient
Estimate

Stochastic
Gradient
Ascent

19/12/18

Jo = E[Z v R¢|So = s0, At ~ MH(St)}

t=0
(5 is an estimate of VQ J@

How do we estimate this?

Ori1 = |0k + arGy, e

o0 o0
2
E ap = oo and E o, < 00
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How to estimate VogJg ?
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How to estimate VoJg ?

o

Go = Vo log(o(Ar|S0)y (Z V"R, )|

t=0
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How to estimate VoJg ?

o

Go = Vo log(o(Ar|S0)y (Z V"R, )|

t=0

Actor Critic estimate (Temporal difference / SARSA)
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How to estimate VoJg ?

o

Go = Vo log(o(Ar|S0)y (Z V"R, )|

t=0

Actor Critic estimate (Temporal difference / SARSA)

=2 [Vf) log (1o (Ae]Se))y' QS At)}

t=0

Actor Critic with eligibility traces estimate (SARSA-A)

= 3 [V log(ua(A4S)17"Q (51, A1)

t=0
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MCvs. TD
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MCvs. TD

® Unbiased

® Simple & easy to implement

® Discounted & average reward cases

© High variance

© End-of-episode updates

© Not asymptotically optimal for inf. hor.
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MCvs. TD

® Unbiased

® Simple & easy to implement

® Discounted & average reward cases

© High variance
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® Low variance

® Per-step updates

® Asymptotically optimal for inf. hor.

© Biased

© Often requires function approximation
© Additional effort for average reward

Can we get the best of both worlds?
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Renewal Monte Carlo

A
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Renewal Monte Carlo

A
State

6 Time

) _ i,yt—SRt’ T2) _ EG:Wt_B
= t=3

t=3
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Renewal Monte Carlo

A
State

6 Time

. ¥

6
R(Z) _ Z ,yt—3Rt’ T(2) _ Z ,yt—3
t=3 t=3

.. are i.1.d
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Renewal Monte Carlo

A
State

2 Y ’ 2 6 E‘Y 6
R(L — Zﬂgt, T _ th R(2) _ th‘BRt, T(2) _ th_g
t=3

: R® . areiid and T'" : T@) .. are iid
Ro = E[R™)] and Ty = E[T™"™)

6 Time
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Renewal Monte Carlo

A
State

: R® . areiid and T'" : T@) .. are iid
Ry = E[R(n)] and Ty = E[T(n): } estimated by f{, T
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RMC based policy gradient

19/12/18 RMC: Subramanian and Mahajan 9



RMC based policy gradient

Performance

Gradient
Estimate
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RMC based policy gradient

Rg H
Jo = ; Vaodg = -
(1—7)Te
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RMC based policy gradient

Ro H,
;. Vodg =
1 —7)Ty 1 — )T
Gradient ( ) ( 7) /

Estimate Hy = TyVeRg — RgVyTy

Jo =

Performance
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RMC based policy gradient

Ro H,
;. Vodg =
1 —7)Ty 1 — )T
Gradient ( ) ( 7) /

Estimate H@ — T@V@ RQ — RQV@TH with estimate: ﬁ@

Jo =

Performance
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RMC based policy gradient

Rg Hy
Performance Jo = (1 —7)Tg o Vodo = (1— ’7)T92
Gradient
Estimate H@ — T@V@ RQ — RQV@TH with estimate: H@

Stochastic Hk-l-l — [Hk -+ akH@k]@

Gradient 00 o0
Ascent Z ap = oo and Z i < 00
k=0 k=0
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RMC based policy gradient

Rg Hy
Performance Jo = (1 —7)Tg o Vodo = (1— ’7)T92
Gradient
Estimate H@ — T@V@ RQ — RQV@TH with estimate: H@

R, T, estimated usingMC/TD : VgRp. Vg T 5 using RL policy gradient
6, 16 y VOING, VoI

Stochastic
Gradient

oo oo
Ascent E ap = oo and E i < 00
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Convergence
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Convergence
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Convergence

le T]ﬁ VRk7 VTk unbiased estimators of ng ; T@k, VRQ,{, VT@k
TkJ_VRk and RkJ_VTk

H;, = T VRr — RV T isanunbiased estimator of H@k

==

H@ is continuous; Hk has bounded variance and

6’ — H9 has locally asymptotically stable isolated limit points

o C—

Iteration for Hk converges a.s. to a value where Vg Jg = ()
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E.g. — Randomly generated MDP
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E.g. — Randomly generated MDP
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E.g. — Randomly generated MDP
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Exact
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e —— 5025
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— RMC
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Related work

e Simulation optimization [Glynn 1986, 1990]:

* Assume known probability law of the primitive random
variables and its weak derivate

19/12/18 RMC: Subramanian and Mahajan

12



Related work

e Simulation optimization [Glynn 1986, 1990]:

* Assume known probability law of the primitive random
variables and its weak derivate

 Sensitivity analysis for MDPs [Xi-Ren Cao, 1997]:
e Average reward criterion
 Known and unknown system models

19/12/18 RMC: Subramanian and Mahajan

12



Related work

e Simulation optimization [Glynn 1986, 1990]:

* Assume known probability law of the primitive random
variables and its weak derivate

 Sensitivity analysis for MDPs [Xi-Ren Cao, 1997]:
e Average reward criterion
 Known and unknown system models

* Renewal theory for RL: [Marbach & Tsitsiklis 2001, 2003]
* Average reward criterion
* Relative value function for average reward
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Limitation of RMC

© Renewal could take a long time

® Two techniques to overcome this:

Post-decision state model Approximate renewal model
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Post-decision state model
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Post-decision state model

A

State

Renewals defined in terms of post-decision states
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Approximate RMC

State 1
P .%/
hoe b 7 R; .%6./
S0 ®
0 1 2 3 4 5 6 Tim:
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Approximate RMC
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Approximate RMC

A
State

6 6
Rp,(2) _ Z ,yt—?)Rt’ Tp,(Z) _ Z 715—3
t=3 t=3

R : R ... areiidand T'" : T . arei.id
RS = E[RP’(")] and T§ = E[TP’(”)] } estimated by RP,T”
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Error bound
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Error bound

V@ is Locally Lipschitz in B’O
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Error bound

V@ is Locally Lipschitz in B’O
Vo(s) — Vo(s')| < Lodg(s,s')
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Error bound
V@ is Locally Lipschitz in B’O

Vo(s) — Vo(s')| < Lods(s, s')

—~——g——

Jo—Jf <o S Lo

Approximation error bounded by radius of approximation
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E.g. Inventory management
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E.g. Inventory management

230

270
260
250

Exact
— RMC

DO
=
(-

Total Cost

230

220
210

204 i 5 3 1
Samples x 100

19/12/18 RMC: Subramanian and Mahajan 17



Conclusion

19/12/18 RMC: Subramanian and Mahajan 18



Conclusion

* RMC useful in problems where:
e renewal time is small
* structure of optimal policy is known
* reset actions are present

19/12/18 RMC: Subramanian and Mahajan 18



Conclusion

* RMC useful in problems where:
e renewal time is small
* structure of optimal policy is known
* reset actions are present

* Not so useful in arbitrary high dimensional
problems

19/12/18 RMC: Subramanian and Mahajan 18



Conclusion

* RMC useful in problems where:
e renewal time is small
* structure of optimal policy is known
* reset actions are present

* Not so useful in arbitrary high dimensional
problems

* In high dimensional problems:
* RMC can be used as a sub-component of main scheme

* in the presence of hierarchies, can be used in a level with
short renewals
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Thank you
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