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Abstract— The traditional approach to POMDPs is to convert
them into fully observed MDPs by considering a belief state as
an information state. However, a belief-state based approach
requires perfect knowledge of the system dynamics and is
therefore not applicable in the learning setting where the system
model is unknown. Various approaches to circumvent this
limitation have been proposed in the literature. We present
a unified treatment of some of these approaches by viewing
them as models where the agent maintains a local recursively
updateable “agent state” and chooses actions based on the agent
state. We highlight the different classes of agent-state based
policies and the various approaches that have been proposed
in the literature to find good policies within each class. These
include the designer’s approach to find optimal non-stationary
agent-state based policies, policy search approaches to find a
locally optimal stationary agent-state based policies, and the
approximate information state to find approximately optimal
stationary agent-state based policies. We then present how
ideas from the approximate information state approach have
been used to improve Q-learning and actor-critic algorithms
for learning in POMDPs.

I. INTRODUCTION

Partially observable Markov decision processes
(POMDPs) are a widely used model for the optimal
control of dynamical systems with partial state observation.
They have been extensively studied across various research
communities including systems and control, operations
research, and artificial intelligence.

A key conceptual challenge for POMDPs is that the
data available at the agent—the history of observations and
actions—is increasing with time. The standard approach is
to compress this increasing data into a finite dimensional
statistic known as the belief state, which is the posterior
density of the unobserved state conditioned on the history
of observations and actions and, therefore, may be viewed
as a generalization of non-linear filtering of controlled pro-
cesses. The belief state is sufficient for evaluating the per-
step reward, can be updated recursively, and is strategy
independent. Therefore, we can write a dynamic program-
ming decomposition using the belief state as an information
state [3], [14], [49], [76]. Furthermore, the value function of
the corresponding belief-state MDP has certain qualitative
properties (it is piecewise linear and convex), which can be
leveraged for efficient computational algorithms. The earliest
such algorithm was the “one-pass” algorithm by Smallwood
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and Sondik [76]. Various efficient refinements of this algo-
rithm have been presented in the literature, including linear-
support algorithm [20], witness algorithm [14], incremental
pruning [13], [93], point-based methods [66], [77], [79], and
others. See [38], [46] for a unified overview of the numerical
methods.

There are two limitations of the belief-state based ap-
proach. First, implementing a belief-state based policy is
computationally challenging. Keeping track of the belief state
requires non-linear filtering, which can be approximated via
particle filtering, but is still computationally heavy and is
therefore difficult to implement in embedded hardware in
robotics and other applications. Second, the belief state is
model dependent. Therefore, it cannot be used in model-free
reinforcement learning (RL).

An alternative approach, which is more amenable to the
learning setting, is to consider what we call the agent state.
In particular, we relax the assumption that the agent can use
the entire history of observations and actions (or a model-
dependent compression of it like the belief state) to make
a decision. Rather, we assume that the agent maintains a
local state that does not depend on the model and makes
a decision as a function of the agent state. Such an agent-
state formulation has been proposed multiple times in the
literature [29], [39], [54], [57], [78], [80]. Perhaps the
simplest example of the agent state is an agent keeping track
of a finite window of past observations and actions, which
was first considered in [67], [88] and is commonly referred
to as frame stacking in the RL literature [58]. It is argued
in [29], [54] that in many of the popular implementations
of RL algorithms, the agent state can be further decomposed
into three parts: an algorithmic state which is data to be used
by subsequent computations, a situational state, which is a
summary of the agent’s current situation, and an epistemic
state, which is the summary of the agent’s current knowledge
of the environment. We do not pursue such a distinction here
but, roughly speaking, our notion of agent state is similar to
the situational state in [29], [54].

Notation

We use uppercase letters to denote random variables (e.g.
S,A, etc.), lowercase letters to denote their realizations
(e.g. s, a, etc.) and calligraphic letters to denote sets (e.g.
S,A;ggh, etc.). Subscripts (e.g. St, At, etc.) denote variables
at time t. ∆(S) denotes the space of probability measures
on a set S; P(·) and E[·] denote the probability of an event
and the expectation of a random variable, respectively; and
1 denotes the indicator function.



Organization

The rest of the paper is organized as follows. In Sec. II
we present the mathematical model of POMDPs, introduce
the agent-state framework, and present sufficient conditions
for the agent state to be an information state. In Sec. III
we discuss the different classes of agent-state policies and
present the three approaches for finding optimal policies
among different policy classes. In Sec. IV we discuss various
RL approaches taken for learning agent-state based policies.
Finally, we present concluding remarks and discussions in
Sec. V.

II. THE POMDP MODEL AND AGENT-STATE BASED
POLICIES

A. System model

Consider a stochastic dynamical system with state St ∈ S,
input At ∈ A, and output Yt ∈ Y . To simplify the discussion,
we will assume that all sets are finite valued and ignore
integrability and measurability issues, existence of suprema,
etc. See the companion paper [26] for a nuanced discussion
of these issues. The system operates in discrete time with
the dynamics given as follows: for any time t ∈ N, we have

P(St+1, Yt+1 | S1:t, Y1:t, A1:t) = P(St+1, Yt+1 | St, At)

=: P (St+1, Yt+1 | St, At)

where P is a probability transition matrix.1 In addition, at
each time the system yields a reward Rt = r(St, At). We
will assume that Rt ∈ [0, Rmax].

There is an agent (also called a controller or a decision
maker, depending on the research community) which ob-
serves the outputs of the system and chooses control actions
as inputs to the system. In principle, this agent can be as
sophisticated as we want and can, therefore, use the entire
history of past observations and actions to choose its action,
i.e.,2

At = π⃗t(Y1:t, A1:t−1), t ∈ N

where π⃗t is called the control law or decision rule at time t.
We are using the vector accent to highlight the fact that the
policy is history dependent.

We assume that the system runs for an infinite horizon and
use π⃗ = (π⃗1, π⃗2, . . . ) to denote the control policy (or simply
the policy).3 Let Π⃗ND denote the set of all history dependent

1For the simplicity of notation, we are using a slightly informal notation.
Terms such as P(St+1, Yt+1 | St, At) should either be viewed as the
numerical value P(St+1 = st+1, Yt+1 = yt+1 | St = st, At = at)
for specific realizations (st+1, yt+1, st, at) of (St+1, Yt+1, St, At) or as
probability mass function P(St+1 = ·, Yt+1 = · | St = st, At = at) or
as a distribution-valued random variable P(St+1 = ·, Yt+1 = · | St, At).
Typically, all of these interpretations are consistent. If a specific interpreta-
tion is needed, we will use a more elaborate notation as appropriate.

2Again, we are using a slightly informal notation. We can interpret the
above either as at = π⃗t(y1:t, a1:t−1) for special realizations (y1:t, a1:t)
of (Y1:t, A1:t) or as an equality between random variables At(ω) and
π⃗t(Y1:t(ω), A1:t−1(ω)).

3We are making a deliberate choice of using bold π⃗ to denote the policy
to distinguish between control laws and control policies.

(indicated by the vector accent) non-stationary (i.e., time-
varying) and deterministic policies.

We assume that the initial state S1 is distributed according
to probability mass function ξ1. Then, the performance of any
policy π⃗ ∈ Π⃗ND is given by

J π⃗ := Eπ⃗

[ ∞∑
t=1

γt−1Rt

∣∣∣∣ S1 ∼ ξ1

]
where γ ∈ (0, 1) is the discount factor. Let J⃗⋆

ND (again,
the vector accent highlights that we are optimizing over all
history dependent policies) denote the optimal performance
in Π⃗ND, i.e.,

J⃗⋆
ND := sup

π⃗∈Π⃗ND

J π⃗.

B. Some remarks on the model

1) The system described above is referred to as a partially
observed Markov decision process (POMDP) to high-
light the fact that the agent sees partial observations
of the state of the environment.

2) Since the per-step reward is uniformly bounded, J π⃗ is
well defined. However, it is not immediately obvious
that there exists an optimal policy π⃗⋆ such that J⃗⋆

ND =
J π⃗⋆

.
3) There are several technical questions that need to be

resolved carefully when the variables are continuous
valued. We refer the reader to the companion pa-
per [26] for a detailed discussion.

4) In the literature, it is often assumed that

P(St+1, Yt+1 | St, At)

= P(St+1 | St, At)P(Yt+1 | St+1, At)

or sometimes even

P(St+1, Yt+1 | St, At)

= P(St+1 | St, At)P(Yt+1 | St+1).

Such an assumption is not needed for the discussion
presented in this paper.

5) In the discussion above, we have restricted attention to
deterministic policies. In principle, we could have also
considered non-stationary history dependent stochastic
policies π⃗ = (π⃗1, π⃗2, . . . ), where π⃗t : Ht → ∆(A).
Let Π⃗NS denote the set of all non-stationary history
dependent stochastic policies. Define

J⃗⋆
NS := sup

π⃗∈Π⃗NS

J π⃗.

By definition Π⃗ND ⊆ Π⃗NS; hence, J⃗⋆
ND ≤ J⃗⋆

NS. However,
since the agent has perfect recall (i.e., remembers
everything that it has seen and done in the past) it
can be shown that there is no loss of optimality in



restricting attention to deterministic strategies,4 i.e.,

J⃗⋆
ND = J⃗⋆

NS. (1)

C. Agent-state based policies

We now describe the agent-state based approach, where it
is assumed that instead of using the entire history of obser-
vations and actions to make a decision the agent maintains
a local state (which we will refer to as the agent state and
denote by Zt ∈ Z) and makes a decision as a function of the
agent state. The agent starts with an initial state Z1 = ϕ0(Y1)
and recursively updates it as follows:5

Zt+1 = ϕ(Zt, Yt+1, At), ∀t ∈ N. (2)

We call ϕ0 the state-initialization function and ϕ the state-
update function. The agent chooses an action either using a
deterministic control law πt : Z → A as

At = πt(Zt)

or using a stochastic control law πt : Z → ∆(A) as

At ∼ πt(Zt).

We call such a policy as an agent-state based policy.
A simple example of agent-state based policy is when

the agent uses a finite window of past observations and
actions, i.e., Zt = (Yt−n:t, At−n:t−1). Such a model is
sometimes called frame-stacking in the RL literature [58],
[88]. Another example is when the controller is a finite state
automaton [36], [67], [69]. It is not necessary for the agent
state to be finite. In fact, the belief-state representation is
a special case of agent-state model where the agent state
belongs to a |S|-dimensional simplex. However, for the
convenience of notation, we would assume that Z is finite.
The discussion can be generalized to continuous valued Z
under appropriate technical assumptions.

There are three fundamental questions when working with
an agent state:
(Q1) When is there no loss of optimality in restricting

attention to agent-state based policies?
(Q2) For a given agent-state update function ϕ, how do we

find the optimal agent-state based policy?
(Q3) For a given agent-state space Z , what is the optimal

agent-state update function and agent-state based pol-
icy?

4To explain the high-level idea of the result, we borrow the terminology
of pure, mixed, and behavioral strategies used in game theory. A pure
strategy is what we call deterministic policy; a behavioral strategy is what
we call stochastic policy. A mixed strategy is a probability distribution over
pure strategies where the agent picks a pure strategy at the beginning of
the game according to specified probability distribution and then follows
the pure strategy throughout the game. With this terminology, the result
follows from two facts. First, since we are in a single agent unconstrained
expectation maximization setting, mixed and pure strategies have the same
performance. Second, since we are in a perfect recall setting, mixed and
behavioral strategies have the same performance due to Kuhn’s theorem
(see e.g., [4]).

5In principle, the update can be stochastic and be given by Zt+1 =
ϕ(Zt, Yt+1, At,Wt) where {Wt}t≥1 is a sequence of i.i.d. (independent
and identically distributed) randomizing variables that are independent of
all other primitive random variables.

The short answer to (Q1) is simple: if an agent state is
an information state, then there is no loss of optimality
in restricting attention to an agent-state policy. Of course,
this answer only makes sense if we define an information
state, which we do in the next section. The answers to
(Q2) and (Q3) are more difficult and depend on what we
mean by “optimal”. We will discuss the different conceptual
approaches that have been used in the literature in Sec. III.

D. Information state

We start with some notation. Let Ht = (Y1:t, A1:t−1)
denote the history of observations and actions of the agent
up to time t and let Ht denote the space of realization of
all such histories. We can recursively unroll the agent-state
update function (2) and define a sequence of functions σ⃗ :=
(σ⃗1, σ⃗2, . . . ), where σ⃗t : Ht → Z , such that Zt = σ⃗t(Ht).
In particular,

σ⃗1(H1) = ϕ0(Y1), σ⃗2(H2) = ϕ(σ⃗1(H1), Y2, A1), etc.
(3)

We call σ⃗ to be the history compression function corre-
sponding to the agent-state initialization and update functions
(ϕ0, ϕ).

The agent state is an information state if it satisfies the
following two properties:
(P1) Sufficient for performance evaluation. There exists

a function rIS : Z×A → R such that for any t and Ht

and At, we have

E[Rt | Ht, At] = rIS(σ⃗t(Ht), At).

(P2) Sufficient for predicting itself. There exists a con-
trolled transition probability matrix PIS : Z × A →
∆(Z) such that for any t and Ht and At, we have

P(Zt+1 | Ht, At) = PIS(Zt+1 | σ⃗t(Ht), At).

Recall that the agent state updates in a state-like man-
ner (2). Thus,

P(Zt+1 | Ht, At)

=
∑

yt+1∈Y
P(yt+1 | Ht, At)1{Zt+1=ϕ(σ⃗t(Ht),yt+1,At)}

It was shown in [80] that the above relationship implies that
a sufficient condition for (P2) is the following.

(P2b) Sufficient for predicting output. There exists a con-
trolled transition probability matrix PIS : Z × A →
∆(Y) such that for any t and Ht and At, we have

P(Yt+1 | Ht, At) = PIS(Yt+1 | σ⃗t(Ht), At).

The belief-state satisfies properties (P1) and (P2) and is,
therefore, an information state. For specific models such
as the linear quadratic Guassian (LQG) control or certain
classes of machine repair models, simpler and model-specific
information states exist. We refer the reader to [80] for a
detailed discussion of the history of information states and
various other examples.



TABLE I: Abbreviations used for different dynamic pro-
grams

Abbreviation Meaning

IS Information-state based DP
DES DP using designer’s approach

PROD DP based on product processes
AIS Approximate information state based DP

ASQL Agent-state based Q-learning

A key implication of an information state is that it always
leads to a dynamic programming decomposition.6 In partic-
ular, we have the following [80, Theorem 5 and 25].

Theorem 1: Information-state based DP

Suppose the agent state {Zt}t≥1 is an information state,
i.e., satisfies properties (P1) and (P2) with some (rIS, PIS).
Define the following dynamic programa:

Q⋆
IS(z, a) = rIS(z, a) + γ

∑
z′∈Z

PIS(z
′|z, a)V ⋆

IS (z
′), (4a)

V ⋆
IS (z) = max

a∈A
Q⋆

IS(z, a). (4b)

Let π⋆
IS(z) denote any arg max of the right hand side

of (4b). Then the policy π⃗⋆
IS = (π⃗⋆

IS,1, π⃗
⋆
IS,2, . . . ) given by

π⃗⋆
IS,t(ht) = π⋆

IS(σ⃗t(ht))

is optimal, i.e., J π⃗⋆
IS = J⃗⋆

ND.

aFor simplicity, we state the result for finite Z . Similar decomposition
holds for continuous Z .

The classical belief-state based dynamic programming de-
composition may be considered as an instance of Theorem 1.
For specific models which have a simpler information state
such as LQG control, Theorem 1 provides a simpler dy-
namic program than the standard belief-state based dynamic
program.

In spite of its generality, Theorem 1 is only applicable
when the agent state satisfies properties (P1) and (P2), which
is not always the case. A simple counterexample is when
the agent uses a finite window of past observations with
Zt = (Yt−n:t, At−n:t−1). In the companion paper [26],
approximation results for this model are presented using
ideas from filter stability. In the next section, we present
other approaches that have been used in the literature for
identifying optimal policies for models where properties (P1)
and (P2) are not satisfied.

III. OPTIMAL AGENT-STATE BASED POLICIES

In this section, we consider the different policy classes (de-
terministic/stochastic and stationary/non-stationary) of agent-
state based policies. We present examples to show that non-
stationary policies may outperform stationary ones and that

6We present multiple dynamic programming decompositions and differ-
entiate between them via subscripts. A summary of these subscripts is shown
in Table I.

TABLE II: List of different policy classes

Policy class Meaning

Π⃗ND history based non-stationary deterministic policies
Π⃗NS history based non-stationary stochastic policies

ΠND agent-state based non-stationary deterministic policies
ΠNS agent-state based non-stationary stochastic policies
ΠSD agent-state based stationary deterministic policies
ΠSS agent-state based stationary stochastic policies

stochastic policies may outperform deterministic ones. We
then present different schemes that have been used in the
literature to identify optimal or sub-optimal policies within
the different policy classes. In particular, the designer’s
approach for finding an optimal non-stationary agent-state
based policy; policy evaluation and policy gradients for
stationary agent-state based polices; and approximate in-
formation state approach for finding good stationary and
deterministic agent-state based policies.

A. Policy classes

We start with a notation to denote (one-step) decision
rules. Let

• DD = [Z → A] denote the family of all deterministic
decision rules, and

• DS = [Z → ∆(A)] denote the family of all stochastic
decision rules.

We define the following classes of agent-state based
policies. Notation wise, we will use the absence of the
vector accent to differentiate agent-state based policies from
history-based policies. A summary of the different policy
class used in this paper is shown in Table II.

• ΠND denotes the class of non-stationary agent-state
based deterministic policies π = (π1, π2, . . . ) where
πt ∈ DD. Let

J⋆
ND = sup

π∈ΠND

Jπ

denote the optimal performance within class ΠND. A
policy π⋆

ND ∈ ΠND is called optimal in policy class ΠND

if Jπ⋆
ND = J⋆

ND.
• ΠNS denotes the class of non-stationary agent-state

based stochastic policies π = (π1, π2, . . . ) where πt ∈
DS. Let

J⋆
NS = sup

π∈ΠNS

Jπ

denote the optimal performance within class ΠNS. A
policy π⋆

NS ∈ ΠNS is called optimal in policy class ΠNS

if Jπ⋆
NS = J⋆

NS.
• ΠSD denotes the class of stationary agent-state based

deterministic policies π = (π, π, . . . ) where π ∈ DD.
Let

J⋆
SD = sup

π∈ΠSD

Jπ

denote the optimal performance within class ΠSD. A
policy π⋆

SD ∈ ΠSD is called optimal in policy class ΠSD

if Jπ⋆
SD = J⋆

SD.
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Fig. 1: The cells indicate the state of the environment. Cells
with the same background color have the same observation.
The cells with a thick red boundary correspond to elements
of the set D0 := {n(n + 1)/2 + 1 : n ∈ N}, where the
action 0 gives a reward of +1 and moves the state to the
right, while the action 1 gives a reward of −1 and resets the
state to 1. The cells with a thin black boundary correspond
to elements of the set D1 = N\D0, where the action 1 gives
the reward of +1 and moves the state to the right while the
action 0 gives a reward of −1 and resets the state to 1.

• ΠSS denotes the class of stationary agent-state based
stochastic policies π = (π, π, . . . ) where π ∈ DS. Let

J⋆
SS = sup

π∈ΠSS

Jπ

denote the optimal performance within class ΠSS. A
policy π⋆

SS ∈ ΠSS is called optimal in policy class ΠSS

if Jπ⋆
SS = J⋆

SS.
Note that ΠND and ΠNS agent-state based policies are dif-
ferent from Π⃗ND and Π⃗NS, which are history based policies.
Therefore, J⋆

ND and J⋆
NS are different from J⃗⋆

ND and J⃗⋆
NS.

When the agent state is an information state and satisfies
(P1) and (P2), Theorem 1 implies that all the performance
functions J⋆

ND, J⋆
NS, J⋆

SD, J⋆
SS are equal and are also equal

to the performance of history-based policies J⃗⋆
ND and J⃗⋆

NS.
However, when the agent state is not an information state,
then the agent state does not satisfy the controlled Markov
property, i.e.,

P(Zt+1 | Z1:t, A1:t) ̸= P(Zt+1 | Zt, At)

or the property of being sufficient for reward evaluation, i.e.,

E[r(St, At) | Z1:t, A1:t] ̸= E[r(St, At) | Zt, At].

Moreover, the agent does not have perfect recall (i.e., at
time t, the agent does not have access to all the information
that was available to the information that was available to it
in the past).

The absence of the information state properties imply
that (F1) non-stationary policies may outperform stationary
policies and (F2) stationary stochastic policies may outper-
form stationary deterministic policies. These facts were first
reported in [73]. We illustrate them via examples borrowed
from [74].

(F1) Non-stationary agent-state based policies may out-
perform stationary agent-state based policies: Consider the
POMDP described in Fig. 1, where the system starts in
state 1. Since the dynamics are deterministic, the agent can
infer the current state from the history of past actions and can
take the action to increment the current state and receive a
per-step reward of +1. Thus, J⃗⋆

ND = 1/(1−γ). Furthermore,
since the system is deterministic, the optimal policy can
be implemented via an open-loop policy given by {a⋆t }t≥1,

0 1 2

0.5 0.5
1 1

(a) Dynamics under action 0

0 1 2

0.5 0.5

0.5 0.51

(b) Dynamics under action 1

Fig. 2: A POMDP with S = {0, 1, 2}, A = {0, 1} and
Y = {0}. The rewards functions are r(·, 0) = [−1, 0, 2] and
r(·, 1) = −0.5.

Fig. 3: Performance of stationary stochastic policies in the
model of Fig. 2.

where a⋆t = 1{t∈D1}, which can be implemented irrespective
of the information structure. Thus, J⋆

ND = J⃗⋆
ND.

When Zt = Yt, ΠSD consists of four policies. A brute force
evaluation shows that J⋆

SD = (1 + γ − γ2)/(1 − γ3) < J⋆
ND.

See [75] for details. Thus, non-stationary agent-state policies
may outperform stationary agent-state based policies.7

(F2) Stationary stochastic agent-state policies may out-
perform stationary deterministic agent-state based policies:
Consider the POMDP shown in Fig. 2, where the system
starts in state 0. The agent gets no observations, i.e., Yt ≡ 0,
and we consider agent-state policies with Zt = Yt ≡ 0. A
policy π ∈ ΠSS is parameterized by a single parameter p ∈
[0, 1], which indicates the probability of choosing action 1.
We denote such a policy by πp. Note that if p ∈ {0, 1},
then πp ∈ ΠSD. Let (Pa, ra) denote the probability transition
matrix and reward function when a ∈ A is chosen and let
(Pp, rp) = (1−p)(P0, r0)+p(P1, r1). Then, the performance
of policy πp is given by Jπp = [(1 − γPp)

−1rp]0. The
performance for all p ∈ [0, 1] for γ = 0.9 is shown in Fig. 3,
which shows that the best performance is achieved by the
stochastic policy πp with p ≈ 0.39.

In summary, the optimal agent-state based policy depends
on the choice of the policy class. The relationship between
the different performance measures can be summarized as
follows:

J⋆
SD J⋆

ND J⃗⋆
ND

J⋆
SS J⋆

NS J⃗⋆
NS

(5)

where the arrows mean “less than or equal to”. The solid

7The conclusion continue to hold if we compare with the performance on
stationary stochastic policies. Although it is not possible to evaluate J⋆

SS in
closed form, a brute force Monte Carlo evaluation shows that J⋆

SS ≈ J⋆
SD .

Therefore, J⋆
SS < J⋆

ND .



arrows follow from set inclusion relationships (that is, one
policy class is a subset of the other); the dashed arrow
relationships need to established explicitly. The reason for
the dashed arrow between J⃗⋆

NS and J⃗⋆
ND has already been

presented in the discussion around (1). The reason for the
dashed arrow between J⋆

NS and J⋆
ND will be presented later

in (7).
Features (F1)–(F2) may appear to be surprising because

they are not present in MDPs or POMDPs when using a
belief state. In fact, they are absent when the agent state
is an information state. However, when the agent state is
not an information state, the system has what is called
a non-classical information structure8 and, therefore, the
problem of finding the optimal agent-state based policy is a
decentralized stochastic control problem (even though there
is only one decision maker). This fact is well known in the
decentralized control literature [55], [69] but perhaps not as
well recognized in the POMDP literature.

The fact that the optimization problem at hand is a
decentralized control problem means that we cannot directly
use the standard results from Markov decision theory to find
the optimal policy in a given policy class. In the remainder
of this section, we summarize the approaches that have been
taken in the literature to find the optimal or a good policy
within a policy class.

B. The designer’s approach to find the optimal non-
stationary policy

Since the problem of finding the optimal non-stationary
agent-state policy is a decentralized stochastic control policy,
it is possible to use solution techniques from decentralized
stochastic control to find the optimal policy in class ΠND and
ΠNS. One such approach is the designer’s approach, which
was proposed in [55] and can be viewed as a refinement of
an earlier approach known as the standard form proposed
in [89]. The designer’s approach was presented in [55]
for a two-agent decentralized control system where each
agent followed an agent-state based policy. We present a
simplified version of this approach, restricted to the single
agent POMDP setting.

For any policy π = (π1, π2, . . . ) ∈ ΠNS, define ξπt ∈
∆(S × Z) by

ξπt (s, z) = P
π(St = s, Zt = z), ∀s ∈ S, z ∈ Z.

Since ΠSD,ΠSS,ΠND ⊆ ΠNS, the same definition holds for
any policy in ΠSD,ΠSS,ΠND as well. The key idea of the
designer’s approach is to show that the process {ξπ}t≥1 is
a controlled Markov process controlled by {πt}t≥1.

We first start with some definitions.
• Define a function ϕDES : ∆(S × Z)×DS → ∆(S × Z)

as follows: for any ξ ∈ ∆(S × Z), π ∈ DS and for all

8See [56] for a general discussion of non-classical information structures.

s′, z′ ∈ S × Z ,

[ϕDES(ξ, π)](s
′, z′)

=
∑

(s,z,y′,a)∈
S×Z×Y×A

ξ(s, z)π(a | z)P (y′, s′|s, a)1{z′=ϕ(z,y′,a)}

• Define the function rDES : ∆(S × Z) × DS → R as
follows: for any ξ ∈ ∆(S × Z) and π ∈ DS:

rDES(ξ, π) :=
∑

(s,z,a)∈
S×Z×A

ξ(s, z)π(a | z)r(s, a).

Note that both ϕDES and rDES are bilinear functions.9

Then a simple application of Bayes rule and the definition
of expectation imply the following [55].

Proposition 1 The process {ξπt }t≥1 is a controlled Markov
process controlled by {πt}t≥1, i.e.,

1) ξπt+1 = ϕDES(πt, ξ
π
t );

2) Eπ[r(S,A)] = rDES(πt, ξ
π
t ).

The designer’s approach is based on the following inter-
pretation. Consider the system designer who wants to pick a
policy π ∈ ΠNS (or ΠND). From the point of view of such a
designer, the system is a completely unobserved input-output
system, where the system designer chooses the control input
πt, receives a per-step reward r(St, At), but does not observe
anything. Proposition 1 implies that ξπt is an information
state for this system. Therefore, the system designer can
use dynamic programming to identify its “control actions”.
Consequently, we have the following result [55].

Theorem 2: DP using the designer’s approach

Consider the following dynamic program: for all ξ ∈
∆(S × Z),

VDES(ξ) = max
π∈DS

{
rDES(ξ, π) + γVDES(ϕDES(ξ, π))

}
. (6)

Let ψDES(ξ) denote any arg max of the right hand side
of (6). Let ξ1(s1, a1) := P(S1 = s1, Z1 = z1) denote
the initial distribution of the system and the agent state.
Recursively define {ξ⋆t }t≥1 and {π⋆

t }t≥1 as follows: ξ⋆1 =
ξ1 and for t ≥ 1:

π⋆
t = ψDES(ξ

⋆
t ) and ξ⋆t+1 = ϕDES(ξ

⋆
t , π

⋆
t ).

Then the policy π⋆ = (π⋆
1 , π

⋆
2 , . . . ) ∈ ΠNS is the optimal

policy in ΠNS.

Some remarks on the designer’s approach

1) The designer’s approach presented here is adapted
from the presentation in [55] for decentralized control

9Since ∆(S × Z) and DS are bounded sets, linearity in the each
component should be interpreted as follows: for any ξ1, ξ2 ∈ ∆(S × Z),
π ∈ DS , and λ ∈ [0, 1], we have

ϕDES(λξ
1 + (1− λ)ξ2, π) = λϕDES(ξ

1, π) + (1− λ)ϕDES(ξ
2, π)

with a similar interpretation for rDES and the π component of both functions.



problems with two agents, where the map ψDES : ∆(S×
Z) → DS was called a meta-policy. The general idea
of using the probability distribution over all pertinent
variables as an information state goes back to [89]. The
method was re-discovered in [28], where it was called
occupation MDP. A similar idea was presented in [5]
for MDPs and POMDPs with memoryless policies.

2) In the argument above, we maximized over π ∈ DS

in (6). If we instead maximize over π ∈ DD, we will
obtain the optimal policy π⋆ ∈ ΠND.

3) The probability distribution ξπt may be viewed as the
“belief” of the designer on the state sufficient for input-
output mapping (i.e., (St, Zt)) given the history of
past observations and actions (i.e., π1:t−1, since the
designer does not observe anything). Therefore, as
stated in [55] and [28], we can follow the standard
argument for POMDPs [76] to argue that the value
function VDES is convex (it is piecewise linear and
convex for finite horizon models).

4) Since VDES is convex and ϕDES and rDES are bilinear, it
means that

QDES(ξ, π) := rDES(ξ, π) + γVDES(ϕDES(ξ, π))

is convex in π. Therefore, for any fixed ξ, the max-
imum value of the convex function QDES(ξ, π) over
π ∈ DS (which is a convex polyhedron) is achieved at a
vertex of DS. Thus, the arg max in (6) is a deterministic
decision rule π ∈ DD. Therefore,

J⋆
ND = J⋆

NS. (7)

Consequently, there is no loss of optimality in restrict-
ing attention to non-stationary deterministic (rather
than stochastic) agent-state based policies.

5) As far as we are aware, the result in (7) is new.
A similar result is claimed in [5, Proposition 1] for
memoryless policies in POMDPs (i.e., Zt = Yt), but
for a different definition of optimality.

6) Note that the dynamics of {ξt}t≥1 in (6) are deter-
ministic. Therefore, it is possible to use ideas from
deterministic optimization to find the optimal trajec-
tory {ξ⋆t }t≥1 and optimal open-loop “control actions”
{π⋆

t }t≥1.

C. Policy search methods to find a locally optimal policy in
ΠSS

We can use standard results from policy search methods
for MDPs to identify a stationary policy that is locally
optimal (within the class of stationary policies). The high-
level idea is based on the fact that the product process
{(St, Zt)}t≥1 is a controlled Markov process with the con-
trolled transition probability:

PPROD(s
′, z′ | s, z, a)

:=
∑
y′∈Y

P (s′, y′ | s, a)1{z′=ϕ(z,y′,a)}.

Now, for any π = (π, π, . . . ) ∈ ΠSS, define:

Pπ
PROD(s

′, z′ | s, z) :=
∑
a∈A

π(a|z)PPROD(s
′, z′|s, z, a).

and
rπPROD(s, z) :=

∑
a∈A

π(a|z)r(s, a).

Let V π
PROD : S × Z → R be the value function of the policy

π in the (S,Z) space, i.e., it is the solution of the following
policy evaluation formula:

V π
PROD(s, z) = rπPROD(s, z)

+ γ
∑

(s′,z′)∈
S×Z

Pπ
PROD(s

′, z′|s, z)V π
PROD(s

′, z′). (8)

Let Qπ
PROD : S×Z×A → R denote the action-value function

of the policy π, i.e., for any (s, z, a) ∈ S × Z ×A,

Qπ
PROD(s, z, a) = r(s, a)

+ γ
∑

(s′,z′)∈
S×Z

PPROD(s
′, z′|s, z, a)V π

PROD(s
′, z′).

Finally, let dπPROD denote the unnormalized occupancy mea-
sure of the policy π, i.e.,

dπPROD(s, z, a) =

∞∑
t=1

γt−1Pπ(St = s, Zt = z,At = a).

Then, the performance of policy π ∈ ΠSS is given by

Jπ =
∑

(s,z)∈S×Z

ξ1(s, z)V
π

PROD(s, z),

where ξ1(s, z) := P(S1 = s, Z1 = z) denotes the initial
distribution of the joint state of the environment and the
agent. This shows that performance evaluation of any policy
in ΠSS is straightforward.

Given the above performance evaluation formula, we can
use policy-gradient based methods to find a good policy. In
particular, suppose π = (π, π, . . . ) ∈ ΠSS is a parameterized
policy (e.g., softmax or mixture of Gaussians) with policy
parameters θ. We will use πθ to denote the policy with
parameters θ and πθ to denote the decision rule with pa-
rameters θ. Then, by a straight forward modification of the
policy gradient formula [12], [47], [48], [81], we get

∇θJ
πθ =

∑
(s,z,a)∈
S×Z×A

dπθ
PROD(s, z, a)Q

πθ
PROD(s, z, a)∇θ log πθ(a|z).

(9)

Consequently, we can use any policy gradient based search
algorithm (such as actor-critic and its variants; see [86]) to
find locally optimal policy parameters, i.e., policy parameters
θ⋆ such that

∇θJ
πθ

∣∣∣
θ=θ⋆

= 0.

Then the policy πθ⋆ is a locally optimal policy in class ΠSS.



Some remarks on the policy gradient approach

1) The policy evaluation formula (8) using the product
state (St, Zt) was initially presented in [67] and has
been rediscovered in slightly different forms multiple
times [15], [36], [37], [53].

2) There is a rich history of policy based algorithms
in Systems and Control, Operations Research, and
Artificial Intelligence. We refer the reader to [8], [11]
for detailed overviews.

3) Several other approaches for policy search in ΠNS have
been proposed in the literature [36], [46], [49], [61].

4) Note that the formula in (9) is applicable when the sys-
tem dynamics are known (and therefore the Qπ

PROD can
be computed via policy evaluation formula described
above). In the RL setting, the environment state St

is not observed, so the above formula cannot be used
directly.

5) For RL, the idea of using policy gradient methods for
POMDPs was first presented in [45] and variations
have been proposed in [1], [6], [40], [49], [57], [65],
[92]. However, these policy gradient formula proposed
in these papers is for the RL setting where the agent
state St is not observed; therefore the exact expressions
were different. We present an alternative approach in
Sec. IV.

6) As pointed out in [45], the agent state in a POMDP
can be viewed as a feature of the entire history of
observations and actions. With this viewpoint, the
policy gradient formula (9) may be viewed as a special
case of actor-critic algorithms with features [47], [48].

7) Another idea that has been used in the RL setting is
asymmetric actor critic [7], [75], where it is assumed
that the critic has access to the environment state
(which is the case in simulation environments). In such
settings, it is possible to learn Qπ(s, z, a) via temporal
difference learning. See [7], [75] for a discussion.

D. The approximate information state approach to find a
good policy in ΠSD

In this section, we present an alternative approach to find-
ing good policies in ΠSD called the approximate information
state (AIS), which was originally developed in [80]. We first
start with the intuition and then explain the technical results.

Intuition: One way to obtain a policy is to posit any
dynamics and rewards (PAIS, rAIS), where PAIS : Z × A →
∆(S) and rAIS : Z × A → R, and obtain a policy π⃗AIS by
solving the following dynamic program:

QAIS(z, a) = rAIS(z, a) + γ
∑
z′∈Z

PAIS(z
′|z, a)VAIS(z

′),

(10a)
VAIS(z) = max

a∈A
QAIS(z, a). (10b)

Let πAIS(z) denote any arg max of the right hand side
of (10b). Define the policy π⃗AIS = (π⃗AIS,1, π⃗AIS,2, . . . ) given

by10

π⃗AIS,t(ht) = πAIS(σ⃗t(ht)) (11)

As shown in Theorem 1, if the posited dynamics and
rewards (PAIS, rAIS) satisfy properties (P1) and (P2), the
policy π⃗AIS is optimal. But what happens when properties
(P1) and (P2) are not satisfied?

Let (ε, δ) with ε = (ε1, ε2, . . . ) and δ = (δ1, δ2, . . . )
with εt, δt ∈ R≥0 be such that the following properties are
satisfied:

(AP1) Approximately sufficient for performance evalua-
tion. For any t, and Ht and At we have∣∣E[Rt | Ht, At]− rAIS(σ⃗t(Ht), At)

∣∣ ≤ εt.

(AP2) Sufficient for predicting itself. For any t, and Ht and
At we have

dF(P(Zt+1 | Ht, At), PAIS(Zt+1 | σ⃗t(Ht), At)) ≤ δt.

where dF is a metric on ∆(Z), which we will make
precise later.

Then the tuple (σ⃗, PAIS, rAIS) is called an approximate infor-
mation state (AIS).

Engineering intuition suggests that the sub-optimality of
π⃗AIS, i.e.,

α := J⃗⋆
ND − J π⃗AIS

should be a continuous function of (ε, δ). The results of [80]
formalize this intuition.

The choice of metric: To formalize the above intuition, we
need to choose a metric dF on probability spaces. For our
purposes, it is convenient to work with a class of metrics
known as integral probability measures (IPMs) [60]. Let V
denote the family of all bounded (measurable) functions from
Z to R and P denote the set of all probability measures on
Z with finite mean.11

Definition 1 Let F be a convex and balanced12 subset of V .
Then, the IPM distance (w.r.t. F) between two probability
laws ν1, ν2 ∈ P is given by

dF(ν1, ν2) = sup
f∈F

∣∣∣∣ ∫ fdν1 −
∫
fdν2

∣∣∣∣.
Definition 2 In the setting of Definition 1, the Minkowski
functional of any measurable function f ∈ V is defined as

ρF(f) = inf
{
ρ ∈ R>0 :

f

ρ
∈ F

}
.

Note that if for every positive ρ, f/ρ ̸∈ F, then ρF(f) = ∞.
An immediate consequence of the above two definitions

is that for any measurable function f ∈ V ,∣∣∣∣∫ fdν1 −
∫
fdν2

∣∣∣∣ ≤ ρF(f)dF(ν1, ν2). (12)

10Recall that σ⃗ = (σ⃗1, σ⃗2, . . . ) is the history compression function
corresponding to the agent-state update function ϕ and is given by (3).

11When Z is finite V ≡ R|Z| and P is the set of all probability mass
functions on Z .

12A subset F of V is balanced if for all f ∈ F and scalars a such that
|a| ≤ 1, af ∈ F.



Many of the commonly used metrics on probability spaces
are IPMs. For example

• Total variation distance, denoted by dTV, corresponds
to F = FTV := {f ∈ V : 1

2 span(f) ≤ 1}, where
span(f) = sup(f) − inf(f) [60], [84]. In this case
ρF(f) =

1
2 span(f).

• Wasserstein distance. Suppose (Z, dZ) is a metric
space. Then the Wasserstein distance, denoted by dWas,
corresponds to F = FWas := {f ∈ V : Lip(f) ≤
1} where Lip(f) denotes the Lipschitz constant of a
function f [83], [84]. In this case ρF(f) = Lip(f).

Other distances such as Kantorovich distance, bounded Lip-
schitz, maximum mean discrepancy, are also instances of
IPM. See [60], [80] for details.

We now state the main result of [80].

Theorem 3: AIS based DP

Given a function class F, let (σ⃗, PAIS, rAIS) be an (ε, δ)-
AIS with respect to dF. Consider the DP (10). Then, the
policy π⃗AIS given by (11) satisfies

J⃗⋆
ND − J π⃗AIS ≤ 2

1− γ

[
ε+ γδρF(V

⋆
AIS)

]
, (13)

where

ε = (1− γ)

∞∑
t=1

γt−1εt, δ = (1− γ)

∞∑
t=1

γt−1δt.

Some remarks on AIS

1) We have presented the simplest form of the AIS re-
sult. Several variations including finite horizon models,
multi-agent systems, and others are presented in [80].

2) The results of Theorem 3 may be viewed as a general-
ization of approximation bounds for MDPs. The earli-
est such result is [59]. Several variations of such results
for MDPs have been derived in the literature, including
model approximation in MDPs [2], state abstraction in
MDPs [2], [31], [52]. As shown in [80], many of these
results are special instances of Theorem 3.

3) When defining information state, it was mentioned that
(P2b) is a sufficient condition for (P2). Along similar
lines, condition (AP2) can be relaxed to approximately
predicting the next observation. See [80] for details.

4) One option for solving belief-state based POMDPs is
by discretizing the belief space. Approximation bounds
for belief discretization were derived in [30] and it was
shown in [80] that such bounds may be viewed as a
special instance of Theorem 3.

5) A heuristic algorithm to jointly learn a good AIS rep-
resentation and a agent-state based policy is proposed
in [91].

6) In addition to the AIS approach presented here, there
are two popular approaches to determine good policies
in ΠSD: bisimulation metrics [16], [17] and predictive
state representations [10], [35], [41], [50], [51], [68].

These approaches are based on different approximation
philosophies and are conceptually different.

7) The results of Theorem 3 are also applicable for worst
case design. In particular, let the worst-case distance
dF(X1, X2) between two bounded random variables
X1 and X2 be defined as the Hausdorff distance
between their supports. It is then shown in [23]–[25]
that under an additional smoothness assumption on the
dynamics, one may define an AIS in terms of the
the worst-case distance and generalize the results of
Theorem 3 to provide worst case guarantees for agent-
state based policies.

IV. REINFORCEMENT LEARNING APPROACHES TO LEARN
A POLICY IN ΠSD OR ΠSS

As highlighted in the introduction, one of the motivations
for considering agent-state based policies is that they are
easier to use in the RL setting because the agent-state update
does not depend on the system model. In this section, we
review the different approaches for RL in POMDPs with
agent state.

Before stating the results, we start with a remark that is
not sufficiently highlighted in the literature. In the standard
POMDP model, it is assumed that the actions are a function
of the history of past observations and actions. In the learning
setup, actions are also sometimes allowed to be a function
of the history of rewards. Therefore, in the literature on
RL for POMDPs, it is always implicitly assumed that the
observations include the rewards as well. If that is not the
case, we need to consider an agent-state update rule of
the form Zt+1 = ϕ(Zt, Yt+1, At, Rt+1), but that does not
fundamentally change the nature of the results.

A. Agent-state based Q-learning (ASQL)

One of the simplest RL algorithms is Q-learning [85],
where the agent learns the Q-function by bootstrapping. For
MDPs, it is well understood that the Q-learning iterates
converge to the optimal Q-function, which is the solution
of the dynamic programming equation.

Agent-state based Q-learning (ASQL) uses the same idea
for POMDPs with agent state. In the simplest setting,
the agent acts in the environment according to a behav-
ior policy µ : Z → ∆(A) and generates the experience
(Y1, Z1, A1, R1, Y2, Z2, A2, R2, . . . ). The agent uses the ex-
perience to recursively update Q-function {Qt}t≥1, Qt : Z×
A → R as follows:

Qt+1(z, a) = Qt(z, a)

+ αt(z, a)
[
Rt + γmax

a′∈A
Qt(Zt+1, a

′)−Qt(z, a)
]

(14)

where Rt = r(St, At) is the reward at time t and {αt}t≥1 are
the learning rates which are chosen such that αt(z, a) = 0
when (z, a) ̸= (Zt, At).

As mentioned earlier, the agent state does not satisfy the
Markov property. So the standard proof of Q-learning for
MDPs [9], [40], [85] is not directly applicable. Nonetheless,



it is shown in [74] that ASQL converges under the following
assumptions:
(A1) The behavioral policy µ is such that the Markov

chain13 {(St, Yt, Zt, At)}t≥1 is irreducible and ape-
riodic and, therefore, has a limiting distribution ζµ.
Moreover, under the behavioral policy, all (z, a) are
visited infinitely often, i.e.,

∑
(s,y) ζ

µ(s, y, z, a) > 0.
(A2) The learning rates {αt}t≥1 satisfy the standard Rob-

bins–Monro conditions, i.e., for all (z, a) we have that∑
t≥1

αt(z, a) = ∞ and
∑
t≥1

αt(z, a)
2 <∞, a.s.

For the ease of notation, we will continue to use ζµ to
denote the marginal and conditional distributions w.r.t. ζµ.
In particular, for marginals we use ζµ(y, z, a) to denote∑

s∈S ζ
µ(s, y, z, a) and so on; for conditionals, we use

ζµ(s|z, a) to denote ζµ(s, z, a)/ζµ(z, a) and so on.
We now state the main result of [74].14

Theorem 4: Convergence of ASQL

Under assumptions (A1) and (A2), the iterates {Qt}t≥1 of
ASQL (14) converge almost surely to a limitQµ

ASQL, which
is the fixed point of the following DP:

Qµ
ASQL(z, a) = rµASQL(z, a)

+ γ
∑
z′∈Z

Pµ
ASQL(z

′|z, a)max
a′∈A

Qµ
ASQL(z

′, a′) (15)

where

rµASQL(z, a) =
∑
s∈S

ζµ(s|z, a)r(s, a),

Pµ
ASQL(z

′|z, a) =
∑

(s,y′)∈S×Y

1{z′=ϕ(z,y′,a)}P (y
′|s, a)ζµ(s|z, a).

Let πµ
ASQL ∈ ΠSD denote the policy

πµ
ASQL(z) := argmax

a∈A
Qµ

ASQL(z, a) (16)

Theorem 4 implies that the greedy policy corresponding
to {Qt}t≥1 computed via (14) converges to πµ

ASQL. Define
π⃗µ

ASQL = (π⃗µ
ASQL,1, π⃗

µ
ASQL,2, . . . ) to be the history dependent

policy given by

π⃗µ
ASQL,t(ht) = πµ

ASQL(σt(ht)). (17)

A natural follow-up question is: How well does π⃗µ
ASQL

perform? The answer to this question is surprisingly easy
because we can view (σ⃗, Pµ

ASQL, r
µ
ASQL) as an AIS. Therefore,

Theorem 3 provides an immediate bound on J⃗⋆
ND −J π⃗µ

ASQL as
follows:

Corollary 1 We have that

J⃗⋆
ND − J π⃗µ

ASQL ≤ 2

1− γ

[
ε+ γδρF(V

µ
ASQL)

]
13As argued in Sec. III-C, under any policy µ ∈ ΠSS the product process

{(St, Zt)}t≥1 is a Markov chain. This directly implies that the process
{(St, Yt, Zt, At)}t≥1 is a Markov chain as well.

14The result proved in [74] is a generalization of Theorem 4 to periodic
agent-state based policies. Taking a period of 1 implies Theorem 4.

where V µ
ASQL(z) := maxa∈AQ

µ
ASQL(z, a) and ε and δ are

defined in a manner similar to Sec. III-D

The results of Theorem 4 and Corollary 1 suggest that the
performance of ASQL could be improved by choosing the
state update function ϕ so as to minimize the approximation
losses ε and δ. In particular, consider an implementation
of Q-learning where a recurrent neural network (RNN)
such as LSTM (long short term memory) or GRU (gated
recurrent unit) is used as a history compression function
σ⃗. Add an “AIS-block” which learns a generative model
for (PASQL, rASQL) by using the AIS loss λε2 + (1 − λ)δ2

as an auxiliary loss. This algorithm is called RQL-AIS
in [71]. Note that we can generate RQL-AIS version of any
implementation of recurrent Q-learning for POMDPs.

In [71], a version of RQL-AIS using R2D2 [42] as a
base implementation is compared with R2D2 on the min-
igrid benchmark [21], [22]. The results of [71] show that
adding an AIS block significantly improve the performance
of Q-learning in the larger and more complicated minigrid
environments.

Remarks on ASQL

1) A key feature of Theorem 4 is that the limit Qµ
ASQL

depends on the behavioral policy µ, unlike in MDPs
where the limit is policy-independent (as long as all
state-action pairs are visited infinitely often). This
dependence arises because the agent state is not an
information state and thus is not policy-independent.
See [90] for a discussion on policy independence of
information states.

2) The idea of adding AIS losses as an auxiliary loss
for ASQL was first proposed in [80] for actor-critic
algorithms. It is argued in [62] that in ASQL it is
not useful to learn the reward function rµASQL since the
Q-function is already being learnt. Rather one should
simply use δ2 as an auxiliary loss.

3) Learning a dynamics model to minimize δ2 is ef-
fectively the same as self-supervised representation
learning, which has been used as a heuristic in different
forms in MDPs and POMDPs in the literature. See [62]
for a detailed discussion.

4) The convergence of the simplest version of ASQL was
established in [73] for Zt = Yt under the assumption
that the actions are chosen i.i.d. (and do not depend on
Zt). In [64] it was established that Qµ

ASQL is the fixed
point of (14), but convergence of {Qt}t≥1 to Qµ

ASQL

was not established. The convergence of ASQL when
the agent state is a finite window of past observations
and actions was established in [44]. The convergence
result for a general agent state presented in Theorem 4
follows essentially the same proof argument.

5) ASQL is closely related to Q-learning for MDPs with
state aggregation or quantization [43], [72], [82]. In
particular, consider an MDP with large or continu-
ous state space, where we partition the state space
into bins, and treat each bin as an aggregated state.



This model is equivalent to a PODMP where the
observation equals the index of the bin corresponding
to the current state. Thus, Q-learning in MDPs with
state aggregation is equivalent to ASQL with agent
state equal to current observation. Therefore, there
are considerable similarities between the convergence
analysis and approximation bounds of these two setups.

6) ASQL may also be viewed as a MDP with non-
Markovian state [18], [27]. As such there are consider-
able similarities between the convergence analysis and
approximation bounds for these two setups.

7) The regret of an optimistic variant of ASQL is pre-
sented in [29], though the exact setting there is slightly
different. See [29] for details.

B. Agent-state based actor critic (ASAC)

ASQL always learns a deterministic policy (i.e., a policy
belonging to ΠSD). As highlighted by (5) and fact (F2),
stochastic policies can perform better than deterministic
policies. One approach to learn stochastic policies is to use
the actor-critic class of algorithms.

An agent-state based actor critic (ASAC) algorithm was
proposed in [80]. We present it with a slightly different
perspective here. Consider any policy π ∈ ΠSS. Motivated by
the result of Theorem 4, we can run a temporal difference
learning algorithm to learn a Q-function corresponding to π
as follows:

Qπ
t+1(z, a) = Qπ

t (z, a)

+ αt(z, a)
[
Rt + γQπ

t (Zt+1, At+1)−Qπ
t (z, a)

]
(18)

where Rt = r(St, At) as before. Theorem 4 implies that
under conditions similar to (A1) and (A2), the iteration (18)
converges almost surely to a limit Qπ

ASAC, which is the fixed
point of the following DP:

Qπ
ASAC(z, a) = rπASAC(z, a)

+ γ
∑

(z′,a′)∈Z×A

π(a′|z′)Pπ
ASAC(z

′|z, a)Qπ
ASAC(z

′, a′) (19)

where

rπASAC(z, a) =
∑
s∈S

ζπ(s, a)r(s, a),

Pπ
ASAC(z

′|z, a) =
∑

(s,y′)∈S×Y

1{z′=ϕ(z,y′,a)}P (y
′|s, a)ζπ(s|z, a).

Define Jπ
ASAC =

∑
(z,a)∈Z×A ξ1(z, a)Q

π
ASAC(z, a). More-

over, define π⃗ = (π⃗1, π⃗2, . . . ) to be the history dependent
policy given by

π⃗t(ht) = π(σ⃗t(ht)).

Then, by an argument similar to Theorem 3 we have that
(see [80])∣∣J π⃗ − Jπ

ASAC

∣∣ ≤ 1

1− γ

[
ε+ γδρF(V

π
ASAC)

]
where V π

ASAC(z) = maxa∈AQ
π
ASAC(z, a) and ε and δ are

defined in a manner similar to Sec. III-D.

The above discussion suggests the following algorithm.
Consider an implementation of an actor-critic algorithm
where an RNN such as LSTM or GRU is used as a history
compression function σ⃗. Similar to RQL-AIS, add an “AIS
block” which learns a generative model for (PASAC, rASAC) by
using λε2 + (1 − λ)δ2 as an auxiliary loss. This algorithm
is called PORL-AIS in [80]. Note that we can generate a
PORL-AIS version of any implementation of recurrent actor-
critic for POMDPs.

In [80], a version of PORL-AIS is compared with LSTM-
based actor critic on the minigrid benchmark [21], [22]. The
results of [80] show that adding an AIS block significantly
improves the performance of actor-critic algorithms in the
larger and more complicated minigrid environments.

Remarks of ASAC

1) It is also possible to add AIS losses to actor only al-
gorithms such as G(PO)MDP [8]. See [80] for details.

2) We have argued that the TD iterations for {Qt}t≥1

converge to a limit. Therefore, for a parameterized pol-
icy πθ, the gradient computed via the policy gradient
formula

1

T

T∑
t=1

∇θ log πθ(At|Zt)Q
πθ
t (Zt, At)

asymptotically converges to∑
(z,a)∈Z×A

ζπ(z, a) log πθ(a|z)Qπ
ASQL(z, a)

which is an unbiased estimate of ∇θJ
πθ
ASAC rather than

∇θJ
π⃗θ . Therefore, PORL-AIS does not have the local

convergence guarantees of actor critic for MDPs (but
neither do other actor-critic algorithms for POMDPs!).

3) AIS error bounds for asymmetric actor critic [7] are
developed in [75] but the numerical experiments pre-
sented there suggest that adding an AIS block to
asymmetric actor critic algorithms does not provide
any measurable performance improvement over the
vanilla asymmetric actor critic algorithm.

V. CONCLUSION

In this tutorial, we have summarized some of the ap-
proaches used for planning and learning agent-state based
policies in POMDPs. Our survey is not exhaustive. There are
other alternative approaches which we have not discussed
(e.g., predictive state representations [10], [35], [41], [51],
bisimulation [16], [17], world models [32]–[34], [70], [87],
decision transformers [19], [63]). Nonetheless, it is our
hope that this paper will present the reader with a unified
perspective on a subset of the literature. We conclude by
emphasizing that this is a rapidly developing research area
and many of the fundamental questions are still open.
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