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ABSTRACT

In this paper, we define a bounded rationality based generalization

of stationary mean field equilibrium that we call gradient based

stationary mean field equilibrium. Unlike Nash equilibrium and

its variants, where each agent plays a best response policy given

the policy of others, in a gradient based equilibrium, each plays

a policy such that the performance gradient with respect to the

policy parameters is zero. We then propose a policy gradient based

algorithm to compute gradient-based stationary mean field equilib-

rium. We demonstrate the performance of this algorithm using a

numerical experiment based on malware spread in networks.
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1 INTRODUCTION

Several problems such as automated trading in large financial mar-

kets, control of smart grids, decision making in industries with

many firms involve systems with large number of agents. Another

characteristic feature of such problems is that each agent is usually

small, i.e., a single agent cannot meaningfully affect the system.

Such systems are called mean field games and the corresponding

solution concept is called mean field equilibrium (MFE) [11, 16, 23].

A mean field equilibrium is a trajectory of policies and a trajectory

of mean field distributions satisfying sequential rationality and

consistency. Here, sequential rationality requires that the specified

policy trajectory of each agent is a best response to the given tra-

jectory of mean field distributions. Consistency requires that the

given trajectory of the mean field distributions is generated when

agents play the specified policy trajectory.

Further simplification is possible when the system dynamics

are such that the mean field becomes stationary. The relevant

solution concepts in this case are stationary mean field equilib-

rium (SMFE) (also called stationary equilibrium) [1] and oblivious

equilibrium [47]. A stationary mean field equilibrium is a time-

homogeneous policy and a time-homogeneous mean field distribu-

tion satisfying sequential rationality and consistency. Here, sequen-

tial rationality requires that the specified time-homogeneous policy

is a best response to the given time-homogeneous mean field dis-

tribution. Consistency requires that the given time-homogeneous

mean field distribution is stationary when agents play the specified

time-homogeneous policy.
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However, even in such cases, computing the best response might

be a challenging task for each agent. An agent with limited compu-

tational capability, or bounded rationality might choose to satisfice

rather than optimize [40]. In this paper, motivated by bounded ratio-

nality, we define a generalization of SMFE that is easier to compute.

We call this solution concept as gradient based stationary mean field

equilibrium (∇-SMFE). ∇-SMFE is a time-homogeneous oblivious

policy and a time-homogeneous (stationary) mean field distribu-

tion (belief) satisfying gradient based sequential rationality and

consistency. Here, gradient based sequential rationality requires

that the specified time-homogeneous policy is a local best response

(i.e., the policy at which the gradient of the agent’s assessment of

performance is zero) to the given time-homogeneous mean field dis-

tribution. Consistency requires that the given time-homogeneous

mean field distribution is generated when agents play the specified

time-homogeneous policy. In this paper, we present an algorithm

to compute ∇-SMFE that is a stochastic approximation algorithm

consisting of two components: (i) a particle filter based approach

to compute the stationary distribution corresponding to a policy;

and (ii) a policy gradient based approach to compute the gradient

of the performance of a policy. We illustrate the algorithm using

an example considering a stylized model of malware spread in

networks.

Policy gradient based methods are one of the key approaches

in reinforcement learning [2, 17, 21, 34, 44]. Recent extensions

of policy gradient algorithms such as trust region based meth-

ods [36, 37, 49] have met with several successes. Reinforcement

learning methods have also been used in game theory and multi-

agent systems [6, 7, 10, 22, 24ś30, 32, 33, 45, 46]. See [4, 38, 39] for

an overview. Reinforcement learning in mean field games has also

been presented in [20, 50, 51]. However, in this paper, we pursue

a different approach to determining equilibria in stationary mean

field games.

1.1 Notation

The letter n denotes the number of agents and N = {1, . . . ,n} de-

notes the set of agents.X denotes the state space andA denotes the

action space. In general capital letters denote random variables such

as X for state and A for action, while corresponding small letters

such as x and a denote their values respectively. For any discrete

set S, ∆(S) denotes the space of probability mass functions on S.

Policies are represented using µ and their parameters using θ . In

general, we assume stochastic policies, i.e, µ : X → ∆(A). Using a

slight abuse of notation, we also denote the probability of a particu-

lar action a ∈ A, under policy µ in state x ∈ X as µ (a |x ). ξ denotes

the empirical mean field (or population average) and π denotes the
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statistical mean field (or infinite population limit of population av-

erage). We mostly use subscripts to denote time and in some cases

the policy or the mean field. We sometimes use a subscript range to

denote a set of quantities, such as, X0:t = {X0,X1, . . . ,Xt }. Bold let-

ters are used to denote profiles, for instance, Xt := {X i
t }i ∈{1, ...,n } .

[·]Θ is projection onto Θ. Other variables are defined when they

are introduced in the text.

2 MODEL

Consider a non-zero sum stochastic dynamic game with imperfect

information that runs for an infinite horizon. Let N ≔ {1, . . . ,n}

denote the set of agents. Each agent i,i ∈ N , has a local stateX i
t ∈ X

and chooses actionsAit ∈ A. The state spaceX and the action space

A are finite and identical for all agents. LetXt ≔ {X
1
t , . . . ,X

n
t } and

At ≔ {A
1
t , . . . ,A

n
t } denote the state and action of all agents. The

state of agent i,i ∈ N , evolves in a controlled Markovian manner;

in particular, for any x i ∈ X, we have

P[X i
t+1 = x i | X1:t ,A1:t ] = P[X

i
t+1 = x i | X i

t ,A
i
t ] ≕ P (x i | X i

t ,A
i
t ).

(1)

All agents have identical dynamics with controlled transition ma-

trices {P (·|·,a)}a∈A . The per-step payoff to agent i is given by a

utility function u (X i
t ,A

i
t ,ξt ), where ξt ∈ ∆(X) is the population

average (or the empirical mean field), which is given by:

ξt (x ) =
1

n

∑

i ∈N

1{X i
t = x }, ∀x ∈ X. (2)

Note that the utility function is the same for all agents. In general

each agent i,i ∈ N , may use a history dependent behavioral pol-

icy µit : Xt → ∆(A). Let µi = {µi0,µ
i
1, . . . } denote the policy of

agent i for all time. The collection µ := {µ1, . . . ,µn } is called the

policy profile for all agents. Given a policy profile µ, the payoff of

agent i,i ∈ N , is given by:

U i (x ; µ) = EAit∼µ
i
t (X

i
1:t )

[ ∞∑

t=0

γ tu (X i
t ,A

i
t ,ξt )

���� X0 = x

]
. (3)

When the number of agents is large, identifying a perfect Bayesian

equilibrium of the above game is quite challenging. Therefore, four

simplifying assumptions have been considered in the literature [1,

5, 12, 15, 16, 23, 47]:

(1) First, attention is restricted to oblivious policies, i.e., it is

assumed that an agent uses only its current state to pick

a distribution of actions. Thus, µit : X → ∆(A) and Ait ∼

µit (X
i
t ).

(2) Second, attention is restricted to time-homogeneous obliv-

ious policies, i.e., it is assumed that µit does not depend on

time.

(3) Third, attention is restricted to symmetric policies, i.e., it is

assumed that all agents play identical (oblivious) policies.

Thus µ = {µ,µ, . . . ,µ}. For ease of notation, we simply refer

to the policy profile as µ. For a symmetric policy, we have

that for any y ∈ X:

ξt+1 (y) =
∑

x ∈X

∑

a∈A

ξt (x )µ (a | x )P (y | x ,a). (4)

Thus, we may write,

ξt+1 = Φ(ξt ,µ ). (5)

(4) Finally, while evaluating the payoff, each agent assumes

that the population average is stationary. Thus agent i’s

assessment of its payoff is:

V i
µ,π (x ) = EAit∼µ (X

i
t )

[ ∞∑

t=0

γ tu (X i
t ,A

i
t ,π )

���� X
i
0 = x

]
. (6)

Note that this assessment is identical for all agents. So, in

the sequel, we simply denote it by Vµ,π .

Under these conditions, the following refinement of Nash equilib-

rium is used as a solution concept [1, 47].

Definition 2.1 (Stationary mean field equilibrium (SMFE)). A sta-

tionary mean field equilibrium (SMFE) is a pair of a belief π ∈ ∆(X)

and a time-homogeneous oblivious policy µ : X → ∆(A) which

satisfies the following two properties:

(1) Sequential Rationality: For any other time-homogeneous

oblivious policy µ̃ : X → ∆(A),

Vµ,π (x ) ≥ Vµ̃,π (x ), ∀x ∈ X. (7)

(2) Consistency: The belief π is stationary under policy µ, i.e.,

π = Φ(π ,µ ). (8)

Note that it is possible to write a recursive expression for Vµ,π
using the standard dynamic programming decomposition. In partic-

ular,Vµ,π is given by the unique bounded solution of the following

fixed point equation:

Qµ,π (x ,a) = u (x ,a,π ) + γ
∑

y∈X

P[y | x ,a)Vµ,π (y)], (9)

Vµ,π (x ) =
∑

a∈A

µ (a |x )Qµ,π (x ,a). (10)

Given the above dynamic program, we may rewrite the sequential

rationality condition of SMFE as follows:

(1’) Given a π ∈ ∆(X), letV ∗π be the unique bounded solution of

the following fixed point equation:

Q∗π (x ,a) = u (x ,a,π ) + γ
∑

y∈X

P[y | x ,a)V ∗π (y)], (11)

V ∗π (x ) = max
a∈A
{Q∗π (x ,a)}. (12)

Then a policy µ : X → ∆(A) is sequentially rational given

π if and only if

supp{µ (x )} ∈ argmax
a∈A

{Q∗π (x ,a)}, (13)

which means that every action which has a positive weight

under µ (x ) is a best response to π .

3 BOUNDEDLY RATIONAL STATIONARY
MEAN FIELD EQUILIBRIA

SMFE provides a drastic simplification over perfect Bayesian equi-

librium or even Markov perfect equilibrium for large population

games. In spite of this simplification, numerically computing SMFE

is still a formidable task. The obvious solution approach is to start

with a guess π (1) for the stationary mean field distribution, find the

best response µ (1) by solving (12), and then find the stationary dis-

tribution π (2) corresponding to µ (1) and then iterate. There are two

difficulties in such an approach. The first is a conceptual difficulty:
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it is not clear that such an iteration will converge. The second is a

computational difficulty: each step of the iteration requires solving

a dynamic program, which can be prohibitively difficult when the

state space is large or continuous. Various sufficient conditions

under which the above iteration converges have been identified

in [1, 9, 13, 15, 47]. These partially resolve the first conceptual diffi-

culty. In this paper, we propose a methodology to resolve the second

computational difficulty.

To obtain a computationally tractable method to solve the dy-

namic program, we assume that the agents have bounded rational-

ity [40] and restrict attention to a class of parametrized policies µθ ,

where the parameter θ belongs to a closed convex subset Θ of a

Euclidean space. With a slight abuse of notation, we also sometimes

use θ to denote µθ . In addition, we assume that instead of finding a

global best response,

θ ∈ argmax
θ ∈Θ

Vθ ,π , (14)

the boundedly rational agent is satisfied with a local best response,

θ is such that ∇θVθ ,π = 0. (15)

Based on this, we define the following generalization of SMFE,

which we call gradient based SMFE and denote by ∇-SMFE.

Definition 3.1 (∇-SMFE). A gradient based SMFE (∇-SMFE) is a

pair of belief π ∈ ∆(X) and a parametrized policy µθ : X → ∆(A),

where θ ∈ Θ, which satisfies the following two properties:

(1) Gradient based sequential rationality: Let Vθ ,π be the fixed

point of (9) and (10). Then,

∇θVθ ,π = 0. (16)

(2) Consistency: The belief π is stationary under policy µθ , i.e.,

π = Φ(π ,µθ ). (17)

Proposition 3.2. Given a stationary belief π ∈ ∆(X), an initial

distribution ξ0 ∈ ∆(X), and a policy µθ , θ ∈ Θ, define the agent’s

assessment of the payoff as:

Jθ ,π := EX∼ξ0 [Vθ ,π (X )] =
∑

x ∈X

Vθ ,π (x )ξ0 (x ). (18)

Then the policy µθ is gradient based sequentially rational with respect

to π if and only if

∇θ Jθ ,π = 0.

Proof. We first prove if µθ is gradient based sequentially ra-

tional then ∇θ Jθ ,π = 0. Now, Jθ ,π = EX∼ξ0Vθ ,π (X ). Therefore,

∇θ Jθ ,π = EX∼ξ0∇θVθ ,π (X ). So, if θ is gradient based sequentially

rational (i.e. ∇θVθ ,π = 0), then ∇θ Jθ ,π = 0.

We now prove the other direction, i.e., ∇θ Jθ ,π = 0 implies µθ
is gradient based sequentially rational. Suppose ξ0 is a delta distri-

bution with ξ0 (x ) = 1 and ξ0 (y) = 0 for all y , x , where x ,y ∈ X.

Then ∇θ Jθ ,π = 0 implies that ∇θVθ ,π (x ) = 0. Since the choice of

x is arbitrary, we have ∇θVθ ,π (x ) = 0 for all x ∈ X. Thus, µθ is

gradient based sequentially rational. □

Based on Proposition 3.2, we propose an iterative algorithm to

compute a ∇-SMFE. The main idea is as follows. For any θ ∈ Θ, let

πθ be the stationary distribution corresponding to policy µθ and let

Gθ be an unbiased estimator of ∇θ Jθ ,πθ . Then, we can start with

Algorithm 1: StationaryDistribution

input : ξ0 : Initial distribution

θ : Policy parameter

B : Burn-in period

np : Number of particles

output : π : Stationary distribution

for i = 1 : np do

x i0 ∼ ξ0

for t = 0 : B do

ait ∼ µθ
x it+1 ∼ P (·|x it ,a

i
t )

for x ∈ X do

π (x ) = 1
np

∑np
i=1 1{x

i
B+1
= x }

return π

any initial guess θ0 ∈ Θ, and at each step, update the guess using

stochastic gradient ascent:

θk+1 = [θk + αkGθk ]Θ, (19)

where {αk }k≥0 is a sequence of learning rates that satisfy the stan-

dard conditions:
∑
αk = ∞ and

∑
α2
k
< ∞. Then we have the

following:

Proposition 3.3. If the iteration (19) converges to a limit θ∗ along

any sample path, then (θ∗,πθ ∗ ) is a ∇-SMFE.

Proof. At any step of the iteration, we have that πθ is the sta-

tionary distribution corresponding to µθ ; and therefore consis-

tency (17) is satisfied. At convergence, we have that ∇θ Jθ ∗,πθ ∗ = 0.

Therefore by Proposition 3.2, gradient based sequential rational-

ity (16) is satisfied by θ∗. □

To convert the above iteration to a complete algorithm, we need

two components:

(1) Given a policy µθ , compute the stationary distribution πθ .

(2) Given a mean field π and a policy µθ , compute an unbiased

estimate of ∇θ Jθ ,π .

For the first component, we use a particle filter based approach to

compute the stationary distribution πθ . The details are shown in

Algorithm 1.

For the second component, we use standard policy gradient

approaches from reinforcement learning: likelihood ratio based gra-

dient estimate [21, 44] or simultaneous perturbation based gradient

estimate [3, 18, 31, 41]. The details are given below.

3.1 Likelihood ratio based gradient estimation

One approach to estimate the performance gradient is to use likeli-

hood radio based estimates [8, 35, 48]. Suppose the policy µθ (X ) is

differentiable with respect to θ . For any time t , define the likelihood

function

Λt
θ
= ∇θ log[µθ (At | Xt )], (20)

where with a slight abuse of notation µθ (At |Xt ) denotes the prob-

ability of choosing action At in state Xt under policy µθ . Then
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Algorithm 2: Likelihood ratio based algorithm to compute

∇-SMFE

input : θ0 : Initial policy parameter

K : Number of iterations

ξ0 : Initial mean field distribution

B : Burn-in period

np : Number of particles

output : θ : Estimated ∇-SMFE parameter

for iterations k = 1 : K do
πk = StationaryDistribution(ξ0,µθk ,B,np )

Gθk = PolicyGradient(θk ,ξ0,πk )

Compute θk+1 using (19)

return θK+1

from [2, 44, 48] we know that:

∇θVθ ,π (x ) = EAt∼µθ (Xt )

[ ∞∑

σ=0

Λσ
θ
Vθ ,π (Xσ )

���� X0 = x

]
. (21)

Thus,

∇θ Jθ ,π = EX∼ξ0 [∇θVθ ,π (X )]. (22)

An algorithm to compute ∇-SMFE based on the likelihood ratio

approach is given in Algorithm 2. The PolicyGradient function

in Algorithm 2 can be obtained by an actor only method such

as Monte Carlo [43] or Renewal Monte Carlo [42], or using an

actor critic method such as SARSA [43]. Additionally, variance

reduction techniques such as subtracting a baseline or using mini-

batch averaging may also be used.

3.2 Simultaneous perturbation based gradient
estimation

Another approach to estimate the performance gradient is to use

simultaneous perturbation based methods [3, 18, 31, 41]. This ap-

proach is useful when the policy µ is not a differentiable function

of its parameters θ . Now, given any distribution ξ0, we can estimate

Jθ ,π using Vθ ,π as:

Jθ ,π = EX∼ξ0 [Vθ ,π (X )]. (23)

The two-sided form of simultaneous perturbation estimates are

given as:

∇̂Jθ ,π = η(Jθ+βη,π − Jθ−βη,π )/2β . (24)

Thus,

∇̂Jθ ,π = η(EX∼ξ0 [Vθ+βη,π (X )] − EX∼ξ0 [Vθ−βη,π (X )])/2β . (25)

where η is a random variable with the same dimension as θ and

β is a small constant. The above method is called simultaneous

perturbation stochastic approximation (SPSA) [31, 41], when ηi ∼

Rademacher(±1); and it is called smoothed functional stochastic

approximation (SFSA) [3, 18] when η ∼ Normal(0, I ).

An algorithm to compute ∇-SMFE based on the simultaneous

perturbation approach is given in Algorithm 3. As in the case of the

likelihood ratio based approach, the PolicyEvaluation function

in Algorithm 3 may be obtained by an actor only method such as

Monte Carlo [43] or Renewal Monte Carlo [42], or using an actor

critic method such as SARSA [43].

Algorithm 3: Simultaneous perturbation based algorithm to

compute ∇-SMFE

input : θ0 : Initial policy parameter

K : Number of iterations

ξ0 : Initial mean field distribution

B : Burn-in period

β : Magnitude of perturbation

np : Number of particles

output : θ : Estimated ∇-SMFE parameter

for iterations k = 1 : K do
πk = StationaryDistribution(ξ0,µθk ,B,np )

Let η ∼ Uniform{−1,1} or η ∼ N (0,1)

θ+
k
= θk + ηβ

θ−
k
= θk − ηβ

Ĵθ+βη,π = PolicyEvaluation(θ+
k
,ξ0,πk )

Ĵθ−βη,π = PolicyEvaluation(θ−
k
,ξ0,πk )

Compute Gθk as an estimate of ∇̂θ Jθ ,π using (24)

Compute θk+1 using (19)

return θK+1

4 NUMERICAL STUDY

For our numerical study, we consider a stylized model of malware

spread in networks [13, 14]. In this model, the state of an agent

denotes its health. The state space is continuous with X = [0,1],

whereX = 0 is the most healthy state andX = 1 is the least healthy

state. The action space is A = {0,1}, where Ai = 0 means do

nothing and Ai = 1 means take corrective action. The dynamics

are given by:

X i
t+1 =


X i
t + (1 − X i

t )ηt , for Ait = 0,

0, for Ait = 1,
(26)

where {ηt }t ≥0 is an i.i.d. process with probability density function

f . The per-step payoff is:

u (x ,a,ξ ) = −(k + ξ̄ )x − λa, (27)

where ξ̄ is the mean of ξ and k ,λ are given constants. It is shown

in [13, 14] that the SMFE policy has a threshold structure. So we

restrict attention to threshold based policies with Θ = [0,1], where:

µθ (x ) =

0, if x < θ ,

1, if x ≥ θ .
(28)

In our experiments, we choose f = Uniform[0,1], k = 0.2, λ = 0.5,

and we discretize the state space into 101 uniformly sized cells

{0,0.01, . . . ,1}. We use a discount factor of γ = 0.9. Since the policy

is not differentiable, we estimate the gradient using simultaneous

perturbation (Algorithm 3). We use the following parameters: np =

1000,θ0 = 0.1, K = 200, B = 200, β = 0.1, η ∼ Uniform{−1,1} and

ξ0 = Uniform(X), and choose the learning rates corresponding to

ADAM [19] with the α parameter of ADAM as 0.01 and standard

values for the other ADAM parameters.

The thresholds, performances and stationary mean fields versus

samples over various iterations are given in figures 1a,1b and 1c.

The exact values (SMFE) for these parameters obtained using the

method specified in [13] are shown in black in these figures. We
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Figure 1: ∇-SMFE computation. The solid lines show the

mean values and the shaded regions show the ± two stan-

dard deviation region over 100 runs.

note that all these three parameters converge fairly quickly to the

approximate values with small error.

5 CONCLUSION & FUTUREWORK

In this paper, we define a new equilibrium concept, gradient based

stationary mean field equilibrium, for a class of large population

games, based on stationary mean field equilibrium, which takes

into account bounded rationality. We then develop an algorithm

to compute this equilibrium and present a numerical example to

illustrate computation of this equilibrium.

Although we presented only policy based algorithms (Actor only

and Actor Critic), bounded rationality can also be modelled using a

Critic only variant. Here, function approximation used in the Critic

makes the agent boundedly rational. The detailed algorithm for

this approach can be derived in a similar manner to the algorithms

presented in this paper.

Another important point is the distinction of the algorithms pre-

sented here from reinforcement learning. The proposed algorithm

is a simulation based algorithm but it is not an online reinforcement

learning algorithm for the following reasons. Even though each

agent can in-principle run these two algorithms individually (for

Algorithm 3, the agent would need to know the per-step payoff

function), prior to actually playing the game, each agent needs to

make an assumption on all other agents’ behaviour in the learn-

ing phase. This coordination in learning is not easily justified in

a competitive game with strategic agents, where the agents can

try and influence their opponents during learning. Since we do not

explicitly account for this consideration, the proposed approach is

not an online reinforcement learning algorithm. This implies that,

though our algorithms are useful in computing a boundedly ratio-

nal equilibrium, the iterates in our algorithm are not representative

of the learning dynamics of individual agents.
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