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Abstract— In this paper, we present a framework to under-
stand the convergence of commonly used Q-learning reinforce-
ment learning algorithms in practice. Two salient features of
such algorithms are: (i) the Q-table is recursively updated using
an agent state (such as the state of a recurrent neural network)
which is not a belief state or an information state and (ii) policy
regularization is often used to encourage exploration and
stabilize the learning algorithm. We investigate the simplest form
of such Q-learning algorithms which we call regularized agent-
state-based Q-learning (RASQL) and show that it converges
under mild technical conditions to the fixed point of an
appropriately defined regularized MDP, which depends on the
stationary distribution induced by the behavioral policy. We
also show that a similar analysis continues to work for a variant
of RASQL that learns periodic policies. We present numerical
examples to illustrate that the empirical convergence behavior
matches with the proposed theoretical limit.

I. INTRODUCTION

Reinforcement learning (RL) is a useful paradigm in
learning optimal control policies via simulation when the
system model is not available or when the system is too large
to explicitly solve the dynamic program. The simplest setting
is the fully-observed setting of Markov decision processes
(MDP), where the controller has access to the environment
state. Most existing theoretical RL results on convergence of
learning algorithms and their rates of convergence and regret
bounds, etc. are established for the MDP setting.

However, in many real-world applications, such as au-
tonomous driving, robotics, healthcare, finance, and others,
the controller does not have access to the environment state;
rather, it has a partial observation of the environment state. So
these applications need to be modeled as a partially observable
Markov decision process (POMDP) rather than a MDP.

When the system model is known, the POMDP model can
be converted into an MDP by considering the controller’s
belief on the state of the environment (also called the belief
state) as an information state [1]–[3]. However, such a
reduction does not work in the RL setting because the
belief state depends on the system model, which is unknown.
Nonetheless, there have been several empirical works which
show that standard RL algorithms for MDPs continue to work
for POMDPs if one uses “frame stacking” (i.e., use the last
few observations as a state) or recurrent neural networks [4]–
[7]. In recent years, considerable progress has been made
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in understanding the properties of such algorithms but a
complete theoretical understanding is still lacking.

A common way to model such RL algorithms for POMDPs
is to consider the state of the controller as an agent state [8].
Such agent-state-based-controllers have also been considered
in the planning setting as they can be simpler to implement
than belief-state based controllers. See [9] for an overview.

A challenge in understanding the convergence of agent-
state-based RL algorithms for POMDPs is that an agent state
is not an information state. So, it is not possible to write a
dynamic programming decomposition based on the agent state.
So, one cannot follow the typical proof techniques used to
evaluate the convergence of RL algorithms for MDPs (where
RL algorithms can be viewed as stochastic approximation
variant of MDP algorithms such as value iteration and policy
iteration to compute the optimal policy).

There is a good understanding of the convergence of
agent-state-based Q-learning (ASQL) for POMDPs [10]–
[12] (which is related to Q-learning for non-Markovian
environments [13], [14]). There is also some work on
understanding the convergence of actor-critic algorithms for
POMDPs [3], [15]. However, most practical RL algorithms for
POMDPs use some form of policy regularization, while most
theoretical analysis is restricted to the unregularized setting.

Regularization adds an auxiliary loss to the per-step rewards.
This loss typically depends on the policy but may also
depend on the value function. Regularization is commonly
used in RL algorithms for various reasons, such as entropy
regularization to encourage exploration [16]–[18] and improve
generalization [19], KL-regularization to constrain the policy
updates to be similar to a prior policy [20], [21], and others.
Unified theory for different facets of regularization in MDPs
is provided in [22], [23].

Based on the various benefits of regularization in RL for
MDPs, it is also commonly used in RL for POMDPs [3],
[5], [16], [21], [24]–[27]. However, the recent theoretical
analysis of RL for POMDPs discussed above do not consider
regularization. The objective of this paper to to present initial
results on understanding regularization in RL for POMDPs.

There is some recent work on understanding regularization
in POMDPs but they either consider the role of entropy
regularization in POMDP solvers (when the model informa-
tion is known) [28], [29], or consider regularization of the
belief distribution [30] or observation distribution [31]. These
results do not directly provide an understanding of the role
of regularization in RL for POMDPs.

In this paper, we revisit Q-learning for POMDPs when
the learning agent is using an agent state and using policy
regularization. Our main contribution is to show that in



this setting, Q-learning converges under mild technical
conditions. We characterize the converged limit in terms
of the model parameters and choice of behavioral policy
used in Q-learning. Recently, it has been argued that periodic
policies may perform better when considering agent-state-
based POMDPs [12]. We show that our analysis extends to
a periodic version of regularized Q-learning as well.

Notation: We use uppercase letters to denote random
variables (e.g. S,A, etc.), lowercase letters to denote their
realizations (e.g. s, a, etc.) and calligraphic letters to denote
sets (e.g. S,A; etc.). Subscripts (e.g. St, At, etc.) denote
variables at time t. Similarly, S1:t denotes the collection of
random variables from time 1 to t. ∆(S) denotes the space
of probability measures on a set S; P(·) and E[·] denote
the probability of an event and the expectation of a random
variable, respectively; and 1(·) denotes the indicator function.
|S| denotes the number of elements in S (when it is a finite
set). R denotes real numbers. [L] denotes the set of integers
from 0 to L− 1, where L ∈ Z+. JℓK denotes (ℓ mod L).

II. BACKGROUND

A. Legendre-Fenchel transform (convex conjugate)

We start with a short review of convex conjugates and
Legendre-Fenchel transforms [32], which are an important
tool to understand regularization in MDPs [23].

Definition 1 For a strongly convex function Ω: Rn → R,
its convex conjugate Ω⋆ : Rn → R is defined as

Ω⋆(q) = max
p∈Rn

{
⟨p, q⟩ − Ω(p)

}
.

The mapping Ω 7→ Ω∗ is the Legendre-Fenchel transform.

The following is a useful property of the Legendre-Fenchel
transform for regularized MDPs:

Lemma 1 (Based on [33], [34]) Let ∆ be a simplex in Rn

and Ω: ∆ → R be twice differentiable and a strongly
convex function. Let Ω⋆ : Rn → R be the Legendre-Fenchel
transform of Ω. Then, ∇Ω⋆ is Lipschitz and satisfies

∇Ω⋆(q) = argmax
p∈∆

{
⟨p, q⟩ − Ω(p)

}
.

In Markov decision processes, one often regularizes the
policy. Below we describe some of the commonly used policy
regularizers. For the purpose of the discussion below, let A
be a finite set (later we will take A to be the set of actions
of an MDP, but for now we can consider it as a generic set).

1) Entropy regularization uses the regularizer
Ω: ∆(A) → R given by Ω(p) = 1

β

∑
a∈A

p(a) ln p(a)
where β ∈ R>0 is a parameter. Its convex
conjugate Ω⋆ : R|A| → R is given by
Ω⋆(q) = 1

β ln
(∑

a∈A
exp(βq(a))

)
. Furthermore,

from Lemma 1, we get that the argmax in the
definition of convex conjugate is achieved by

p⋆(a) =
exp(βq(a))∑

a′∈A exp(βq(a
′))

.

2) KL regularization uses the regularizer Ω: ∆(A) →
R given by Ω(p) = 1

β

∑
a∈A

p(a) ln(p(a)/pREF(a)),
where β ∈ R>0 is a parameter and pREF ∈ ∆(A) is a ref-
erence distribution. Its convex conjugate Ω⋆ : R|A| → R

is given by Ω⋆(q) = 1
β ln

(∑
a∈A

pREF(a) exp(βq(a))
)
.

Furthermore, from Lemma 1, we get that the argmax
in the definition of convex conjugate is achieved by

p⋆(a) =
pREF(a) exp(βq(a))∑

a′∈A pREF(a′) exp(βq(a′))
.

B. Regularized MDPs
In this section, we provide a brief review of regularized

Markov decision processes (MDPs), which are a generaliza-
tion of standard MDPs with an additional “regularization cost”
at each stage.

Consider a Markov decision process (MDP) with state
st ∈ S, control action at ∈ A, where all sets are finite. The
system operates in discrete time. The initial state s1 ∼ ρ and
for any time t ∈ N, we have

P(st+1 | s1:t, a1:t) = P(st+1 | st, at) =: P (st+1 | st, at),

where P is a probability transition matrix. The system yields
a reward Rt = r(st, at) ∈ [0, Rmax]. The rewards are
discounted by a factor γ ∈ [0, 1).

Consider a policy π : S → ∆(A). Let Ω: ∆(A) → R be a
strongly convex function that is used as a policy regularizer.
Then, the regularized performance of policy π is given by

JΩ
π := Eπ

[ ∞∑
t=1

γt−1
[
r(st, at)− Ω(π(· | st))

] ∣∣∣∣ s1 ∼ ρ

]
,

where the notation Eπ means that the expectation is taken
with the joint measure on the system variables induced by
the policy π.

The objective in a regularized MDP is to find a policy
π that maximizes the regularized performance JΩ

π defined
above. A key step in understanding the optimal solution of
the regularized MDP is to define the regularized Bellman
operator BΩ on the space of real-valued functions on S× A
as follows. For any Q : S× A → R,

BΩQ(s, a) = r(s, a) + γ
∑
s′∈S

P (s′ | s, a)Ω⋆(Q(s′, ·)),

where Ω⋆ is the Legendre-Fenchel transform of Ω.

Proposition 1 (Based on [23]) The following results hold:
1) The operator BΩ is a contraction and therefore has

a unique fixed point, which we denote by QΩ. By
definition,

QΩ(s, a) = r(s, a) + γ
∑
s′∈S

P (s′ | s, a)Ω⋆(QΩ(s′, ·)).

2) Define the policy πΩ,∗ : S → ∆(A) as follows: for any
s ∈ S,

πΩ,⋆( · | s) = ∇Ω⋆(QΩ(s, ·))

= argmax
ξ∈∆(A)

{∑
a∈A

ξ(a)QΩ(s, a)− Ω(ξ)

}



where the last equality follows from Lemma 1. Then, the
policy πΩ,⋆ is optimal for maximizing the regularized
performance JΩ

π over the set of all policies.

III. SYSTEM MODEL AND REGULARIZED Q-LEARNING
FOR POMDPS

A. Model for POMDPs

Consider a partially observable Markov decision process
(POMDP) with state st ∈ S, control action at ∈ A, and
output yt ∈ Y, where all sets are finite. The system operates
in discrete time with the dynamics given as follows. The
initial state s1 ∼ ρ and for any time t ∈ N, we have

P(st+1, yt+1 | s1:t, y1:t, a1:t) = P(st+1, yt+1 | st, at)
=: P (st+1, yt+1 | st, at),

where P is a probability transition matrix. In addition, at each
time the system yields a reward rt = r(st, at) ∈ [0, Rmax].
The rewards are discounted by a factor γ ∈ [0, 1).

Let π⃗ = (π⃗1, π⃗2, . . . ) denote any (history dependent and
possibly randomized) policy, i.e., under policy π⃗ the action
at time t is chosen as at ∼ π⃗t(y1:t, a1:t−1). The performance
of policy π⃗ is given by

Jπ⃗ := Eπ⃗

[ ∞∑
t=1

γt−1r(st, at)

∣∣∣∣ s1 ∼ ρ

]
,

where the notation Eπ⃗ means that the expectation is taken
with the joint measure on the system variables induced by
the policy π⃗.

The objective is to find a (history dependent and possibly
randomized) policy π⃗ to maximize Jπ⃗. When the system
model is known, the above POMDP model can be converted
to a fully observed Markov decision process (MDP) by
considering the controller’s posterior belief on the system state
as an information state [1], [2]. However, when the system
model is not known, it is not possible to run reinforcement
learning (RL) algorithms on the belief-state MDP because
the belief depends on the system model. For that reason, in
RL for POMDPs it is often assumed that the controller is an
agent-state-based controller.

Definition 2 (Agent state) An agent state is a model-free
recursively updateable function of the history of observations
and actions. In particular, let Z denote the agent state space.
Then, the agent state is a process {zt}t≥0, zt ∈ Z, which
starts with some initial value z0, and is then recursively
computed as

zt+1 = ϕ(zt, yt+1, at), t ≥ 0 (1)

where ϕ is a pre-specified agent-state update function.

Some examples of agent-state-based controllers are: (i) a
finite memory controller, which chooses the actions based
on the previous k observations; (ii) a finite state controller,
which effectively filters the possible histories to values from
a finite set Z. We refer the reader to [9] for a detailed review
of agent-state-based policies in POMDPs.

We use π = (π1, π2, . . . ) to denote an agent-state-based
policy,1 i.e., a policy where the action at time t is given
by at ∼ πt(zt). An agent-state-based policy is said to be
stationary if for all t and t′, we have πt(a | z) = πt′(a | z)
for all (z, a) ∈ Z× A.

If the agent state is an information state, then MDP-
based RL algorithms can directly be applied to find optimal
stationary solutions [3]. However, in general, an agent state
is not an information state, as is the case in frame-stacking
or when using recurrent neural networks. In such settings,
the dynamics of the agent state process is non Markovian
and the standard dynamic programming based argument
does not work. It is possible to find the optimal policy by
viewing the POMDP with an agent-state-based controller
as a decentralized control problem and using the designer’s
approach [35] to compute an optimal agent-state-based policy,
as is done in [9], but such an approach is intractable for all
but small toy problems.

The Q-learning algorithms for POMDPs maintain a Q-table
based on the agent states and actions and update the Q-values
based on the samples generated by the environment. Since
the agent state is non Markovian, it is not clear if such an
iterative scheme converges, and if so, to what value. In the
next section, we present a formal model for agent state based
Q-learning when the agent also uses policy regularization.

B. Regularized agent-state-based Q-learning for POMDPs

In this section we describe regularized agent-state-based
Q-learning (RASQL), which is an online off-policy learning
approach in which the agent acts according to a fixed be-
havioral policy to generate a sample path (z1, a1, r1, z2, . . . )
of agent states, actions, and rewards observed by a learning
agent. We assume that the sampled rewards rt = r(st, at)
are available to the the agent during the learning process.

The learning agent uses a policy regularizer Ω: ∆(A) →
R and maintains a regularized Q-table, which is arbitrarily
initialized and then recursively updated as follows:

Qt+1(z, a) = Qt(z, a)

+ α(z, a) [rt + γΩ⋆(Qt(zt+1, ·))−Qt(z, a)] , (2)

where the learning rate sequence {αt(z, a)}t≥1 is chosen such
that αt(z, a) = 0 whenever (z, a) ̸= (zt, at). For instance,
if the policy regularizer is the entropy regularizer, then the
above iteration corresponds to an agent-state-based version
of soft-Q-learning [36]. The “greedy” policy at each time
is given by πt(· | z) = ∇Ω⋆(Qt(z, ·)). Thus, for entropy
regularization, it would correspond to soft-max based on Qt.

If the Ω⋆(Qt(zt+1, ·)) term in (2) is replaced by
maxa′∈A Qt(zt+1, a

′), the iteration in RASQL corresponds
to agent-state-based Q-learning (ASQL):

Qt+1(zt, at) = Qt(zt, at) +

αt(zt, at)

[
rt + γmax

a′∈A
Qt(zt+1, a

′)−Qt(zt, at)

]
.

1We use π⃗ to denote history dependent policies and π to denote agent-
state-based policies.



The convergence of ASQL and its variations have been
recently studied in [11], [12], [14]. However, the analysis of
ASQL does not include regularization. The main result of
this paper is to characterize the convergence of RASQL.

IV. MAIN RESULT

We impose the following standard assumptions on the
model.

Assumption 1 For all (z, a), the learning rates {αt(z, a)}t≥1

are measurable with respect to the sigma-algebra generated
by (z1:t, a1:t) and satisfy αt(z, a) = 0 if (z, a) ̸= (zt, at).
Moreover,

∑
t≥1 αt(z, a) = ∞ and

∑
t≥1(αt(z, a))

2 < ∞,
almost surely.

Assumption 2 The behavior policy µ is such that the
Markov chain {(St, Yt, Zt, At)}t≥1 converges to a limiting
distribution ζµ, where

∑
(s,y) ζµ(s, y, z, a) > 0 for all (z, a)

(i.e., all (z, a) are visited infinitely often).

Assumption 1 is the standard assumption for convergence
of stochastic approximation algorithms [37]. Assumption 2
ensures persistence of excitation and is a standard assumption
in convergence analysis of Q-learning [10]–[12], [38], [39].

For ease of notation, we will continue to use ζµ to
denote the marginal and conditional distributions w.r.t. ζµ.
In particular, for marginals we use ζµ(y, z, a) to denote∑

s∈S ζµ(s, y, z, a) and so on; for conditionals, we use
ζµ(s|z, a) to denote ζµ(s, z, a)/ζµ(z, a) and so on. Note that
ζµ(s, z, y, a) = ζµ(s, z)µ(a|z)P (y|s, a). Thus, we have that
ζµ(s|z, a) = ζµ(s|z).

The key idea to characterize the convergence behavior is the
following. Given the limiting distribution ζµ, we can define
an MDP with state space Z, action space A, and per-step
reward rµ : Z × A → R and dynamics Pµ : Z × A → ∆(Z)
given as follows:

rµ(z, a) :=
∑
s∈S

r(s, a)ζµ(s | z), (3)

Pµ(z
′|z, a) :=

∑
(s,y′)∈S×Y

1{z′=ϕ(z,y′,a)}P (y′|s, a)ζµ(s|z).

Now consider a regularized version of this MDP, where
we regularize the policy using Ω. Let Qµ denote the fixed
point of the regularized Bellman operator corresponding to
this regularized MDP, i.e., Qµ is the unique fixed point of
the following (see the discussion in Sec. II-B):

Qµ(z, a) = rµ(z, a) + γ
∑
z′∈Z

Pµ(z
′ | z, a)Ω⋆(Qµ(z

′, ·)).

(4)
Then, our main result is the following:

Theorem 1 Under Assumptions 1 and 2, the RASQL itera-
tion (2) converges to Qµ almost surely.

PROOF The proof is given in appendix A.

Remark 1 Note that Proposition 1 implies that the “greedy”
regularized policy with respect to the limit point of {Qt}t≥1

is given by π∗(· | z) = ∇Ω⋆(Qµ(z, ·)), which typically lies
in the interior of ∆(A) for each z. Thus, the greedy policy is

stochastic. This is a big advantage of RASQL compared to
ASQL because in ASQL, the greedy policy corresponding to
the limit point of the Q-learning iteration is deterministic. As
shown in [40] (also see [9], [12]), in general for POMDPs with
agent-state-based controllers, stochastic stationary policies
can outperform deterministic stationary policies.

V. REGULARIZED PERIODIC Q-LEARNING

The idea of periodic Q-learning has been explored in
[12]. They show that periodic policies can perform better
than stationary policies when the agent state is not an
information state. Regularized Q-learning can be generalized
by regularized periodic Q-learning, since taking the period
L = 1 reproduces the stationary setting.

Consider the convergence properties when we consider the
following regularized periodic agent-state-based Q-learning
(RePASQL) update for ℓ ∈ [L].

Qℓ
t+1(z, a) = Qℓ

t(z, a)

+ αℓ
t(z, a)

[
rt + γΩ⋆(Q

Jℓ+1K
t (z′, ·))−Qℓ

t(z, a)
]
. (5)

Assumption 3 For all (ℓ, z, a), the learning rates
{αℓ

t(z, a)}t≥1 are measurable with respect to the sigma-
algebra generated by (z1:t, a1:t) and satisfy αℓ

t(z, a) = 0 if
(ℓ, z, a) ̸= (JtK, zt, at). Moreover,

∑
t≥1 α

ℓ
t(z, a) = ∞ and∑

t≥1(α
ℓ
t(z, a))

2 < ∞, almost surely.

Assumption 4 The behavior/exploration policy µ =
{µℓ}ℓ∈[L] is such that the Markov chain {(St, Yt, Zt, At)}t≥1

converges to a limiting periodic distribution ζℓµ, where∑
(s,y) ζ

ℓ
µ(s, y, z, a) > 0 for all (ℓ, z, a) (i.e., all (ℓ, z, a)

are visited infinitely often).

By considering this limiting distribution w.r.t. the original
model’s rewards and dynamics, we can construct an artificial
MDP on the agent state for each ℓ ∈ [L], which has the
following rewards and dynamics:

rℓµ(z, a) :=
∑
s∈S

r(s, a)ζℓµ(s | z), (6)

P ℓ
µ(z

′|z, a) :=
∑

(s,y′)∈S×Y

1{z′=ϕ(z,y′,a)}P (y′|s, a)ζℓµ(s|z).

Now we can extend the same techniques used in regularized
MDPs II-B to this by defining a regularized Bellman operator
Bℓ
µ on an arbitrary Q-function Q ∈ R|Z|×|A| as follows:

Bℓ
µQ(z, a) = rℓµ(z, a) + γ

∑
z′∈Z

P ℓ
µ(z

′ | z, a)Ω⋆(Q(z′, ·)).

Next define the composition of the sequence of L Bellman
operators corresponding to cycle ℓ as is done in [12].

Bℓ
µ = Bℓ

µBJℓ+1K
µ · · · BJℓ+L−1K

µ .

Then we can apply Prop. 1 to Bℓ
µ. In addition, considering

the periodicity of the operators, the same approach followed
in [12] can be used to show that Bℓ

µ is a contraction and
therefore has a unique fixed point denoted by Qℓ

µ which is
given by

Qℓ
µ(z, a) = rℓµ(z, a) + γ

∑
z′∈Z

P ℓ
µ(z

′ | z, a)V Jℓ+1K
µ (z′). (7)



Theorem 2 Under Assumptions 3 and 4, the RePASQL
iteration (5) converges to {Qℓ

µ}ℓ∈[L] almost surely.

PROOF The proof is given in appendix B.

VI. NUMERICAL EXAMPLE

In this section, we present an example to highlight the
salient features of our results. First, we describe the POMDP
model.

A. POMDP model
Consider a POMDP with S = {0, 1, 2, 3},A = {0, 1},Y =

{0, 1} and γ = 0.9. The start state distribution is given by

ρ(s) =
[
0.3, 0.0, 0.2, 0.5

]
Now consider the reward and transitions when a = 0:

r(s, 0) = (1− γ)×
[
0.6, 0.0, 0.5,−0.3

]
P (s′ | s, 0) =


0.0 0.6 0.4 0.0
0.8 0.0 0.2 0.0
0.7 0.3 0.0 0.0
0.2 0.0 0.0 0.8

 .

Note that s, s′ (state, next state) corresponds to the rows,
columns of P , respectively. Next, when a = 1

r(s, 1) = (1− γ)×
[
0.1,−0.3,−0.2, 0.5

]
P (s′ | s, 1) =


0.8 0.2 0.0 0.0
0.4 0.0 0.6 0.0
0.0 0.8 0.2 0.0
0.1 0.7 0.2 0.0

 .

Finally, we have the observations function which maps s =
{0, 3} to y = 0 and s = {1, 2} to y = 1.

B. Regularized agent-state-based Q-learning (RASQL) exper-
iment

For the purpose of providing a simple illustration in this
example, we fix the agent state to be the observation of
the agent, i.e., zt = yt. However, in general the theoretical
results hold for the general agent-state update rule given in
(1). Consider the following fixed exploration policy:

µ(a | z) =
[
0.2 0.8
0.8 0.2

]
.

Note that z, a (observation, action) corresponds to the rows,
columns of µ, respectively.

Using µ, we run 25 random seeds on the given POMDP
and we perform the RASQL update (2) with a regular-
ization coefficient (β) = 1.0 for 105 timesteps/iterations.
We plot the median and quartiles from 25 seeds of the
iterates {Qt(z, a)}t≥1 for each (z, a) pair as well as their
corresponding theoretical limits Qµ(z, a) (computed using
Theorem 1) are shown in Fig. 1. The salient features of these
results are as follows:

• RASQL converges to the theoretical limit predicted by
Theorem 1.

• The limit Qµ depends on the exploration policy µ.
Thus, it can be seen from this example that we can precisely

characterize the limits of convergence when using regularized
Q-learning with an agent-state-based representation.

Fig. 1: RASQL convergence: Q-values vs. number of iter-
ations. Blue: RASQL iterates, Red: Theoretical limit from
Theorem 1.

Fig. 2: RePASQL convergence: Q-values vs. number of
iterations. Blue: RePASQL iterates, Red: Theoretical limit
from Theorem 2

C. Regularized periodic agent-state-based Q-learning
(RePASQL) experiment

Similar to the RASQL experiment, we fix the agent state
to be the observation of the agent, i.e., zt = yt. Consider the
following fixed periodic exploration policy for period L = 2:

µ0(a | z) =
[
0.2 0.8
0.8 0.2

]
, µ1(a | z) =

[
0.8 0.2
0.2 0.8

]
.

Using µℓ, we run 25 random seeds on the given POMDP
and we perform the RePASQL update (5) with a regular-
ization coefficient (β) = 1.0 for 105 timesteps/iterations.
We plot the median and quartiles from 25 seeds of the
iterates {Qℓ

t(z, a)}t≥1 for each (ℓ, z, a) pair as well as their
corresponding theoretical limits Qℓ

µ(z, a) (computed using
Theorem 2) are shown in Fig. 2. The salient features of these
results are as follows:

• RePASQL converges to the theoretical limit predicted
by Theorem 2.

• The limits {Qℓ
µ}ℓ∈[L] depend on the periodic exploration

policy {µℓ}ℓ∈[L].

Thus, it can be seen from this example that we can precisely
characterize the limits of convergence.



VII. CONCLUSIONS

In this work, we present theoretical results on the conver-
gence of regularized agent-state-based Q-learning (RASQL)
under some standard assumptions from the literature. In
particular, we show that: 1) RASQL converges and 2) we
characterize the solution that RASQL converges to as a
function of the model parameters and the choice of exploration
policy. We illustrate these ideas on a small POMDP example
and show that the Q-learning iterates of RASQL matches
with the calculated theoretical limit. We also generalize these
ideas to the periodic setting and demonstrate the theoretical
and empirical convergence of RePASQL. Thus, in doing so
we are able to understand how regularization works when
combined with Q-learning for POMDPs that have an agent
state that is not an information state.

A noteworthy issue with RASQL/RePASQL is that it
inherits the limitations of its predecessor approaches of
ASQL and PASQL. In particular, while we are able to
prove convergence and characterize the converged solution
in RASQL/RePASQL, we cannot guarantee the convergence
to the optimal agent-state-based solution and this largely
depends on the choice of exploration policy and the POMDP
dynamics. Even so, seeing how regularization is an important
component in several empirical works concerning POMDPs
with agent states that are not an information state, we find it
useful to establish some useful theoretical properties on the
convergence of such algorithms.

REFERENCES

[1] K. J. Åström, “Optimal control of Markov processes with incomplete
state information I,” Journal of Mathematical Analysis and Applications,
vol. 10, pp. 174–205, 1965.

[2] R. D. Smallwood and E. J. Sondik, “The optimal control of partially
observable Markov processes over a finite horizon,” Operations
Research, vol. 21, no. 5, pp. 1071–1088, 1973.

[3] J. Subramanian, A. Sinha, R. Seraj, and A. Mahajan, “Approximate
information state for approximate planning and reinforcement learning
in partially observed systems,” J. Mach. Learn. Res., vol. 23, no. 12,
pp. 1–83, 2022.

[4] M. J. Hausknecht and P. Stone, “Deep recurrent Q-learning for partially
observable MDPs.” in AAAI Fall Symposia, vol. 45, 2015, p. 141.

[5] M. Igl, L. Zintgraf, T. A. Le, F. Wood, and S. Whiteson, “Deep
variational reinforcement learning for POMDPs,” in Int. Conf. Mach.
Learn. PMLR, 2018, pp. 2117–2126.

[6] P. Zhu, X. Li, P. Poupart, and G. Miao, “On improving deep
reinforcement learning for POMDPs,” arXiv:1704.07978, 2017.

[7] L. Meng, R. Gorbet, and D. Kulić, “Memory-based deep reinforcement
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APPENDIX

A. Proof of Theorem 1

The proof argument for Theorem 1 is similar to the proof
argument given in [10]–[13].

Define an error function between the converged value and
the Q-learning iteration ∆t+1 := Qt+1 −Qµ. Then, combine
(2), (4) and (3) as follows for all (z, a).

∆t+1(z, a) = Qt+1(z, a)−Qµ(z, a)

= (1− αt(z, a))∆t(z, a)

+ αt(z, a)
[
U0
t (z, a) + U1

t (z, a) + U2
t (z, a)

]
, (8)

where

U0
t (z, a) := [r(St, At)− rµ(z, a)]1{Zt=z,At=a},

U1
t (z, a) :=

[
γΩ⋆(Qµ(Zt+1, ·))

− γ
∑
z′∈Z

Pµ(z
′ | z, a)Ω⋆(Qµ(z

′, ·))

]
1{Zt=z,At=a},

U2
t (z, a) :=

[γΩ⋆(Qt(Zt+1, ·))− γΩ⋆(Qµ(Zt+1, ·))]1{Zt=z,At=a}.

Note that we are adding the term
γΩ⋆(Qµ(Zt+1, ·))1{Zt=z,At=a} in U1

t (z, a) and subtracting
it in U2

t (z, a). We can now view (8) as a linear system with
state ∆t and three inputs U0

t (z, a), U
1
t (z, a) and U2

t (z, a).
Using the linearity, we can now split the state into three
components ∆t+1 = X0

t+1 + X1
t+1 + X2

t+1, where the
components evolve as follows for i ∈ {0, 1, 2}:
Xi

t+1(z, a) = (1− αt(z, a))X
i
t(z, a) + αt(z, a)U

i
t (z, a).

We will now separately show each ∥Xi
t∥ → 0.

a) Convergence of component X0
t

The proof for the convergence of component X0
t is similar

to that given in [12].
b) Convergence of component X1

t

The proof for the convergence of component X1
t is

based on the argument given in [12]. Let Wt denote the
tuple (St, Zt, At, St+1, Zt+1, At+1). Note that {Wt}t≥1 is a
Markov chain and converges to a limiting distribution ζ̄µ,
where

ζ̄µ(s, z, a, s
′, z′, a′)

= ζµ(s, z, a)
∑
y′∈Y

P (s′, y′|s, a)1{z′=ϕ(z,y′,a)}µ(a
′|z′).

We use ζ̄µ(s, z, a,S,Z,A) to denote the marginalization
over the “future states” and a similar notation for other
marginalizations. Note that ζ̄µ(s, z, a,S,Z,A) = ζµ(s, z, a).

Define Vt as the value function associated with Qt, i.e.,
Vt(z) := Ω⋆(Qt(z, ·)). Fix (z◦, a◦) ∈ ×Z× A and define

hP (Wt; z◦, a◦) =
[
γVµ(Zt+1)−

γ
∑
z̄∈Z

Pµ(z̄|z◦, a◦)Vµ(z̄)
]
1{Zt=z◦,At=a◦}.

Then the process {X1
t (z, a)}t≥1 is given by the stochastic

iteration

X1
t+1(z◦, a◦) = (1− αt(z◦, a◦))X

1
t (z◦, a◦)

+ αt(z◦, a◦)hP (Wt; z◦, a◦).

As argued earlier, the process {Wt}t≥1 is a Markov chain.
Due to Assm. 1, the learning rate αt(z◦, a◦) is mea-
surable with respect to the sigma-algebra generated by
(Z1:t, A1:t) and is therefore also measurable with respect to
the sigma-algebra generated by W1:t. Thus, the learning rates
{αt(z◦, a◦)}t≥1 satisfy the conditions of Theorem 2.7 from
[41]. Therefore, the theorem implies that {X1

t (z◦, a◦)}t≥1

converges a.s. to the following limit

lim
t→∞

X1
t (z◦, a◦) =

∑
s,z,a∈S×Z×A

s′,z′,a′∈S×Z×A

ζ̄µ(s, z, a, s
′, z′, a′)

hP (s, z, a, s
′, z′, a′; z◦, a◦)

= γ

[∑
z′∈Z

ζ̄µ(S, z◦, a◦,S, z′,A)Vµ(z
′)

]
−
[
γζ̄µ(S, z◦, a◦,S,Z,A)

∑
z̄∈Z

Pµ(z̄|z◦, a◦)Vµ(z̄)

]
= 0

where the last step follows from the fact
that ζ̄µ(S, z◦, a◦,S,Z,A) = ζµ(z◦, a◦) and
ζ̄µ(S, z◦, a◦,S, z

′,A) = ζµ(z◦, a◦)Pµ(z
′|z◦, a◦).

c) Convergence of component X2
t

The convergence of the X2
t component is based on [11],

[12] but requires some additional considerations due to the
regularization term. We start by defining:

πt(· | z) = argmax
ξ∈∆(A)

∑
a∈A

ξ(a)Qt(z, a)− Ω(ξ)

π⋆(· | z) = argmax
ξ∈∆(A)

∑
a∈A

ξ(a)Qµ(z, a)− Ω(ξ).

In the previous steps, we have shown that ∥Xi
t∥ → 0 a.s.,

for i ∈ {0, 1}. Thus, we have that ∥X0
t + X1

t ∥ → 0 a.s.
Arbitrarily fix an ϵ > 0. Therefore, there exists a set Ω1 of
measure one and a constant T (ω, ϵ) such that for ω ∈ Ω1,
all t > T (ω, ϵ), and (z, a) ∈ ×Z× A, we have

X0
t (z, a) +X1

t (z, a) < ϵ. (9)

Now pick a constant C such that

κ := γ

(
1 +

1

C

)
< 1 (10)

Suppose for some t > T (ω, ϵ), ∥X2
t ∥ > Cϵ. Then, for

(z, a) ∈ Z× A,

U2
t (z, a) = γVt(Zt+1)− γVµ(Zt+1)

= γΩ⋆(Qt(Zt+1, ·))− γΩ⋆(Qµ(Zt+1, ·))

= γ

[∑
a∈A

πt(a | Zt+1)Qt(Zt+1, a)− Ω(πt(· | Zt+1))−

∑
a∈A

π⋆(a | Zt+1)Qµ(Zt+1, a) + Ω(π⋆(· | Zt+1))

]



(a)

≤ γ

[∑
a∈A

πt(a | Zt+1)Qt(Zt+1, a)− Ω(πt(· | Zt+1))−

∑
a∈A

πt(a | Zt+1)Qµ(Zt+1, a) + Ω(πt(· | Zt+1))

]
≤ γ

∑
a∈A

πt(a | Zt+1)
∣∣Qt(Zt+1, a)−Qµ(Zt+1, a)

∣∣
(b)

≤ γ∥Qt −Qµ∥ = γ∥∆t∥
≤ γ∥X0

t +X1
t ∥+ γ∥X2

t ∥ (11a)
(c)

≤ γϵ+ γ∥X2
t ∥ (11b)

(d)

≤ γ

(
1 +

1

C

)
∥X2

t ∥
(e)
= κ∥X2

t ∥
(e)
< ∥X2

t ∥, (11c)

where (a) follows from the fact that we replace the argmax π⋆

with a different argument πt in the second term, (b) follows
from maximizing over all realizations of Zt+1 and a ∈ A, (c)
follows from (9), (d) follows from ∥X2

t ∥ > Cϵ, (e) follows
from (10). Thus, for any t > T (ω, ϵ) and ∥X2

t ∥ > Cϵ:

X2
t+1(z, a) = (1− αt(z, a))X

2
t (z, a)+

αt(z, a)U
2
t (z, a) < ∥X2

t ∥
=⇒ ∥X2

t+1∥ < ∥X2
t ∥.

Hence, when ∥X2
t ∥ > Cϵ, it decreases monotonically with

time. Hence, there are two possibilities: either
1) ∥X2

t ∥ always remains above Cϵ; or
2) it goes below Cϵ at some stage.

We consider these two possibilities separately.
Possibility (i): ∥X2

t ∥ always remains above Cϵ
We will now prove that ∥X2

t ∥ cannot remain above Cϵ
forever. The proof is by contradiction. Suppose ∥X2

t ∥ remains
above Cϵ forever. As argued earlier, this implies that ∥X2

t ∥,
t ≥ T (ω, ϵ), is a strictly decreasing sequence, so it must be
bounded from above. Let B(0) be such that ∥X2

t ∥ ≤ B(0)

for all t ≥ T (ω, ϵ). Eq. (11c) implies that ∥U2
t ∥ < κB(0).

Then, we have for all (z, a) ∈ Z× A that

X2
t+1(z, a) ≤ (1− αt(z, a))∥X2

t ∥+ αt(z, a)∥U2
t ∥

< (1− αt(z, a))∥X2
t ∥+ αt(z, a)κ∥X2

t ∥

which implies that ∥X2
t ∥ ≤ ∥M (0)

t ∥, where {M (0)
t }t≥T (ω,ϵ)

is a sequence given by

M
(0)
t+1(z, a) ≤ (1− αt(z, a))M

(0)
t (z, a) + αt(z, a)κB

(0).

Theorem 2.4 from [41] implies that M
(0)
t (z, a) → κB(0)

and hence ∥M (0)
t ∥ → κB(0). Now pick an arbitrary ϵ̄ ∈

(0, (1− κ)Cϵ). Thus, there exists a time T (1) = T (1)(ω, ϵ, ϵ̄)

such that for all t > T (1), ∥M (0)
t ∥ ≤ B(1) := κB(0) + ϵ̄.

Since ∥X2
t ∥ is bounded by ∥M (0)

t ∥, this implies that for all
t > T (1), ∥X2

t ∥ ≤ B(1) and, by (11c), ∥U2
t ∥ ≤ κB(1). By

repeating the above argument, there exists a time T (2) such
that for all t ≥ T (2),

∥X2
t ∥ ≤ B(2) := κB(1) + ϵ̄ = κ2B(0) + κϵ̄+ ϵ̄,

and so on. By (10), κ < 1 and ϵ̄ is chosen to be less than
Cϵ. So eventually, B(m) := κmB(0) + κm−1ϵ̄+ · · ·+ ϵ̄ must
get below Cϵ for some m, contradicting the assumption that
∥X2

t ∥ remains above Cϵ forever.
Possibility (ii): ∥X2

t ∥ goes below Cϵ at some stage
Suppose that there is some t > T (ω, ϵ) such that ∥X2

t ∥ <
Cϵ. Then (11a), (11b) and (10) imply that

∥U2
t ∥ ≤ γ∥X0

t +X1
t ∥+ γ∥X2

t ∥ ≤ γϵ+ γCϵ < Cϵ.

Therefore,

X2
t+1(z, a) ≤ (1− αt(z, a))∥X2

t ∥+ αt(z, a)∥U2
t ∥ < Cϵ

where the last inequality uses the fact that both ∥U2
t ∥ and

∥X2
t+1∥ are both below Cϵ. Thus, we have that

X2
t+1(z, a) < Cϵ.

Hence, once ∥X2
t+1∥ goes below Cϵ, it stays there.

d) Implication
We have show that for sufficiently large t > T (ω, ϵ),

X2
t (z, a) < Cϵ. Since ϵ is arbitrary, this means that for

all realizations ω ∈ Ω1, ∥X2
t ∥ → 0. Thus,

lim
t→∞

∥X2
t ∥ = 0, a.s. (12)

Putting everything together
Recall that we initially defined ∆t = Qt − Qµ and we

split ∆t = X0
t +X1

t +X2
t . Steps a) and b) together show

that ∥X0
t + X1

t ∥ → 0, a.s. and Step c) (12) shows us that
∥X2

t ∥ → 0, a.s. Thus, by the triangle inequality,

lim
t→∞

∥∆t∥ ≤ lim
t→∞

∥X0
t +X1

t ∥+ lim
t→∞

∥X2
t ∥ = 0,

which establishes that Qt → Qµ, a.s.

B. Proof of Theorem 2

The proof follows a similar style used in [12]. Define an
error function between the converged value and the Q-learning
iteration ∆ℓ

t+1 := Qℓ
t+1 − Qℓ

µ. Then, combine (5), (7) and
(6) as follows for all (z, a).

∆ℓ
t+1(z, a) = Qℓ

t+1(z, a)−Qℓ
µ(z, a)

= (1− αt(z, a))∆
ℓ
t(z, a)

+ αt(z, a)
[
U ℓ,0
t (z, a) + U ℓ,1

t (z, a) + U ℓ,2
t (z, a)

]
,(13)

where

U ℓ,0
t (z, a) :=

[
r(St, At)− rℓµ(z, a)

]
1{Zt=z,At=a},

U ℓ,1
t (z, a) :=

[
γΩ⋆(QJℓ+1K

µ (Zt+1, ·))

− γ
∑
z′∈Z

P ℓ
µ(z

′ | z, a)Ω⋆(QJℓ+1K
µ (z′, ·))

]
1{Zt=z,At=a},

U ℓ,2
t (z, a) :=

[
γΩ⋆(Q

Jℓ+1K
t (Zt+1, ·))

− γΩ⋆(QJℓ+1K
µ (Zt+1, ·))

]
1{Zt=z,At=a}.

Note that we are adding the term
γΩ⋆(Q

Jℓ+1K
µ (Zt+1, ·))1{Zt=z,At=a} in U ℓ,1

t (z, a) and



subtracting it in U ℓ,2
t (z, a). We can now view (13) as a linear

system with state ∆ℓ
t and three inputs U ℓ,0

t (z, a), U ℓ,1
t (z, a)

and U ℓ,2
t (z, a). Using the linearity, we can now split the

state into three components ∆ℓ
t+1 = Xℓ,0

t+1 +Xℓ,1
t+1 +Xℓ,2

t+1,
where the components evolve as follows for i ∈ {0, 1, 2}:

Xℓ,i
t+1(z, a) = (1− αt(z, a))X

ℓ,i
t (z, a) + αt(z, a)U

ℓ,i
t (z, a).

We will now separately show each ∥Xℓ,i
t ∥ → 0.

a) Convergence of component Xℓ,0
t

The proof for the convergence of component Xℓ,0
t is similar

to that given in [12]. The only difference from the RASQL
proof of Theorem 1 is that the convergence has to established
for each ℓ ∈ [L] in ∥Xℓ,i

t ∥ → 0. Note that this case is
identical to the periodic case of [12], since the component
∥Xℓ,i

t ∥ does not involve any of the regularized terms.
The main result that is applied here is proposition 4 from
[12], which establishes the exact convergence of ∥Xℓ,i

t ∥ when
the underlying Markov chain is periodic.

b) Convergence of component Xℓ,1
t

The proof for the convergence of component Xℓ,1
t is

based on the argument given in [12]. Let Wt denote the
tuple (St, Zt, At, St+1, Zt+1, At+1). Note that {Wt}t≥1 is a
periodic Markov chain and converges to a periodic limiting
distribution ζ̄ℓµ, where

ζ̄ℓµ(s, z, a, s
′, z′, a′)

= ζℓµ(s, z, a)
∑
y′∈Y

P (s′, y′|s, a)1{z′=ϕ(z,y′,a)}µ(a
′|z′).

We use ζ̄ℓµ(s, z, a,S,Z,A) to denote the marginalization
over the “future states” and a similar notation for other
marginalizations. Note that ζ̄ℓµ(s, z, a,S,Z,A) = ζℓµ(s, z, a).
Define V

Jℓ+1K
t as the value function associated with Q

Jℓ+1K
t ,

i.e., V Jℓ+1K
t (z) := Ω⋆(Q

Jℓ+1K
t (z, ·)). Fix (z◦, a◦) ∈ ×Z × A

and define

hP (Wt; ℓ, z◦, a◦) =
[
γV Jℓ+1K

µ (Zt+1)−

γ
∑
z̄∈Z

P ℓ
µ(z̄|z◦, a◦)V Jℓ+1K

µ (z̄)
]
1{Zt=z◦,At=a◦}.

Then the process {Xℓ,1
t (z, a)}t≥1 is given by the stochastic

iteration

Xℓ,1
t+1(z◦, a◦) = (1− αℓ

t(z◦, a◦))X
ℓ,1
t (z◦, a◦)

+ αℓ
t(z◦, a◦)hP (Wt; ℓ, z◦, a◦).

As mentioned earlier, the process {Wt}t≥1 is a periodic
Markov chain. From the periodic Markov chain result of
proposition 4 from [12], we have that: {Xℓ,1

t (z◦, a◦)}t≥1

converges a.s. to the following periodic limits

lim
t→∞

Xℓ,1
t (z◦, a◦) =

∑
s,z,a∈S×Z×A

s′,z′,a′∈S×Z×A

ζ̄ℓµ(s, z, a, s
′, z′, a′)

hP (s, z, a, s
′, z′, a′; ℓ, z◦, a◦)

= γ

[∑
z′∈Z

ζ̄ℓµ(S, z◦, a◦,S, z′,A)V Jℓ+1K
µ (z′)

]
−
[
γζ̄ℓµ(S, z◦, a◦,S,Z,A)

∑
z̄∈Z

P ℓ
µ(z̄|z◦, a◦)V Jℓ+1K

µ (z̄)

]
= 0

where the last step follows from the fact
that ζ̄ℓµ(S, z◦, a◦,S,Z,A) = ζℓµ(z◦, a◦) and
ζ̄ℓµ(S, z◦, a◦,S, z

′,A) = ζℓµ(z◦, a◦)P
ℓ
µ(z

′|z◦, a◦).
c) Convergence of component Xℓ,2

t

The convergence of the Xℓ,2
t component is based on [11],

[12] but requires some additional considerations due to the
regularization term. We start by defining:

πℓ
t (· | z) = argmax

ξ∈∆(A)

∑
a∈A

ξ(a)Q
Jℓ+1K
t (z, a)− Ω(ξ)

πℓ,⋆(· | z) = argmax
ξ∈∆(A)

∑
a∈A

ξ(a)QJℓ+1K
µ (z, a)− Ω(ξ).

In the previous steps, we have shown that ∥Xℓ,i
t ∥ → 0 a.s.,

for i ∈ {0, 1}. Thus, we have that ∥Xℓ,0
t +Xℓ,1

t ∥ → 0 a.s.
Arbitrarily fix an ϵ > 0. Therefore, there exists a set Ω1 of
measure one and a constant T (ω, ϵ) such that for ω ∈ Ω1,
all t > T (ω, ϵ), and (z, a) ∈ ×Z× A, we have

Xℓ,0
t (z, a) +Xℓ,1

t (z, a) < ϵ. (14)

Now pick a constant C such that

κ := γ

(
1 +

1

C

)
< 1 (15)

Suppose for some t > T (ω, ϵ), ∥Xℓ,2
t ∥ > Cϵ. Then, for

(ℓ, z, a) ∈ L× Z× A,

U ℓ,2
t (z, a) = γV

Jℓ+1K
t (Zt+1)− γV Jℓ+1K

µ (Zt+1)

= γΩ⋆(Q
Jℓ+1K
t (Zt+1, ·))− γΩ⋆(QJℓ+1K

µ (Zt+1, ·))

= γ

[∑
a∈A

πℓ
t (a | Zt+1)Q

Jℓ+1K
t (Zt+1, a)− Ω(πℓ

t (· | Zt+1))−

∑
a∈A

πℓ,⋆(a | Zt+1)Q
Jℓ+1K
µ (Zt+1, a) + Ω(πℓ,⋆(· | Zt+1))

]

(a)

≤ γ

[∑
a∈A

πℓ
t (a | Zt+1)Q

Jℓ+1K
t (Zt+1, a)− Ω(πℓ

t (· | Zt+1))−

∑
a∈A

πℓ
t (a | Zt+1)Q

Jℓ+1K
µ (Zt+1, a) + Ω(πℓ

t (· | Zt+1))

]
≤ γ

∑
a∈A

πℓ
t (a | Zt+1)

∣∣QJℓ+1K
t (Zt+1, a)−QJℓ+1K

µ (Zt+1, a)
∣∣



(b)

≤ γ∥QJℓ+1K
t −QJℓ+1K

µ ∥ = γ∥∆ℓ
t∥

≤ γ∥Xℓ,0
t +Xℓ,1

t ∥+ γ∥Xℓ,2
t ∥

(c)

≤ γϵ+ γ∥Xℓ,2
t ∥

(d)

≤ γ

(
1 +

1

C

)
∥Xℓ,2

t ∥ (e)
= κ∥Xℓ,2

t ∥
(e)
< ∥Xℓ,2

t ∥,

where (a) follows from the fact that we replace the argmax
πℓ,⋆ with a different argument πℓ

t in the second term, (b)
follows from maximizing over all realizations of Zt+1 and
a ∈ A, (c) follows from (14), (d) follows from ∥Xℓ,2

t ∥ >
Cϵ, (e) follows from (15). Thus, for any t > T (ω, ϵ) and
∥Xℓ,2

t ∥ > Cϵ:

Xℓ,2
t+1(z, a) = (1− αℓ

t(z, a))X
ℓ,2
t (z, a)+

αℓ
t(z, a)U

ℓ,2
t (z, a) < ∥Xℓ,2

t ∥
=⇒ ∥Xℓ,2

t+1∥ < ∥Xℓ,2
t ∥.

Hence, when ∥Xℓ,2
t ∥ > Cϵ, it decreases monotonically with

time. Hence, there are two possibilities: either
1) ∥Xℓ,2

t ∥ always remains above Cϵ; or
2) it goes below Cϵ at some stage.

These two cases must be considered separately. The proof
follows exactly the same steps in the proof of theorem 1
given in appendix A, which finally gives us:

lim
t→∞

∥Xℓ,2
t ∥ = 0, a.s. (17)

Putting everything together Recall that we initially defined
∆ℓ

t = Qℓ
t − Qℓ

µ and we split ∆ℓ
t = Xℓ,0

t + Xℓ,1
t + Xℓ,2

t .
Steps a) and b) together show that ∥Xℓ,0

t +Xℓ,1
t ∥ → 0, a.s.

and Step c) (17) shows us that ∥Xℓ,2
t ∥ → 0, a.s. Thus, by

the triangle inequality,

lim
t→∞

∥∆t∥ ≤ lim
t→∞

∥Xℓ,0
t +Xℓ,1

t ∥+ lim
t→∞

∥Xℓ,2
t ∥ = 0,

which establishes that Qℓ
t → Qℓ

µ, a.s.
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