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Abstract— We revisit the Thompson sampling-based learning
algorithm for controlling an unknown linear system with
quadratic cost proposed in [1]. This algorithm operates in
episodes of dynamic length and it is shown to have a regret
bound of Õ(

√
T ), where T is the time-horizon. The regret bound

of this algorithm is obtained under a technical assumption on
the induced norm of the closed loop system. We propose a
variation of this algorithm that enforces a lower bound Tmin on
the episode length. We show that a careful choice of Tmin (that
depends on the uncertainty about the system model) allows us
to recover the Õ(

√
T ) regret bound under a milder technical

condition about the closed loop system.

I. INTRODUCTION

The problem of learning an optimal policy for a system
with linear dynamics and quadratic cost with unknown
parameters has received considerable attention in the literature.
Historically, the focus has been on developing algorithms
which asymptotically learn optimal policies using techniques
from adaptive control and reinforcement learning [2]–[5]. In
recent years, the emphasis has shifted towards developing
algorithms with finite-time regret guarantees.

Broadly speaking, three classes of learning algorithms
have been considered in the literature: optimism in the face
of uncertainty [6]–[9], certainty equivalence [10]–[14], and
Thompson sampling [14]–[17]. These algorithms provide
two kinds of regret guarantees: frequentist and Bayesian.
In the frequentist setting, it is established that the regret
for the unknown system is bounded with high probability
(with respect to the distribution of the process noise and the
randomness introduced by the algorithm). In the Bayesian
setting, it is assumed that there is a prior on the unknown
system parameters and it is established that the expected regret
is bounded (where the expectation is with respect to the prior,
the distribution of the process noise, and the randomness
introduced by the algorithm). These two notions of regret
are different and, since the per-step cost is not bounded, one
form of the regret does not imply the other.
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In this paper, we revisit a recently proposed algorithm for
establishing Bayesian regret called Thompson sampling with
dynamic episodes (TSDE) [1]. The main result of [1] is to
show that the Bayesian regret of TSDE accumulated up to
time T is bounded by Õ(

√
T ), where the Õ(·) notation hides

constants and poly-logarithmic factors. This result was derived
under a technical assumption on the induced norm of the
closed loop system. In this paper, we present a variation of the
TSDE algorithm and obtain a Õ(

√
T ) bound on the Bayesian

regret by imposing a much milder technical assumption.

II. MODEL AND PROBLEM FORMULATION

We consider the same model as [1]. For the sake of
completeness, we present the model below.

Consider a linear system with state xt ∈ Rn, control
input ut ∈ Rm, and disturbance wt ∈ Rn. For the ease of
exposition, we assume that the system starts from an initial
state x1 = 0. The state evolves over time according to

xt+1 = Axt +But + wt, t ≥ 1, (1)

where A ∈ Rn×n and B ∈ Rn×m are the system dynamics
matrices. The noise {wt}t≥1 is an independent and identically
distributed Gaussian process with wt ∼ N (0, σ2

wI).

Remark 1 In [1], it was assumed that σ2
w = 1. Using a

general σ2
w > 0 does not fundamentally change any of the

results or the proof arguments.

At each time t, the system incurs a per-step cost given by

c(xt, ut) = x
⊺
tQxt + u

⊺
tRut, (2)

where Q and R are positive definite matrices.
Let θ⊺ = [A,B] denote the parameters of the system.

θ ∈ Rd×n, where d = n+m. The performance of any policy
π = (π1, π2, . . . ) is measured by the long-term average cost
given by

J(π; θ) = lim sup
T→∞

1

T
Eπ
[ T∑
t=1

c(xt, ut)
]
. (3)

Let J(θ) denote the minimum of J(π; θ) over all policies.
It is well known [18] that if the pair (A,B) is stabilizable,
then J(θ) is given by

J(θ) = σ2
w Tr(S(θ)),

where S(θ) is the unique positive semi-definite solution of
the following Riccati equation:

S(θ) = Q+A
⊺
S(θ)A

−A
⊺
S(θ)B(R+B

⊺
S(θ)B)−1B

⊺
S(θ)A. (4)



Furthermore, the optimal control policy is given by

ut = G(θ)xt, (5)

where the gain matrix G(θ) is given by

G(θ) = −(R+B
⊺
S(θ)B)−1B

⊺
S(θ)A. (6)

As in [1], we are interested in the setting where the system
parameters are unknown. We denote the unknown parameters
by a random variable θ1 and assume that there is a prior
distribution on θ1. The Bayesian regret of a policy π operating
for horizon T is defined by

R(T ;π) = Eπ
[ T∑
t=1

c(xt, ut)− TJ(θ1)
]
, (7)

where the expectation is with respect to the prior on θ1,
the noise processes, the initial conditions, and the potential
randomizations done by the policy π.

III. THOMSON SAMPLING BASED LEARNING ALGORITHM

As in [1], we assume that the unknown model parameters
θ lie in a compact subset Ω1 of Rd×n. We use p|Ω to denote
the restriction of probability distribution p on the set Ω. We
assume that there is a prior µ1 on Ω1 which satisfies the
following assumption.

Assumption 1 There exist θ̂1(i) ∈ Rd for i ∈ {1, . . . , n}
and a positive definite matrix Σ1 ∈ Rd×d such that for any
θ ∈ Rd×n, µ1 = µ̄1

∣∣
Ω1

, where

µ̄1(θ) =

n∏
i=1

µ̄1(θ(i)) and µ̄1(θ(i)) = N (θ̂1(i),Σ1).

We maintain a posterior distribution µt on Ω1 based on
the history (x1:t−1, u1:t−1) of the observations until time t.
From standard results in linear Gaussian regression [19], we
know that the posterior is a truncated Gaussian distribution

µt(θ) =

[ n∏
i=1

µ̄t(θ(i))

]∣∣∣∣
Ω1

where µ̄t(θ(i)) = N (θ̂t(i),Σt) and {θ̂t(i)}ni=1 and Σt can
be updated recursively as follows:

θ̂t+1(i) = θ̂t(i) +
Σtzt(xt+1(i)− θ̂t(i)

⊺zt)

σ2
w + z⊺t Σtzt

, (8)

Σ−1
t+1 = Σ−1

t +
1

σ2
w

ztz
⊺
t , (9)

where zt = [x⊺
t , u

⊺
t ]

⊺.

A. Thompson sampling with dynamic episodes algorithm

We now present a variation of the Thompson sampling
with dynamic episodes (TSDE) algorithm of [1]. As the
name suggests, the algorithm operates in episodes of dynamic
length. The key difference from [1] is that we enforce that
each episode is of a minimum length Tmin. The choice of
Tmin will be explained later.

Let tk and Tk denote the start time and the length of
episode k, respectively. Episode k has a minimum length of

Algorithm 1 TSDE

1: input: Ω1, θ̂1, Σ1

2: initialization: t← 1, t0 ← −Tmin, T−1 ← Tmin, k ← 0.
3: for t = 1, 2, . . . do
4: observe xt

5: update µ̄t according to (8)–(9)
6: if (t− tk > Tmin) and
7:

(
(t− tk > Tk−1) or (detΣt <

1
2 detΣtk)

)
8: then
9: Tk ← t− tk, k ← k + 1, tk ← t

10: sample θ̄k ∼ µt

11: end if
12: Apply control ut = G(θ̄k)xt

13: end for

Tmin and ends when the length of the episode is strictly larger
than the length of the previous episode (i.e., t− tk > Tk−1)
or at the first time after tk + Tmin when the determinant of
the covariance Σt falls below half of its value at time tk, i.e.,
detΣt <

1
2 detΣtk . Thus,

tk+1 = min

{
t > tk + Tmin

∣∣∣∣∣ t− tk > Tk−1 or
detΣt <

1
2 detΣtk

}
. (10)

Note that the stopping condition (10) implies that

Tmin + 1 ≤ Tk ≤ Tk−1 + 1, ∀k (11)

If we select Tmin = 0 in the above algorithm, we recover the
stopping condition of [1].

The TSDE algorithm works as follows. At the beginning
of episode k, a parameter θ̄k is sampled from the posterior
distribution µtk . During the episode, the control inputs are
generated using the sampled parameters θ̄k, i.e.,

ut = G(θ̄k)xt, tk ≤ t < tk+1. (12)

The complete algorithm is presented in Algorithm 1.

B. A technical assumption and the choice of minimum episode
length

For each θ⊺ = [A,B], we define a 4-dimensional row-
vector η(θ) as follows:

η(θ) := (∥θ∥,Tr(S(θ)), ∥S(θ)∥, ∥[I,G(θ)
⊺
]
⊺∥), (13)

where S(θ) is the solution of the Riccati equation in (4) and
G(θ) is the optimal gain matrix defined in (6).

Definition 1 Let Mθ,MJ ,MS ,MG, α, δ be positive con-
stants such that α ≥ 1 and 0 < δ < 1. We say that the
uncertainty set Ω1 is of Type (Mθ,MJ ,MS ,MG, α, δ) if the
following conditions hold:

1) For all θ ∈ Ω1,

η(θ) ≤ (Mθ,MJ ,MS ,MG) (14)

where the inequality is component-wise.



2) For any θ, ϕ ∈ Ω1 with θ⊺ = [Aθ, Bθ] and for any
integer t ≥ 1,

∥(Aθ +BθG(ϕ))t∥ ≤ αδt.

Assumption 2 We assume that the uncertainty set Ω1 is of
Type (Mθ,MJ ,MS ,MG, α, δ), where Mθ, MJ , MS , MG,
α, δ are positive constants such that α ≥ 1 and 0 < δ < 1.

The following simple observation plays a critical role in
analyzing the regret of TSDE.

Lemma 1 Suppose Assumption 2 is true. Define

T ∗
min =

⌈
logα

− log δ

⌉
. (15)

Then, for θ, ϕ ∈ Ω1 with θ⊺ = [Aθ, Bθ], we have

∥(Aθ +BθG(ϕ))T
∗
min+1∥ < 1 (16)

PROOF The proof follows immediately from Assumption 2
and the definition of T ∗

min. ■

Before presenting our regret analysis under Assumption 2,
we present two special cases of this assumption. The first
case is identical to the assumption made in [1] about the
uncertainty set.

Assumption 3 Let Mθ, MJ , MS , MG, α, δ be positive
constants such that α ≥ 1 and 0 < δ < 1. Assume that
the uncertainty set Ω1 satisfies the following conditions:

1) Equation (14) holds for all θ ∈ Ω1.
2) For any θ, ϕ ∈ Ω1 with θ⊺ = [Aθ, Bθ],

∥(Aθ +BθG(ϕ))∥ ≤ δ.

In [1], part 2) of Assumption 3 was stated explicitly. In
addition, the uncertainty set was assumed to be compact,
which ensures part 1) of Assumption 3.

An uncertainty set that satisfies Assumption 3 also satisfies
Assumption 2 with α = 1. This is because if ∥(Aθ +
BθG(ϕ))∥ ≤ δ, then

∥(Aθ +BθG(ϕ))t∥ ≤ (∥(Aθ +BθG(ϕ))∥)t ≤ δt. (17)

Thus, Assumption 2 is weaker than Assumption 3 used in
[1].

For a square matrix A, let ρ(A) denote the spectral radius
of matrix A.The next assumption can also be viewed as a
special case of Assumption 2.

Assumption 4 Let Mθ, MJ , MS , MG, α, δ̃ be positive
constants such that α ≥ 1 and 0 < δ̃ < 1. Assume that
the uncertainty set Ω1 satisfies the following conditions:

1) Equation (14) holds for all θ ∈ Ω1.
2) For any θ, ϕ ∈ Ω1 with θ⊺ = [Aθ, Bθ],

ρ(Aθ +BθG(ϕ)) ≤ δ̃.

We note that Assumption 4 is weaker than Assumption 3
(since ρ(A) ≤ ||A|| for any matrix A). Consider, for example,

a family of matrices Aq =

[
δ̃ q

0 δ̃

]
, where q ∈ N and 0 <

δ̃ < 1. For each q, the spectral radius of Aq is δ̃ while its
norm is at least q. Thus, each Aq satisfies Assumption 4 but
not Assumption 3.

The following lemma shows that an uncertainty set that
satisfies Assumption 4 also satisfies Assumption 2 for some
constants α ≥ 1 and δ̃ < δ < 1.

Lemma 2 Suppose Assumption 4 is true. Then, there exist
α ≥ 1 and δ̃ < δ < 1 such that for any θ, ϕ ∈ Ω1 with
θ⊺ = [Aθ, Bθ] and for any integer t ≥ 1,

∥(Aθ +BθG(ϕ))t∥ ≤ αδt.

PROOF Define ε = δ − δ̃. Let L = {Aθ + BθG(ϕ) : θ, ϕ ∈
Ω1}. Since Ω1 is compact, so is L. Now for any L ∈ L,
there exists a norm (call it normL) such that normL(L) <
ρ(L) + ε ≤ δ̃ + ε = δ.

Since norms are continuous, there is an open ball centered
at L (let’s call this ballL) such that for any H ∈ ballL, we
have normL(H) < δ. Consider the collection of open balls
{ballL : L ∈ L}. This is an open cover of compact set L.
So, there is a finite sub-cover. Let’s denote this sub-cover by
ballL1

, . . . ,ballLℓ
. By equivalence of norms, there is a finite

constant αk such that ∥A∥ ≤ αLk
normLk

(A) for any matrix
A, for all k ∈ {1, . . . , ℓ}. Let α = max(1,maxk αLk

).
Now consider an arbitrary H ∈ L. It belongs to ballLk

for
some k ∈ {1, . . . , ℓ}. Therefore, normLk

(H) < δ. Hence,
for any integer t, the above inequalities and the submulit-
plicity of norms give that ∥Ht∥ ≤ αLk

normLk
(Ht) ≤

α(normLk
(H))t < α(δ)t. ■

Remark 2 Condition 2 in Definition 1 states that Aθ +
BθG(ϕ) is uniformly exponentially stable for all all θ, ϕ ∈ Ω1.
Condition 2 of Assumption 4 states that Aθ + BθG(ϕ) is
uniformly asymptotically stable for all θ, ϕ ∈ Ω1. For linear
systems, asymptotic stability implies exponential stability.
In Lemma 2, we are effectively showing that when the
uncertainty set is compact, uniform asymptotic stability
implies uniform exponential stability.

C. Regret bounds

The following result provides an upper bound on the regret
of the proposed algorithm.

Theorem 1 Under Assumptions 1 and 2 and with Tmin ≥
T ∗
min, the regret of TSDE is upper bounded by

R(T ; TSDE) ≤ Õ(σ2
w(n+m)

√
nT ). (18)

The proof is presented in the next section.

Remark 3 The constants hidden in the Õ(·) notation in
Theorem 1 depend only on the type (Mθ,MJ ,MS ,MG, α, δ)
of the uncertainty set Ω1. In particular, these constants do
not depend on n, m, and T .

IV. REGRET ANALYSIS

For the ease of notation, we use R(T ) instead of
R(T ;TSDE) in this section. Let KT denote the number of



episodes until horizon T . Following the exact same steps
as [1], we can show that

R(T ) = R0(T ) +R1(T ) +R2(T ) (19)

where

R0(T ) = E

[ KT∑
k=1

TkJ(θ̄k)

]
− TE[J(θ1)], (20)

R1(T ) = E

[
KT∑
k=1

tk+1−1∑
t=tk

[
x
⊺
t S(θ̄k)xt − x

⊺
t+1S(θ̄k)xt+1

]]
(21)

R2(T ) = E

[
KT∑
k=1

tk+1−1∑
t=tk

[
(θ

⊺
1zt)

⊺
S(θ̄k)θ

⊺
1zt

− (θ
⊺
kzt)

⊺
S(θ̄k)θ

⊺
kzt
]]

(22)

We establish the bound on R(T ) by individually bounding
R0(T ), R1(T ), and R2(T ).

Lemma 3 The terms in (19) are bounded as follows:
1) R0(T ) ≤ Õ(σ2

w

√
(n+m)T ).

2) R1(T ) ≤ Õ(σ2
w

√
(n+m)T ).

3) R2(T ) ≤ Õ(σ2
w(n+m)

√
nT ).

Combining Lemma 3 with equation (19) establishes Theo-
rem 1. Before presenting the proof of Lemma 3, we establish
some preliminary results.

A. Preliminary results

Let XT = σw +max1≤t≤T ∥xt∥ denote the maximum of
the norm of the state plus the noise standard deviation.

Lemma 4 For any q ≥ 1 and any T ≥ 1,

E
[Xq

T

σq
w

]
≤ O((log T )q/2).

See Appendix II for proof.

Lemma 5 For any q ≥ 1, we have

E
[Xq

T

σq
w

log
(X2

T

σ2
w

)]
≤ Õ(1).

See Appendix III for proof.

Lemma 6 The number of episodes is bounded by

KT ≤ O
(√

(n+m)T log

(
T
X2

T

σ2
w

))
.

See Appendix IV for proof.

Remark 4 The statement of Lemmas 4 and 6 are the same
as that of the corresponding lemmas in [1]. The proof of
Lemma 4 in [1] relied on Assumption 3. Since we impose a
weaker assumption, our proof is more involved. The proof of
Lemma 6 is similar to the proof of [1, Lemma 3]. However,
since our TSDE algorithm is different from that in [1], some
of the details of the proof are different.

B. Proof of Lemma 3

We now prove each part of Lemma 3 separately.
1) Proof of bound on R0(T ): Following exactly the same

argument as the proof of [1, Lemma 5], we can show that

R0(T ) ≤ O(σ2
wE[KT ]). (23)

Substituting the result of Lemma 6, we get

R0(T ) ≤ O
(
σ2
wE
[√

(n+m)T log(TX2
T /σ

2
w)
])

(a)

≤ O
(
σ2
w

√
(n+m)T log(TE[X2

T /σ
2
w])
)

(b)

≤ Õ
(
σ2
w

√
(n+m)T

)
where (a) follows from Jensen’s inequality and (b) follows
from Lemma 4.

2) Proof of bound on R1(T ): Following exactly the same
argument as in the proof of [1, Lemma 6], we can show that

R1(T ) ≤ O(E[KTX
2
T ]) (24)

Substituting the result of Lemma 6, we get

R1(T ) ≤ O
(√

(n+m)T E
[
X2

T

√
log(TX2

T /σ
2
w)
])

(25)

Now, consider the term

E
[
X2

T

√
log(TX2

T /σ
2
w)
] (a)

≤
√
E
[
X4

T

]
E
[
log(TX2

T /σ
2
w)
]

(b)

≤
√
E
[
X4

T

]
log(TE[X2

T /σ
2
w])

(c)

≤ Õ(σ2
w) (26)

where (a) follows from Cauchy-Schwartz inequality, (b)
follows from Jensen’s inequality, and (c) follows from
Lemma 4.

Substituting (26) in (25), we get the bound on R1(T ).
3) Proof of bound on R2(T ): As in [1], we can bound

the inner summand in R2(T ) as

∥S(θ̄k)0.5θ
⊺
1zt∥2−∥S(θ̄k)0.5θ

⊺
kzt∥2 ≤ O(XT ∥(θ1−θ̄k)

⊺
zt∥).

Therefore,

R2(T ) ≤ O
(
E

[
XT

KT∑
k=1

tk+1−1∑
t=tk

∥(θ1 − θ̄k)
⊺
zt∥
])

,

which is same as [1, Eq. (45)]. Now, by simplifying the term
inside O(·) using Cauchy-Schwartz inequality, we get

E

[
XT

KT∑
k=1

tk+1−1∑
t=tk

∥(θ1 − θ̄k)
⊺
zt∥
]

≤

√√√√E[ KT∑
k=1

tk+1−1∑
t=tk

∥Σ−0.5
tk

(θ1 − θ̄k)∥2
]

×

√√√√E[ KT∑
k=1

tk+1−1∑
t=tk

X2
T ∥Σ0.5

tk
zt∥2

]
(27)



Note that (27) is slightly different than the simplification
of [1, Eq. (45)] using Cauchy-Schwartz inequality presented
in [1, Eq. (46)], which used Σt in each term in the right hand
side instead of Σtk .

We bound each term of (27) separately as follows.

Lemma 7 We have the following inequality

E

[
KT∑
k=1

tk+1−1∑
t=tk

∥Σ−0.5
tk

(θ1 − θ̄k)∥2
]

≤ O(n(n+m)(T + E[KT ])) ≤ O(n(n+m)T ).

See Appendix V for a proof.

Lemma 8 We have the following inequality

E

[
KT∑
k=1

tk+1−1∑
t=tk

X2
T ∥Σ0.5

tk
zt∥2

]
≤ Õ

(
(n+m)σ4

w

)
See Appendix VI for a proof.

We get the bound on R2(T ) by substituting the result of
Lemmas 7 and 8 in (27).

V. DISCUSSION AND CONCLUSION

In this paper, we present a variation of the TSDE algorithm
of [1] and show that its Bayesian regret up to time T is
bounded by Õ(

√
T ) under a milder technical assumption

than [1]. The result in [1] was derived under the assumption
that there exists a δ < 1 such that for any θ, ϕ ∈ Ω1,
∥Aθ + BθG(ϕ)∥ ≤ δ. For our analysis, we impose a
different assumption for the closed loop gain when the system
dynamics are θ and the controller is chosen according to ϕ.
We show that the assumption of [1] implies our assumption.
Our assumption is also implied by ρ(Aθ +BθG(ϕ)) ≤ δ.

The key technical result in [1] as well as our paper is
Lemma 4, which shows that for any q ≥ 1, E[Xq

T /σ
q
w] ≤

Õ(log T ). The proof argument in both [1] as well as our paper
is to show that there is some constant α0 such that XT ≤ σw+
α0WT . Under the stronger assumption in [1], one can show
that for all t, ∥xt+1∥ ≤ δ∥xt∥+∥wt∥, which directly implies
that XT ≤ σw +WT /(1− δ). Under the weaker assumption
in this paper, the argument is more subtle. The basic intuition
is that in each episode, the system is asymptotically stable
and, being a linear system, also exponentially stable (in the
sense of Lemma 2). So, if the episode length is sufficiently
long, then we can ensure that ∥xtk+1

∥ ≤ β∥xtk∥ + ᾱWT ,
where β < 1 and ᾱ is a constant. This is sufficient to ensure
that XT ≤ σw + α0WT for an appropriately defined α0.

The fact that each episode must be of length Tmin implies
that the second triggering condition is not triggered for the
first Tmin steps in an episode. Therefore, in this interval,
the determinant of the covariance can be smaller than half
of its value at the beginning of the episode. Consequently,
we cannot use the same proof argument as [1] to bound
R2(T ) because that proof relied on the fact that for any t ∈
{tk, . . . , tk+1 − 1}, detΣ−1

t / detΣ−1
tk
≤ 2. So, we provide

a variation of that proof argument, where we use a coarser
bound on detΣ−1

t / detΣ−1
tk

given by Lemma 11.

We conclude by observing that the milder technical
assumption imposed in this paper may not be necessary.
Numerical experiments indicate that the regret of the TSDE
algorithm shows Õ(

√
T ) behavior even when the uncertainty

set Ω1 does not satisfy Assumption 4 (as was also reported
in [1]). This suggests that it might be possible to further relax
Assumption 4 and still establish an Õ(

√
T ) regret bound.
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APPENDIX I
AN AUXILIARY RESULT

Lemma 9 For any q > 0, we have

E

[
max
1≤t≤T

∥wt∥q

σq
w

]
≤ O((log T )q/2) (28)

PROOF For ease of notation, define random variables w̄(q)
t =

∥wt∥q/σq
w and w̄∗

t = (w̄
(q)
t )2/q. Note that w̄∗

t has a χ2-
distribution with n-degrees of freedom. Therefore, w̄∗

t has
a moment generating function E[esw̄

∗
t ] = (1 − 2s)−n/2 for

s < 1/2. Pick a λ ∈ (0, 1/2). By Chernoff bound, we have

P(w̄∗
t > z) ≤ E[e

λw̄∗
t ]

eλz
= Cλe

−λz,

where Cλ = (1 − 2λ)−n/2. Therefore, the complementary
CDF of w̄(q)

t is bounded by

1−F
w̄

(q)
t

(z) = P(w̄
(q)
t > z) = P(w̄∗

t > zq/2) ≤ Cλe
−λzq/2

.

Now, pick λ′ ∈ (0, λ) and consider an i.i.d. process
{ξt}t≥1, where ξt has a CDF Fξt(z) = 1 − e−λ′zq/2

. We
let ξ(T ) denote max1≤t≤T ξt and use a similar notation for
w̄

(q)
(T ). Note that ξt has a Weibull distribution with shape q/2.

Therefore, (see e.g., [20, Eq. (3)])

E[ξ(T )] = O((log T )q/2). (29)

Now we present a bound on E[w̄(q)
(T )] in terms of E[ξ(T )].

Since 0 < λ′ < λ, there exists a z◦ > 0 such that for all z >
z◦, F

w̄
(q)
t

(z) > Fξt(z). Thus, w̄(q)
t is stochastically dominated

by ξt in the weak stochastic order1, as defined in [20].
Therefore, by [20, Theorem 2.1], there exists a constant
c > 0 such that w̄(q)

t is stochastically dominated by cξt in
the convex order.2 Consequently, by [20, Theorem 3.1(1)]
(or [21, Theorem 2.2(1)]), we have that E[w̄(q)

(T )] ≤ cE[ξ(T )].
Substituting (29) establishes the result of the Lemma. ■

1A random variable x is said to be dominated by a random variable y
in the weak stochastic order if for all increasing functions f supported
sufficiently away from 0, E[f(x)] ≤ E[f(y)].

2A random variable x is said to be dominated by a random variable y in
the convex order if for all increasing and convex functions f , E[f(x)] ≤
E[f(y)].



APPENDIX II
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For the ease of notation, let ᾱ = α/(1 − δ), and β =
αδTmin+1. In addition, define WT = max1≤t≤T ∥wt∥, X̄k =
maxtk<t≤tk+1

∥xt∥, Yk = ∥xtk∥, and Hk = A + BG(θ̄k)
where A and B are the true parameters.

From the system dynamics under the TSDE algorithm, we
know that for any time t ∈ {tk + 1, . . . , tk+1}, we have

xt = Ht−tk
k xtk +

t−1∑
j=tk

Ht−1−j
k wj .

Thus, from triangle inequality and Assumption 2, we get

∥xt∥ ≤ αδt−tkYk +

[ t−1∑
j=tk

αδt−1−j

]
WT

≤ αδt−tkYk +

[
α

1− δ

]
︸ ︷︷ ︸

=:ᾱ

WT . (30)

Now at time t = tk+1, we have

Yk+1 = ∥xtk+1
∥ ≤ αδTkYk + ᾱWT .

≤ βYk + ᾱWT (31)

where the second inequality follows from (11), which implies
αδTk ≤ αδTmin+1 =: β. From Lemma 1, β < 1. Recursively
expanding (31), we get

Yk ≤ ᾱWT + βᾱWT + · · ·+ βk−2ᾱWT

≤ ᾱ

1− β
WT =: β̄WT . (32)

Substituting (32) is (30), we get that for any t ∈ {tk + 1,
. . . , tk+1}, we have

∥xt|| ≤ αδt−tk β̄WT + ᾱWT ≤ [αβ̄ + ᾱ]︸ ︷︷ ︸
=:α0

WT

where in the last inequality, we have used the fact that δ ∈
(0, 1). Thus, for any episode k, we have

X̄k = max
tk<t≤tk+1

∥xt∥ ≤ α0WT .

Hence,

XT ≤ σw +max{X̄1, . . . , X̄KT
} ≤ σw + α0WT .

Therefore, for any q ≥ 1, we have

E[Xq
T ] ≤

q∑
p=0

(
q

p

)
σq−p
w αp

0E[W
p
T ] (33)

From Lemma 9, we have that

σq−p
w E[W p

T ] = σq−p
w E

[
max
1≤t≤T

∥wt∥p
]
≤ σq

wO((log T )
p/2

).

Substituting this is (33), we obtain the result of the lemma.

APPENDIX III
PROOF OF LEMMA 5

Since log is an increasing function, log x ≤ logmax(e, x)
for any x > 0. Therefore,

E
[Xq

T

σq
w

log
(X2

T

σ2
w

)]
≤ E

[Xq
T

σq
w

logmax(e,X2
T /σ

2
w)
]

≤

√
E
[X2q

T

σ2q
w

]
E
[(

logmax(e,X2
T /σ

2
w)
)2]

(34)

where the last inequality follows from Cauchy-Schwartz
inequality. Since (log x)2 is concave for x ≥ e, we can
use Jensen’s inequality to write

E
[(

logmax(e,X2
T /σ

2
w)
)2]
≤
(
log(E[max(e,X2

T /σ
2
w)])

)2
≤
(
log(e+ E[X2

T /σ
2
w])
)2

(a)

≤
(
log(e+O(log T ))

)2
≤ Õ(1) (35)

where (a) uses Lemma 4. Substituting (35) in (34) and using
Lemma 4 for bounding E[X2q

T /σ2q
w ], we get

E
[Xq

T

σq
w

log
(X2

T

σ2
w

)]
≤

√
E
[X2q

T

σ2q
w

]
Õ(1) ≤ Õ(1).

APPENDIX IV
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The high-level idea of the proof is same as that of [1,
Lemma 3]. Define macro episodes with start times tni

, i ∈
N>0, where n1 = 1 and for i ≥ 1,

ni+1 = min
{
k > ni

∣∣detΣtk < 1
2 detΣtk−1

}
.

Thus, a new macro-episode starts whenever an episode
ends due to the second stopping criterion. Let M denote the
number of macro-episodes until time T and define nM+1 =
KT + 1. Let T̄i denote the length of the i-th macro-episode.
Within a macro-episode, all but the last episode must be
triggered by the first stopping criterion. Thus, for k ∈ {ni, ni+
1, . . . , ni+1 − 2},

Tk = max{Tk−1 + 1, Tmin + 1} = Tk−1 + 1

where the last equality follows from (11). Hence, by following
exactly the same argument as [1], we have

ni+1 − ni ≤
√
2T̄i

and therefore following [1, Eq. (40)], we have

KT ≤
√
2MT (36)

which is same as [1, Eq. (41)].
Now, observe that

detΣ−1
T

(a)

≥ detΣ−1
tnM

(b)

≥ 2 detΣ−1
tnM−1

≥ · · · ≥ 2M−1 detΣ−1
1 , (37)

where (a) follows because {detΣ−1
t }t≥1 is a non-decreasing

sequence (because Σ−1
1 ≤ Σ−1

2 . . .) and (b) and subsequent



inequalities follow from the definition of the macro episode
and the second triggering condition.

Then following the same idea as the rest of the proof in [1],
we get

M ≤ O((n+m) log(TX2
T /σ

2
w)). (38)

Substituting (38) in (36), we obtain the result of the lemma.

APPENDIX V
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Observe that the summand is constant for each episode.
Therefore,

E

[KT∑
k=1

tk+1−1∑
t=tk

[
∥Σ−0.5

tk
(θ1 − θ̄k)

⊺∥2
]]

= E

[KT∑
k=1

[
Tk∥Σ−0.5

tk
(θ1 − θ̄k)

⊺∥2
]]

(a)

≤ E

[KT∑
k=1

[
(Tk−1 + 1)∥Σ−0.5

tk
(θ1 − θ̄k)

⊺∥2
]]

=

∞∑
k=1

E
[
1{tk≤T}(Tk−1 + 1)∥Σ−0.5

tk
(θ1 − θ̄k)

⊺∥2
]

=

∞∑
k=1

E
[
E
[
1{tk≤T}(Tk−1 + 1)∥Σ−0.5

tk
(θ1 − θ̄k)

⊺∥2
∣∣ htk

]]
(b)
=

∞∑
k=1

E
[
1{tk≤T}(Tk−1 + 1)E

[
∥Σ−0.5

tk
(θ1 − θ̄k)

⊺∥2
∣∣ htk

]]
(c)

≤
∞∑
k=1

E
[
1{tk≤T}(Tk−1 + 1)2(n+m)n

]
≤ 2(n+m)n(T + E[KT ]), (39)

where (a) follows from (11), (b) follows from the fact
that 1{tk<T}(Tk−1 + 1) is σ(htk) measurable, and (c) hold
because conditioned on htk each column of ∥Σ−0.5

tk
(θ1 −

θ̄k)
⊺∥2 is the difference of two i.i.d. vectors ∼ N (0, I).

Eq. (39) proves the first part of the Lemma. The second
part follows from the fact that KT ≤ T .

APPENDIX VI
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For any s < t. Eq. (9) implies that Σ−1
s ⪯ Σ−1

t and
consequently Σ−1

t is positive definite. Therefore, we have the
following:

Lemma 10 Let λmin be the smallest eigenvalue of Σ−1
1 . Then,

each eigenvalue of Σ−1
t is no less than λmin. Therefore, each

eigenvalue of Σt is no more than 1/λmin.

An immediate implication of Lemma 10 is the following: For
any t and s,

z
⊺
t Σszt ≤

1

λmin
∥zt∥2 ≤

1

λmin
M2

GX
2
T , (40)

where MG = supθ∈Ω1
∥[I,G(θ)⊺]⊺∥.

For any s < t, Σ−1
s ⪯ Σ−1

t implies that Σs ⪰ Σt.
Therefore, from [7, Lemma 11], we get that for any V ̸= 0
(of appropriate dimensions),

∥V ⊺ΣsV ∥
∥V ⊺ΣtV ∥

≤ detΣs

detΣt
=

detΣ−1
t

detΣ−1
s

. (41)

Eq. (41) implies that for any t ∈ {tk, . . . , tk+1 − 1}, we
have

∥Σ0.5
tk

zt∥2 = z
⊺
t Σtkzt ≤

detΣ−1
t

detΣ−1
tk

z
⊺
t Σtzt (42)

For the ease of notation, let τk = tk+Tmin. Then we have
the following bound on detΣ−1

t / detΣ−1
tk

.

Lemma 11 The following inequalities hold:

1) For t ∈ {tk, . . . , τk}, we have

detΣ−1
t

detΣ−1
tk

≤
(
1 +

1

λminσ2
w

M2
GX

2
T

)Tmin

.

2) For t ∈ {τk + 1, . . . , tk+1 − 1}, we have

detΣ−1
t

detΣ−1
tk

≤ 2.

Consequently, for all t ∈ {tk, . . . , tk+1 − 1}, we have

detΣ−1
t

detΣ−1
tk

≤
(
2 +

M2
GX

2
T

λminσ2
w

)Tmin∨1

. (43)

PROOF The second relationship follows from the second
stopping criterion. We now prove the first relationship. Eq. (9)
implies that

Σ−1
t+1 = Σ−1

t

(
I +

1

σ2
w

Σtztz
⊺
t

)
.

Therefore,

detΣ−1
t+1

detΣ−1
t

= det

(
I +

1

σ2
w

Σtztz
⊺
t

)
= 1 +

1

σ2
w

z
⊺
t Σtzt

≤ 1 +
1

λminσ2
w

M2
GX

2
T , (44)

where the last inequality follows from (40). Thus, for any
t ∈ {tk, . . . , τk}, we have

detΣ−1
t

detΣ−1
tk

≤
(
1 +

1

λminσ2
w

M2
GX

2
T

)t−tk

≤
(
1 +

1

λminσ2
w

M2
GX

2
T

)Tmin

(45)

where the first inequality follows by repeatedly applying (44)
as a telescopic product.

Let M̄ = M2
GX

2
T /λminσ

2
w. Then, (43) follows by ob-

serving that (1 + M̄)Tmin ≤ (2 + M̄)Tmin∨1 and 2 <
(2 + M̄)Tmin∨1. ■



Using Lemma 11 and (42), we get
tk+1−1∑
t=tk

∥Σ0.5
tk

zt∥2 ≤
tk+1−1∑
t=tk

detΣ−1
t

detΣ−1
tk

z
⊺
t Σtzt

≤
(
2 +

M2
GX

2
T

λminσ2
w

)Tmin∨1 tk+1−1∑
t=tk

z
⊺
t Σtzt

(46)

where the first inequality follows from (42) and the second
inequality follows from Lemma 11. Therefore,

KT∑
k=1

tk+1−1∑
t=tk

X2
T ∥Σ0.5

tk
zt∥2

≤
(
2 +

M2
GX

2
T

λminσ2
w

)Tmin∨1

X2
T

T∑
t=1

z
⊺
t Σtzt (47)

From (40) for s = t, we get that

z
⊺
t Σtzt ≤ max

(
σ2
w,

M2
GX

2
T

λmin

)
min

(
1,

z⊺t Σtzt
σ2
w

)
. (48)

Hence
T∑

t=1

z
⊺
t Σtzt ≤

(
σ2
w+

M2
GX

2
T

λmin

) T∑
t=1

min

(
1,

z⊺t Σtzt
σ2
w

)
(49)

Using (9) and the intermediate step of the proof of [22,
Lemma 6], we have

T∑
t=1

min

(
1,

z⊺t Σtzt
σ2
w

)
=

T∑
t=1

min

(
1,

∥∥∥∥Σ0.5
t ztz

⊺
t Σ

0.5
t

σ2
w

∥∥∥∥)

≤ 2(n+m) log

(
Tr(Σ−1

T+1)

(n+m)

)
− log detΣ−1

1 . (50)

Now, from (9), we get that

Tr(Σ−1
T+1) = Tr(Σ−1

1 ) +

T∑
t=1

1

σ2
w

Tr(ztz
⊺
t )

≤ Tr(Σ−1
1 ) +

T

σ2
w

M2
GX

2
T , (51)

where the last inequality uses the fact that Tr(ztz
⊺
t ) =

Tr(z⊺t zt) = ∥zt∥2 ≤ M2
GX

2
T . Combining (49) with (50)

and (51), we get
T∑

t=1

z
⊺
t Σtzt ≤ O

(
(n+m)(σ2

w +X2
T ) log(TX

2
T /σ

2
w)
)
. (52)

Therefore, we can bound the expectation of the right hand
side of (47) as

E

[(
2 +

M2
GX

2
T

λminσ2
w

)Tmin∨1

X2
T

T∑
t=1

z
⊺
t Σtzt

]
≤ O

(
σ4
w(n+m)E[F (XT )]

)
≤ Õ(σ4

w(n+m)), (53)

where the first inequality follows from (52) with F (XT ) =(
2 +

M2
GX2

T

λminσ2
w

)Tmin∨1
(
X2

T

σ2
w
+

X4
T

σ4
w
) log(TX2

T /σ
2
w), and the last

inequality follows from Lemma 5 by noting that F (XT ) is
a polynomial of XT /σw multiplied by a poly-log term.

The result follows from (47) and (53).
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