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We present a new RL algorithm for decentralized systems
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Basic Idea

The common-information approach [NMT13] provides dynamic program
for a large class of decentralized control systems.

Nayyar, Mahajan and Teneketzis, ąDecentralized stochastic control with partial history sharing: A common information
approach,Ć IEEE TAC 2013.

Many reinforcement learning algorithms are
based on dynamic programming

Q-learning
TD(λ)
SARSA
REINFORCE
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Xt+1 = f(Xt, U1t , . . . , Unt ,Wt)

Controller 1

Controller 2

Controller n
⋮ Dynamical System

I1t

I2t

Int

U1t

U2t

Unt

Construct a countable state MDP Δ, and a seq. of finite-state MDP approximations Δm s.t.

For any ε > 0, there existsm(ε) Ņ log(2(ℓmax−ℓmin)/ε(1−β))/log(1/β) such that running
reinforcement learning on MDP Δm(ε) converges to an ε-team-optimal strategy.

In the worst case, the state space of Δm is O(|Ǫ|m|U|m−1); but for some models it isΘ(m).
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Outline

Problem formulation

Solution methodology
Step 1: Common information approach
Step 2: Reinforcement learning for POMDPs

Numerical example
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Problem formulation
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State Xt Observations Yit = h(Xt,Wit) Control Uit = git(Iit).
Total cost J(𝐠) = 𝔼u� [ ∞󰀖t=1βt−1ℓ(Xt, U1t , . . . , Unt )].
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Problem formulation

Xt+1 = f(Xt, U1t , . . . , Unt ,Wt)

Controller 1

Controller 2

Controller n
⋮ Dynamical System

I1t

I2t

Int

U1t

U2t

Unt

State Xt Observations Yit = h(Xt,Wit) Control Uit = git(Iit).
Total cost J(𝐠) = 𝔼u� [ ∞󰀖t=1βt−1ℓ(Xt, U1t , . . . , Unt )].

Information structure Iit ⊆ {Y11:t, . . . , Yn1:t, U11:t−1, . . . , Un1:t−1}
Assumed to satisfy partial-history sharing model.

Objective: Given ε > 0, develop a (model-based or
model-free) reinforcement learning algorithm
that finds an ε-optimal strategy 𝐠ε such thatJ(𝐠ε) − J(𝐠) Ņ ε
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Multi-access broadcast example

User 1

User 2

Shared channel

Arrival rate p1

Arrival rate p2
Arrival process Bernoulli process with rate pi.

Arrival rates (p1, p2) are unknown.

Control actions Uit ∈ {0, 1} = { Don’t transmit, transmit }
If only one user transmits, packet goes through.
If both users transmit, packets collide and don’t go
through.

Information structure Iit = {Xit, U11:t−1, U21:t−1}
Objective Maximize throughput (# of successfully transmissions)
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Solution methodology

The basic idea

Step 1 Follow the common information approach [NMT13] to convert the
decentralized control problem into a centralized (partially-observed)
control problem

Step 2 Use a Reinforcement-learning algorithm for POMDPs to learn the
optimal strategy when the model is unknown
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Solution methodology

The basic idea

Step 1 Follow the common information approach [NMT13] to convert the
decentralized control problem into a centralized (partially-observed)
control problem

Step 2 Use a Reinforcement-learning algorithm for POMDPs to learn the
optimal strategy when the model is unknown

We propose a new reinforcement-learning algorithm for POMDPs
Given a belief state, the reachable set of belief states (under all strategies) is countable.
Therefore,

POMDP ≡ Countable state MDP

Countable state MDPs can be approximated by a sequence of finite-state MDPs.

Guarantees convergence to ε-optimal strategy.



Step 1: Converting the decentralized system
into an equivalent centralized system
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system variables. Hence, the systems are equivalent.
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An overview of the common-information approach [NMT13]

Xt ⋮
L1t

Lnt
Ct

γ1t

γnt

Original System Coordinated System

Information
structure

Iit (Note: Iit ⊈ Ijt+1) Ct (Note: Ct ⊆ Ct+1)

Control action Uit = git(Ct, Lit) Γit = ψit(Ct), where γit∶ Lit ↦ Uit

If we choose git(Ct, Lit) = ψit(Ct)(Lit), the both systems have identical realization of
system variables. Hence, the systems are equivalent.

The coordinated system is a centralized system
(POMDP Π). We can use any standard method to identify

an information state and obtain a dynamic program!



Step 2: Reinforcement learning for POMDPs
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Incrementally expanding representation

ℛ1 𝒮1
B

ℛ1 = (Finite) set of initial information states𝒮1 = A set isomorphic to ℛ1 that does not depend on the unknowns.
Surjection B between ℛ1 and 𝒮1
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Incrementally expanding representation

ℛ1 𝒮1

φ f̃

ℛ2 𝒮2
B

ℛ2 = {φ(π, z, γ) : π ∈ ℛ1, z ∈ ǫ, γ ∈ Γ}.
There exists a function f̃ (that does not depend on unknowns) such that for every s ∈ 𝒮1,z ∈ ǫ, γ ∈ Γ

B(f̃(s, z, γ)) = φ(B(s), z, γ), 𝒮2 = {f̃(s, z, γ) : s ∈ 𝒮1, z ∈ ǫ, γ ∈ Γ}
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B(f̃(s, z, γ)) = φ(B(s), z, γ), 𝒮2 = {f̃(s, z, γ) : s ∈ 𝒮1, z ∈ ǫ, γ ∈ Γ}



RL in decentralized control–(Arabneydi and Mahajan)
9

Incrementally expanding representation

ℛ1 𝒮1

φ f̃

ℛ2 𝒮2ℛ3 𝒮3
⋅ ⋅ ⋅
ℛm 𝒮m

B

ℛ2 = {φ(π, z, γ) : π ∈ ℛ1, z ∈ ǫ, γ ∈ Γ}.
There exists a function f̃ (that does not depend on unknowns) such that for every s ∈ 𝒮1,z ∈ ǫ, γ ∈ Γ

B(f̃(s, z, γ)) = φ(B(s), z, γ), 𝒮2 = {f̃(s, z, γ) : s ∈ 𝒮1, z ∈ ǫ, γ ∈ Γ}

Simple example: Set of all histories𝒮0 = s∗, 𝒮1 = ǫ, 𝒮2 = ǫ × Γ × ǫ, ...
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Incrementally expanding representation

Formal definition An IER is a tuple Ƙ{𝒮m}∞m=1, f̃, Bƙ such that {𝒮m}∞m=1 andf̃ do not depend on the unknowns and𝒮1 ⊆ 𝒮2 ⊆ ⋅ ⋅ ⋅ ⊆ Sm ⋅ ⋅⋅
For any s ∈ 𝒮m, z ∈ ǫ, γ ∈ Γ, f̃(s, z, γ) ∈ 𝒮m+1.

Let 𝒮 = limm→∞ Sm. Then B is a surjective map from𝒮 to Π such that πt = B(st)

Note The surjection B may depend on the unknowns.

Lemma A decentralized control system with partial history
sharing has at least one IER.
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An equivalent (countable-state) MDP

Countable state MDP Δ State Space 𝒮, Dynamics f̃, Action Space Γ
Cost function ℓ̃(s, γ) = 𝔼[ℓ(X,𝐔)|π = B(s), γ]



RL in decentralized control–(Arabneydi and Mahajan)
11

An equivalent (countable-state) MDP

Countable state MDP Δ State Space 𝒮, Dynamics f̃, Action Space Γ
Cost function ℓ̃(s, γ) = 𝔼[ℓ(X,𝐔)|π = B(s), γ]

Theorem The optimal strategy of MDP Δ is equivalent to the
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Countable state MDP Δ State Space 𝒮, Dynamics f̃, Action Space Γ
Cost function ℓ̃(s, γ) = 𝔼[ℓ(X,𝐔)|π = B(s), γ]

Theorem The optimal strategy of MDP Δ is equivalent to the
optimal strategy of POMDP Π.

Finite state MDP Δm Consider the following truncated dynamics f̃m on 𝒮m.
Pick a set D∘ ∈ 𝒮m such that for all s ∈ 𝒮m, z ∈ ǫ,γ ∈ Γ, set f̃m(s, z, γ) ∈ D∘.

For RL, this is only possible if there exists a reset action or a homing strategy.
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An equivalent (countable-state) MDP

Countable state MDP Δ State Space 𝒮, Dynamics f̃, Action Space Γ
Cost function ℓ̃(s, γ) = 𝔼[ℓ(X,𝐔)|π = B(s), γ]

Theorem The optimal strategy of MDP Δ is equivalent to the
optimal strategy of POMDP Π.

Finite state MDP Δm Consider the following truncated dynamics f̃m on 𝒮m.
Pick a set D∘ ∈ 𝒮m such that for all s ∈ 𝒮m, z ∈ ǫ,γ ∈ Γ, set f̃m(s, z, γ) ∈ D∘.

For RL, this is only possible if there exists a reset action or a homing strategy.

Theorem MDPs {Δm}∞m=1 is an augmentation type approximation
sequence of MDP Δ [Sennott99].

Therefore, V∗m → V∗ and any limit point of the sequence{ψ∗m} is optimal for Δ.



An IER converts the POMDP to an equivalent
countable state MDP whose state space and
dynamics do not depend on the unknowns.

The countable state MDP may be approximated
by a sequence of finite state MDPs
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Approximation error and RL algorithm

Theorem The difference in performance between MDP Δ and
MDP Δm is bounded.

|J(ψ∗) − Jm(ψ∗m)| Ņ 2(ℓmax − ℓmin) βτm1 − β,
where τm ņ m is a model-dependent parameter.

ε-optimal RL Given an ε, pick m such that

2(ℓmax − ℓmin) βτm1 − β < ε.
Use any RL algorithm for the finite-state MDP Δm.
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Multi-access broadcast example

User 1

User 2

Shared channel

Arrival rate p1

Arrival rate p2
Information structure Iit = {Xit, U11:t−1, U21:t−1}
Common information = U11:t−1, U21:t−1 Local information = Xit

Prescriptions γit : {0, 1} → {0, 1}
For ease of notation, let dit = γit(1). Then

Uit = ditXit
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Multi-access broadcast example

User 1

User 2

Shared channel

Arrival rate p1

Arrival rate p2
Information structure Iit = {Xit, U11:t−1, U21:t−1}
Common information = U11:t−1, U21:t−1 Local information = Xit

Prescriptions γit : {0, 1} → {0, 1}
For ease of notation, let dit = γit(1). Then

Uit = ditXit
POMDP Π Info. state ℙ(X1t , X2t | U11:t−1, U21:t−1)≡ (ℙ(X1t | 𝐔1:t−1),ℙ(X2t | 𝐔1:t−1))

Action space {(d1, d2)} = {(0, 0), (1, 0), (0, 1), (1, 1)}



RL in decentralized control–(Arabneydi and Mahajan)
14

IER for multi-access broadcast

Parameters (p1, p2) are unknown.
Reachable set ℛ = {(p1, p1), (p1, 1), (1, p2), ((T1)mp1, p2), (p1, (T2)mp2)}.

(0, 0)
(p1, p2)

(1, 1)

(1, p2)

(p1, 1)
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IER for multi-access broadcast

Parameters (p1, p2) are unknown.
Reachable set ℛ = {(p1, p1), (p1, 1), (1, p2), ((T1)mp1, p2), (p1, (T2)mp2)}.

IER Space 𝒮 = {(0, 0), (0, Ę), (Ę, 0), (Ę, Ę), (m, 0), (0,m)}

(0, 0)
(p1, p2)

(1, 1)

(1, p2)

(p1, 1)
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Numerical Examples

Parameters: p1 = 0.3, p2 = 0.6, β = 0.99, m = 20(d1, d2) = (1, 0), (d1, d2) = (0, 1), (d1, d2) = (1, 1).
Reachable set under optimal strategy {(0, 1), (1, 0), (2, 0), (3, 0)}
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Numerical Examples

Parameters: p1 = 0.1, p2 = 0.3, β = 0.99, m = 20(d1, d2) = (1, 0), (d1, d2) = (0, 1), (d1, d2) = (1, 1).
Reachable set under optimal strategy {(0, 0), (0, 1), (1, 0), (Ę, 0), (Ę, Ę)}
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Summary

A (model-based or model-free) reinforcement learning algorithm
Guarantees ε-optimality for a large class of decentralized systems
control systems with partial history sharing.

Two steps: Common information approach and POMDP reinforcement learning
Developed a new approximate RL algorithm for POMDPs

Salient features
The algorithm is based on information commonly known to all controllers. Therefore,
it can be executed in a distributed manner

All controllers need access to a shared random number generator for exploring the
system consistently.

The cost function should be known, otherwise all controllers need to observe the per-
step cost.

In practice, the actual error is much less than the obtained error bound.


