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rLearning (or adaptation) in dynamical systems

Learning in centralized systems
& Adaptive control

> Model predictive control

& Reinforcement learning

Various techniques
Relatively well understood.
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rLearning (or adaptation) in dynamical systems

Learning in decentralized systems

= Learning in games
& Reinforcement learning in teams

Learning in centralized systems
> Adaptive control

> Model predictive control

& Reinforcement learning

Few techniques

Various techniques
Not as well understood

Relatively well understood.

We present a new RL algorithm for decentralized systems
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Basic Idea

Many reinforcement learning algorithms are
based on dynamic programming
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B Q-learning
= TD(A)
> SARSA
> REINFORCE
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Basic Idea I

Many reinforcement learning algorithms are &> Q-learning
based on dynamic programming & TD(A)

& SARSA

& REINFORCE

The common-information approach [NMT13] provides dynamic program
for a large class of decentralized control systems.

£ Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information
approach,” IEEE TAC 2013. "
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"The main result
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Xt+] = f(Xt,Ul,...,U{‘,Wt)

Dynamical System
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"The main result I

I | !
Controller 1
I? U% 1
Controller 2 Xepr = f(Xe, U, . oo, UE, W)
Dynamical System
I]tl ull
Controller n

Construct a countable state MDP A, and a seq. of finite-state MDP approximations A,, s.t.

> Forany e > 0, there exists m(¢e) < 108(2(€max —Imin)/e(1—p))/log(1/p) such that running
reinforcement learning on MDP A, () converges to an ¢-team-optimal strategy.

B> In the worst case, the state space of A, is O(|Y[™U/™ '); but for some models it is
O(m).

"
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"Outline I

Problem formulation

Solution methodology
> Step 1. Common information approach
> Step 2: Reinforcement learning for POMDPs

Numerical example

I,
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"Problem formulation I

R L
Controller 1
I; ug :
Controller 2 X1 = f(Xe, U, . oo, UE, W)
Dynamical System
I1tl n
Controller n

State X Observations  Yi = h(X;, Wi) Control Ul = gi(L}).

Total cost [Z BETe(X, UL, ... um)].
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"Problem formulation

R L
Controller 1
I; ug :
Controller 2 X1 = f(Xe, U, . oo, UE, W)
Dynamical System
I1t] n
Controller n

State X Observations  Yi = h(X;, Wi) Control Ul = gi(L}).

Total cost [Z BET(Xe, Uf, ..., UT)|.
Information structure L, ...oyr,ul e ur, )

Assumed to satlsFy partlal—hlstory sharing model.
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Objective: Given ¢ > 0, develop a (model-based or
model-free) reinforcement learning algorithm
that finds an e-optimal strategy g. such that

J(ge) —J(g) < ¢
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"Multi-access broadcast example

Arrival rate p' —E
Arrival rate p? —DIE

Arrival process

Control actions

Information structure
Objective
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Shared channel

& Bernoulli process with rate p'.
> Arrival rates (p',p?) are unknown.

& Ul €{0,1} ={ Don't transmit, transmit }

& IF only one user transmits, packet goes through.

» If both users transmit, packets collide and don’t go
through.

It - {X}t) u}:t—l ) u%:tf1}

Maximize throughput (# of successfully transmissions)
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"Solution methodology B
The basic idea

Follow the common information approach [NMT13] to convert the
decentralized control problem into a centralized (partially-observed)
control problem

Use a Reinforcement-learning algorithm for POMDPs to learn the
optimal strategy when the model is unknown

N -
i NS
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"Solution methodology B

The basic idea

Follow the common information approach [NMT13] to convert the
decentralized control problem into a centralized (partially-observed)
control problem

Use a Reinforcement-learning algorithm for POMDPs to learn the

optimal strategy when the model is unknown

We propose a new reinforcement-learning algorithm for POMDPs
& Given a belief state, the reachable set of belief states (under all strategies) is countable.
Therefore,

POMDP = Countable state MDP

&= Countable state MDPs can be approximated by a sequence of Anite-state MDPs.

> Guarantees convergence to e-optimal strategy.

N -
i NS
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Step 1: Converting the decentralized system
into an equivalent centralized system



rAn overview of the common-information approach [NMT13?

Xt

It
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rAn overview of the common-information approach [NMT13?

It
Xt
It
n .
Common infomation Ce=[)[)L Zi = Ci¢ \ Ci1.

=t i=1
Local information Lt =1\ C,.
Prescriptions vi:Li— Ut
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rAn overview of the common-information approach [NMT13?

Li
Xt
L
n .
Common infomation Ce=[)[)L
=t i=1
Local information Lt =1\ C,.
Prescriptions vi:Li— Ut

\ RL in decentralized control—(Arabneydi and Mahajan)

vl

Ce

Partial history sharing
> |£1is uniformly bounded
> Lb . C{Liui

t+1 t+1}




rAn overview of the common-information approach [NMT13?

1 vi
Lt
Xt Ct

,YTL

Lr -
Original System Coordinated System

Information ; o _
structure It (Note: I} € I} 4) C¢ (Note: Cy C Cyy1)
Control action Ut = gi(Cq, LY It =1i(Cy), where yi:Li — UL
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rAn overview of the common-information approach [NMT13?

1 i
Lt
Xt Ct

,YTL

L .
Original System Coordinated System

Information ; o _
structure It (Note: I} € I} 4) C¢ (Note: Cy C Cyy1)
Control action Ut = gi(Cq, LY It =1i(Cy), where yi:Li — UL

IF we choose gi(C, 1) = Pi(Cy)(L), the both systems have identical realization of
system variables. Hence, the systems are equivalent.
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The coordinated system is a centralized system
(POMDP TT). We can use any standard method to identify
an information state and obtain a dynamic program!
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Step 2: Reinforcement learning for POMDPs



mcrementally expanding representation B

81

> R; = (Finite) set ofinitial information states
> 8; = Asetisomorphic to R; that does not depend on the unknowns.
& Surjection B between R; and §;

9=
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mcrementally expanding representation B

81\ 82

wll

> R :{@(W)Z)Y) STLE RHZG Z,Y € r}

& There exists a function f (that does not depend on unknowns) such that for every s € 8,
zeZ,verl

B(f(S)Z>Y)) = @(B(S))Z,Y)> 82 :{'F(S,Z,’Y) S 81)Z € Z,,’Y € r}
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mcrementally expanding representation B

> R :{(P(W,Z,Y) STLE RHZG Z,Y € r}

& There exists a function f (that does not depend on unknowns) such that for every s € 8,
zeZ,verl

B(f(S)Z>Y)) = @(B(S))Z,Y)> 82 :{'F(S,Z,’Y) S 81)Z € Z,’Y € r}
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mcrementally expanding representation B

Simple example: Set of all histories
SOZS*,81 :Z,Sz:ZxeZ,,...

= R :{@(W)Z)Y) STLE RHZG Z,Y € r}

> There exists a function f (that does not depend on unknowns) such that for every s € 8,
zeZ,verl

B(f(S)Z>Y)) = @(B(S))Z,Y)> 82 :{'F(S,Z,’Y) S 81)Z € Z,,’Y € r}
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mcrementally expanding representation B

Formal definition An IERis a tuple ({8,,}%°_,, f, B) such that {8,,}°_, and
f do not depend on the unknowns and
S C8 C - C Sy

> Foranyse8,,z€Z,vel, f(s,z,¥) € 8mir.

> Let 8§ = lim;;, 00 Stm. Then B is a surjective map from
8 to IT such that 7ty = B(sy)

Note The surjection B may depend on the unknowns.

Lemma A decentralized control system with partial history
sharing has at least one IER.

2
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"An equivalent (countable-state) MDP B

Countable state MDP A State Space 8, Dynamics f, Action Space T
Cost function {(s,y) = E[{(X, W)t = B(s),7]

I,
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"An equivalent (countable-state) MDP B

Countable state MDP A State Space 8, Dynamics f, Action Space T
Cost function {(s,y) = E[{(X, W)t = B(s),7]

Theorem The optimal strategy of MDP A is equivalent to the
optimal strategy of POMDP TT.

I,
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"An equivalent (countable-state) MDP B

Countable state MDP A State Space 8, Dynamics f, Action Space T
Cost function {(s,y) = E[{(X, W)t = B(s),7]

Theorem The optimal strategy of MDP A is equivalent to the
optimal strategy of POMDP TT.

Finite state MDP A, Consider the following truncated dynamics f,, on 8.
Pick a set D° € 8,,, such that for all s € 8., z € Z,

v €T, set fm(s,z,v) € D°.

For RL, this is only possible if there exists a reset action or a homing strategy.

I,
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"An equivalent (countable-state) MDP B

Countable state MDP A State Space 8, Dynamics f, Action Space T
Cost function {(s,y) = E[{(X, W)t = B(s),7]

Theorem The optimal strategy of MDP A is equivalent to the
optimal strategy of POMDP TT.

Finite state MDP A, Consider the following truncated dynamics f,, on 8.
Pick a set D° € 8,,, such that for all s € 8., z € Z,
v €T, set fm(s,z,v) € D°.

For RL, this is only possible if there exists a reset action or a homing strategy.

Theorem MDPs {A,}$°_, is an augmentation type approximation
sequence of MDP A [Sennott99].

Therefore, V¥, — V* and any limit point of the sequence
{w*,}is optimal for A.

2
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- I

An IER converts the POMDP to an equivalent
countable state MDP whose state space and
dynamics do not depend on the unknowns.

The countable state MDP may be approximated
by a sequence of finite state MDPs



mpproximation error and RL algorithm B

Theorem The difference in performance between MDP A and
MDP A, is bounded.

J07) = Jm (03] < 2t — k)5

where T,,, > m is a model-dependent parameter.

T1TL

g-optimal RL & Given an ¢, pick m such that
2(€max — €min)1ﬁ_—m[3 < E.

= Use any RL algorithm for the finite-state MDP A,,,.

2
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"Multi-access broadcast exam ple B

Arrival rate p' E
Arrival rate p? ——'\EJ

Shared channel

Information structure =i up, ,,us, ;}
Common information=uj, ,, Uf, , Local information = X}
Prescriptions vi:{0,1} — {0, 1}
For ease of notation, let di =i (1). Then
Ui = diXxt

2
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"Multi-access broadcast exam ple B
¥

Arrival rate p! —s User 1

Arrival rate p? —DErZ:

Shared channel

Information structure ={xtul, ,,uz, ;}
Common information =uj,, ,,Uf, Local information = Xt
Prescriptions vi:{0,1} — {0, 1}
For ease of notation, let di =yi(1). Then
Ui = dixi
POMDP TT Info. state  P(X{,XZ | U], ;, U, ;)

= (P(X{ | Uy—1), P(X{ | Uyp—1))
Action Space {(d])dz)}:{(O>O)>(1)0))(O»])>(])])}

2
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"IER for multi-access broadcast I
(p1, 1) (1,1)

e e e e e cecemm|(1,p2)
(p1,p2) P

(0,0)

Parameters (p',p?) are unknown.
Reachable set R = {(p',p"), (p', 1), (1,p2), (TH)™p', p2), (p', (T2)™p?) }.
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mER for multi-access broadcast I
(p1, 1) (1,1)

e e e e e cecemm|(1,p2)
(p1,p2) P

(0,0)
Parameters (p',p?) are unknown.

Reachable set R = {(p',p"), (p', 1), (1,p), (T)™p",p?), (p', (T2)™p?)}.

IER Space 8 = {(0,0), (0, %), (*,0), (x,%), (m,0), (0,m) }
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"Numerical Exam ples

& Parameters: p' = 0.3, p2 = 0.6, = 0.99, m = 20
> (d',d%)=(1,0), (d',a%)=(0,1), (d',d%)=(1,1).

> Reachable set under optimal strategy {(0, 1), (1,0), (2,0), (3,0)}
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"Numerical Exam ples

> Parameters: p' = 0.1, p2 =0.3,  =0.99, m = 20
&> (d',d%) =(1,0), (d',a%)=(0,1), (d',d%)=(1,1).

& Reachable set under optimal strategy {(0,0), (0,1), (1,0), (*,0), (*, %)}
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"Summary I

A (model-based or model-free) reinforcement learning algorithm
Guarantees ¢-optimality for a large class of decentralized systems
control systems with partial history sharing.

Two steps: Common information approach and POMDP reinforcement learning
Developed a new approximate RL algorithm for POMDPs

Salient features
& The algorithm is based on information commonly known to all controllers. Therefore,
it can be executed in a distributed manner

& All controllers need access to a shared random number generator for exploring the
system consistently.

& The cost function should be known, otherwise all controllers need to observe the per-
step cost.

> In practice, the actual error is much less than the obtained error bound.

S1vs
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