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RL	has	achieved	considerable	success…

Image	credit:	Popular	Science

Salient	features

⊕Model-free	method
⊕ Use	policy	search

Limitation

⊖ Learning	is	slow	(takes	∼	10^9	to	10^15	

iterations	to	converge)

⊕Can	we	exploit	features	of	the	model	to	make	it	learn	faster?	…
⊕Without	sacrificing	generality?
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Environment

Agent

Infinite	horizon	Markov	decision	process	(MDP)	Model

Transition	probability

Action	space

State	space

Unknown	in	RL

Per-step	reward
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Gibbs	(softmax)	policy
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How	do	we	estimate	this?
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Actor	Critic	with	eligibility	traces	estimate	(SARSA-λ)

Actor	Critic	estimate	(Temporal	difference	/	SARSA)

Monte	Carlo	estimate	(REINFORCE)
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MC

⊕ Unbiased	

⊕ Simple	&	easy	to	implement	

⊕ Discounted	&	average	reward	cases	

⊖ High	variance	

⊖ End-of-episode	updates	

⊖ Not	asymptotically	optimal	for	inf.	hor.

TD

⊕ Low	variance	

⊕ Per-step	updates	

⊕ Asymptotically	optimal	for	inf.	hor.	

⊖ Biased	

⊖ Often	requires	function	approximation	

⊖ Additional	effort	for	average	reward

Can	we	get	the	best	of	both	worlds?
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																		estimated	using	MC	/	TD																																				using	RL	policy	gradient
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unbiased	estimators	of	

and

is	an	unbiased	estimator	of

is	continuous; has	bounded	variance and

Iteration	for									converges	a.s.	to	a	value	where

has	locally	asymptotically	stable	isolated	limit	points
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Related	work

• Simulation	optimization	[Glynn	1986,	1990]:	

• Assume	known	probability	law	of	the	primitive	random	
variables	and	its	weak	derivate

• Sensitivity	analysis	for	MDPs	[Xi-Ren	Cao,	1997]:	

• Average	reward	criterion	

• Known	and	unknown	system	models

• Renewal	theory	for	RL:	[Marbach	&	Tsitsiklis	2001,	2003]	

• Average	reward	criterion		

• Relative	value	function	for	average	reward
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Renewals	defined	in	terms	of	post-decision	states
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is	Locally	Lipschitz	in

Approximation	error	bounded	by	radius	of	approximation
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Conclusion

• RMC	useful	in	problems	where:	

• renewal	time	is	small	

• structure	of	optimal	policy	is	known	

• reset	actions	are	present

• Not	so	useful	in	arbitrary	high	dimensional	
problems

• In	high	dimensional	problems:	

• RMC	can	be	used	as	a	sub-component	of	main	scheme	

• in	the	presence	of	hierarchies,	can	be	used	in	a	level	with	
short	renewals
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Thank	you


