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The road to self-driving cars ...

Level 1 Control either speed or steering
P> Cruise control B> Automatic breaking

Level 2 Control both speed or steering
> Automatic lane control (Tesla’s autopilot)

Level 3 Car can handle “dynamic driving tasks” but still need human intervention
> ...

Level 4 Fully autonomous in certain situations
> ...

Level 5 Fully autonomous in all situations
> S




These advances are driven by sophisticated algorithms
that rely on measurements from multiple sensors
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Arbitration in Control Area Network
B> Each data-frame consists of a 11 or 29 bit arbitrartion feld and payload.

> When the CAN bus is idle, all nodes start transmitting at the same time.
B> Bitwise transmission can be dominant (high voltage) or recessive (low voltage)
B> IF any node transmits at a dominant level, the voltage of the bus is high.

> Nodes monitor the voltage on the bus. If a node transmitting at a recessive level
detects a dominant voltage on the bus, it immediately quits transmitting.

Scheduling sensor measurements is different from scheduling data packets
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Arbitration in Control Area Network
D> Each data-frame consists of a 11 or 29 bit arbitrartion feld and payload.

P> When the CAN bus is idle, all nodes start transmitting at the same time.
D> Bitwise transmission can be dominant (high voltage) or recessive (low voltage)
B> If any node transmits at a dominant level, the voltage of the bus is high.

&> Nodes monitor the voltage on the bus. If a node transmitting at a recessive level
detects a dominant voltage on the bus, it immediately quits transmitting.

Scheduling sensor measurements is different from scheduling data packets
B> Suppose a sensor does not get access to the channel.
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Background
(s = h

Arbitration in Control Area Network
P> Each data-frame consists of a 11 or 29 bit arbitrartion feld and payload.

> When the CAN bus is idle, all nodes start transmitting at the same time.
P> Bitwise transmission can be dominant (high voltage) or recessive (low voltage)
& IF any node transmits at a dominant level, the voltage of the bus is high.

t> Nodes monitor the voltage on the bus. If a node transmitting at a recessive level
detects a dominant voltage on the bus, it immediately quits transmitting.

Scheduling sensor measurements is different from scheduling data packets
B> Suppose a sensor does not get access to the channel.

B> Then, it should simply discard the previous measurement rather than buffering it.

P> Transmit fresh measurement at the next transmission instant.

Reng, CIOTUITTITativiIlT UvierT Uiy \IVI(AIIU.JU.II/




Model and Problem Formulation

Remote estimation over CAN-(Mahajan)




Model and Problem Formulation
Eystem Model

Receiver 1

Control Area
Network

t Sensor n Receiver n
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Model and Problem Formulation
Eystem Model

Sensors B> n sensors indexed by N ={1,...,n}. : Control Ares
DX;H.: a.iXi—i—W%, o
A, XL, WieR, Wi~ o).

Assumptions D> The observation processes across sensors are independent.
B> The noise process is independent across time (and independent of initial state)
> The density ¢'(-) is even and unimodal.
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Model and Problem Formulation

Eystem Model

Sensors

Assumptions

Network

L

P> n sensors indexed by N ={1,...,n}. : Control Area

B X, = aiXi + W,

Network

o, XL, WieR, Wi~ oi().

D> The observation processes across sensors are independent.
> The noise process is independent across time (and independent of initial state)
B> The density @'(-) is even and unimodal.

X
¢,

Received packet Y} = {

if sensor i has highest priority
otherwise
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Eystem Model

Sensors

Assumptions

Network

Receivers

B> n sensors indexed by N = {1,...,n}. : Cw:;ﬁ;ea
BXL oW
ah, XL, Wie R, Wi~ oi().

P> The observation processes across sensors are independent.
P> The noise process is independent across time (and independent of initial state)
B> The density ¢'(-) is even and unimodal.

Xi, ifsensor i has highest priority

Received packet Yi =
P ¢ {@, otherwise

i iFYi# ¢
alXi ,, ifyi=¢

Estimate Xi = {

Distortion d*(Xt — >A(1), where d*(-) is an even and increasing function.
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Model and Problem Formulation

rrroblem formulatlon

Information B> S¢: Sensor with highest priority. All sensors observe S;.

structure . . .
P> Priority Assignment rule gi: (Xj.,, S1:4—1) — Zi.

> S, =arg max Zt
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Model and Problem Formulation
rrroblem formulatlon

Information B Si: Sensor with highest priority. All sensors observe S;.
structure ) . .
D> Priority Assignment rule gi: (Xj., S1:4—1) — Zi.

> S, =arg max Zt

T-1
Objective min llm = IE {Z Z d* (X} —QD}

T—oo T t=0 ieN
i£S,
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Model and Problem Formulatlon

Information
structure

Objective

Salient Features

rrroblem formulatlon

B> Si: Sensor with highest priority. All sensors observe S;.
B> Priority Assignment rule gi: (Xi.,, Sq.¢—1) — Zi.

> S, =arg max Zt

1

T—
min llm —IEJ {Z Z dt(xt —ﬁ)}
T—oo T = lisN

P> Decentralized stochastic control problem.
B> Finding optimal solution is notoriously difficult. Use a heuristic policy instead.

D> Motivated by value of information in economics.
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Error process Define EY = X§ and for t > 0,

Ei . Wt)
1 atE W

iFS, #1
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What is Value of Information?
ﬁ change of variables

Error process Define EY = X§ and for t > 0,

oo Wi iFSy =1
v al'EL+ WP iFS, #1i

Called the error process because when Sy # 1, Xi — )AQ = EL. Thus, total estimation
error can be written as

S B o
min TlinooT]E [Z Z d (Et)]

L
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What is Value of Information?

%éfining tﬁe vailLllé of information

Value of Information The amount of money someone is willing to pay to access that information.
(vol)

Rer‘l&; CIOTUITTITativiIlT UvierT Uiy \IVI(AII(AJ(AII/




What is Value of Information?
[ | L o | | — j
r”Eefining the value of information B

Value of Information The amount of money someone is willing to pay to access that information.
(vol)

VOI for remote B> Suppose that there is a single sensor, say i, and a dedicated communication
estimation channel is available.

B> The sensor has to pay an access fee A' each time it uses the channel.
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Value of Information The amount of money someone is willing to pay to access that information.
(vol)

VOI for remote > Suppose that there is a single sensor, say i, and a dedicated communication
estimation channel is available.
B> The sensor has to pay an access fee A' each time it uses the channel.
P> Let Ul € {0, 1} denote the sensor’s decision.

D> Then, the error process is
£ W%, ' iFU% =1
T alBE+WE iFUE =0

Ren&; CIOTUITTITativiIlT UvierT Uiy \IVIuIIuJuII/




What is Value of Information?

E— j

Value of Information
(vol)

VOI for remote
estimation

Objective

r’refmmg the vailue of information B

The amount of money someone is willing to pay to access that information.

B> Suppose that there is a single sensor, say i, and a dedicated communication
channel is available.

B> The sensor has to pay an access fee A" each time it uses the channel.
B> Let Ul € {0, 1} denote the sensor’s decision.

P> Then, the error process is
£ W%, ' iFU% =1
T alBE+WE iFUE =0

T
min lim - [ [NU‘ 1—Ui)di(E1)H

Tooo | =
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Defining the value of information (cont.)

Optimal policy The objective is a single agent multi-stage optimization problem. Optimal solution
is given by dynamic programming.
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Defining the value of information (cont.)

Optimal policy The objective is a single agent multi-stage optimization problem. Optimal solution
is given by dynamic programming.

Let h' € R and vi: R — R satisfy the following dynamic program: for any e € R

ht +vi(e) = min {Ai +J et(w)vi(w)dw, di(e) +J
R

el (w)vi(ae + w)dw}
R

|




What is Value of Information?

[ ] rd .o

I —

Optimal policy

Defining the value of information (cont.)

The objective is a single agent multi-stage optimization problem. Optimal solution
is given by dynamic programming.

Let h' € R and vi: R — R satisfy the following dynamic program: for any e € R

ht +vi(e) = min {Ai +J et(w)vi(w)dw, di(e) +J
R

el (w)vi(ae + w)dw}
R

Let fi(e) = 0 if the frst term is smaller and fi(e) = 1 if the second term is smaller.
Then, fi(e) is the optimal action at state e.

|




What is Value of Information?

Defining the value of information (cont.)

Optimal policy The objective is a single agent multi-stage optimization problem. Optimal solution
is given by dynamic programming.

Let h' € R and vi: R — R satisfy the following dynamic program: for any e € R

ht +vi(e) = min {Ai +J et(w)vi(w)dw, di(e) +J el (w)vi(ae +w)dw}
R

R

Let fi(e) = 0 if the frst term is smaller and fi(e) = 1 if the second term is smaller. +
Then, fi(e) is the optimal action at state e.

Theorem (Structure There exists a threshold k*(A!) such that the optimal policy is of the form

of optimal policy) , 1, iFlel < ki(AY)
file) = .
0, otherwise.

onicity, stochastic dominance, and

L submodularity.

Proof relies on stochastic monot—l MO["BOVBI", at k*()\*),

Al —I—J et (w)vi(w)dw = di(e) —I-J
R R




What is Value of Information?
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Optimal policy The ob]ectlve is a single agent multi-stage optimization problem. Optimal solution

)

VVOI at e is the smallest value of access fee for which the sensor is indifferent
between transmitting and not transmitting when the state is |e|, i.e.,

VOI*(e) = inF{At € R5o : k'(AL) = [e]}

Theorem (Structure There exists a threshold k*(A!) such that the optimal policy is of the form
of optimal policy) e { iF le] < Ki(A)

0, otherwise.

Proof relies on stochastic monot—l MOFBOVBF. at k*()\*),
d

onicity, stochastic dominance, an
Al +J et (w)vt(w)dw = di(e) + J et (w)vi(ae +w)dw
R R

L submodularity.
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Optimal policy The ob]ectlve is a single agent multi-stage optimization problem. Optimal solution

)

VVOI at e is the smallest value of access fee for which the sensor is indifferent
between transmitting and not transmitting when the state is |e|, i.e.,

VOI*(e) = inF{At € R5o : k'(AL) = [e]}

Theorem (Structure There exists a threshold k*(A!) such that the optimal policy is of the form
of optimal policy) e { iF le] < Ki(A)

0, otherwise.

Proof relies on stochastic monot—l MOFBOVBF. at k*()\*),
d

onicity, stochastic dominance, an
Al +J et (w)vt(w)dw = di(e) + J et (w)vi(ae +w)dw
R R

L submodularity.
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How to compute value of information?
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Naive method

B> For a given A%, find k*(AY) by numerically solving the dynamic program.
B> VOI'(e) can be computed by doing a binary search of At until kt(A!) = |e].
P> This method is extremely inefficient because solving DP is hard.
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How to compute value of information?

r

Naive method

First simplification

L

D> For a given A%, find k*(AY) by numerically solving the dynamic program.
> VOI'(e) can be computed by doing a binary search of At until kt(A!) = |e].
B> This method is extremely inefficient because solving DP is hard.

Let fi. denote the threshold policy with threshold k.
T—1

. 1 L . 1 U=l
Define Di. = [im_ E {Zu - u;)dl(E;)] and N} = _lim_ E [Z u;]
t=0 t=0

2
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How to compute value of information?

r

Naive method

First simplification

L

B> For a given AY, ind k*(AY) by numerically solving the dynamic program.

> VOI'(e) can be computed by doing a binary search of At until kt(A!) = |e].

B> This method is extremely inefficient because solving DP is hard.

Let fi. denote the threshold policy with threshold k.

i R 1 = i i i i R ] = i
Define Di. = Tlmo?]E {;(1 —ubd (Et)} and Ni = TlinooTIE LZO ut]

Then, Ji(fl) = DI +AINL. The policy is optimal if 9, Dt + A9, Ni = 0.

_ %Dy

VOI* (k) = N
k

Therefore,

2
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How to compute value of mformatlon?

rromputlng akD‘ and akN‘

1
Define Lt (x) = E [Z d(EY) |EL = x] and Mi(x) =E [t
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1
Define Lt (x) = E [Z d(E}) [E} = x] and Mi(x) =E [t

i LL(0)
Then, from renewal theory: D} = Ml 0)
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How to compute value of mformatlon?

rromputlng akD‘ and akN‘

Then, from renewal theory: D} =

Renewal relationships  Let t denote the stopping time of the first transmission.

1
Define Lt (x) = E [Z d(EY) |EL = x] and Mi(x) =E [t

L} (0)
; Ml (0)

Therefore, VOI'(k)

= Mg (0)

ok L (0)

aump)  k(©
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How to compute value of mformatlon?
rromputlng akD‘ and akN‘

Renewal relationships  Let t denote the stopping time of the first transmission.

T—1
Define Lt (x) = E {Z d(E!) [E} :x] and Mi(x) =E [t|E} =

i LL(0)
Then, from renewal theory: D} = Ml 0)

ok L (0)

VOI' (k) = ML (0) 3u ML (0]

Therefore, — Ly (0)

Need to compute M (0), LE (0), 9xML (0), 9L (0) to compute VOI.
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How to compute value of information?
m)mputing L!(0) and M} (0) )

k
Balance equation Li (x) = di (x) +J ¢'(y — ax)LL(y)dy (Fredholm integral eqn of the 2nd kind)
—x

Solution using

Let {W_m,..., Wt and {x_m,...,x;m} be the weights and abscissas for any
quadrature method

quadrature rule of 2m + 1 points over [—k,k]. Then the above integral equation
can be approximated as

L (xp) ~ d*(xp) + Z Wq@'(xp — axq)LL (xq)

q=—m
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rm)mputing L!(0) and M} (0) )

k
Balance equation Li (x) = di (x) +J @'y — ax)Li(y)dy (Fredholm integral eqn of the 2nd kind)
—k

Solution using Let W _m,...,wn} and {x_m,...,xm} be the weights and abscissas for any
quadrature method quadrature rule of 2m + 1 points over [—k,k]. Then the above integral equation
can be approximated as

L (xp) ~ d*(xp) + Z Wq@'(xp — axq)LL (xq)

q=—m

Or, in matrix form,| Li=(I—®Y)~'d!




How to compute value of information?

rr

Balance equation

Solution using
quadrature method

m)mputing L!(0) and M} (0)

k
Li (x) = di (x) +J ¢'(y — ax)LL(y)dy (Fredholm integral eqn of the 2nd kind)
—x

Let {W_m,..., Wt and {x_m,...,x;m} be the weights and abscissas for any
quadrature rule of 2m + 1 points over [—k,k]. Then the above integral equation

can be approximated as

L (xp) ~ d*(xp) + Z Wq@'(xp — axq)LL (xq)

q=—m

Or, in matrix form,

Lt = (I _ q)i)fl dt

M= (I—-@") 1

*1‘
j




How to compute value of information?
rComputing dxL; (0) and 0y M} (0)

k
Balance equation LE(x) = di(x) +J @'(y — ax)Li(y)dy
—k




How to compute value of information?

rr
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Computing
Balance equation

Take derivative

Ok LL(0) and

akM}((O)
. . k . .
LE(x) =di(x) + J_k @'y — ax)Li (y)dy

Using Leibniz rule

K
OkLi(x) = @'(x — ak)Li (x) + @*(x + ak)LL (—k) —l—J

—k

ML (x) = @ (x — ak)ML (x) + @ (x + ak)ML (k) +

a
j

@ (x — ay)Li(y)dy

k

@' (x — ay)ML(y)dy
—k




How to compute value of information?

E
e ———————
1

rrComputing'ékl‘_}c(O)-afn;i 01 M1 (0)

k
Balance equation LE(x) = di(x) +J @' (y — ax)Li(y)dy
—k

Take derivative Using Leibniz rule

k
OxLi(x) = @' (x — ak)Li (x) + @* (x + ak) L (—k) + Jk @' (x — ay)Li(y)dy

k
ML (x) = @ (x — ak)Mj (x) + @' (x + ak)ML (—k) + ) @ (x — ay)Mj (y)dy

dli(x) _ Li(k)

Taking ratios, we get akM}{(x) = Mi(k)




How to compute value of information?

rr

Teampuing
Balance equation

Take derivative

Computing ékl‘_}c(O)-;na 01 M1 (0)

a
j

k

LE(x) =di(x) + J_k @'y — ax)Li (y)dy

Using Leibniz rule

k
OkLL(x) = @' (x — ak)Li(x) + @*(x + ak)Li (—k) + Jk ' (x — ay)Li(y)dy
k
ML (x) = @ (x — ak)Mj (x) + @' (x + ak)ML (—k) + ) @ (x — ay)Mj (y)dy

uli(x)  Li(k)

Taking ratios, we get akM}{(x) = Mi(k)

Final expression

VOI'(k) = Mi-Lm

oML, L, whereli=(I—®!) 'd'and M! = (I - @) 1.




Numerical example

Scenarios n sensors, each observing a Gauss-Markov process.
Scenario A 50 homogeneous sensors with (at, ot) = (1,1).
Scenario B 25 sensors with (at, ot) = (1,1) and 25 sensors with (at, o') = (1,5).
Scenario C 20 sensors (a!, o) = (1,1); 15 with (1,5); 15 with (1,10).
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Comparison TDMA Sensors transmit periodically
ERR  Sensor with highest error transmits
VOl  Sensor with the highest VOI transmits

Remote estimation over CAN-(Mahajan)




Numerical example

Scenarios n sensors, each observing a Gauss-Markov process.
Scenario A 50 homogeneous sensors with (at, ot) = (1,1).

Scenario C 20 sensors (a!, o) = (1,1); 15 with (1,5); 15 with (1,10).

Comparison TDMA Sensors transmit periodically
ERR  Sensor with highest error transmits
VOI  Sensor with the highest VOI transmits

100
30
60
40
20

ERR VOl 0 ERR VOl ERR

Scenario A Scenario B Scenario C
Remote estimation over CAN-(Mahajan)
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Eystem Model

Sensors

Assumptions

Network

Receivers

B> n sensors indexed by N = {1,...,n}. : Cw:;ﬁ;ea
BXL oW
ah, XL, Wie R, Wi~ oi().

P> The observation processes across sensors are independent.
P> The noise process is independent across time (and independent of initial state)
B> The density ¢'(-) is even and unimodal.

Xi, ifsensor i has highest priority

Received packet Yi =
P ¢ {@, otherwise

W, iFYL +£ ¢
alXi ,, ifyi=¢

Estimate Xi = {

Distortion d*(Xt — >A(1), where d*(-) is an even and increasing function.
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Value of Information
(vol)

VOI for remote
estimation

Objective

rrefmmg the value of information B

The amount of money someone is willing to pay to access that information.

B> Suppose that there is a single sensor, say i, and a dedicated communication
channel is available.

B> The sensor has to pay an access fee A" each time it uses the channel.
B> Let Ul € {0, 1} denote the sensor’s decision.

P> Then, the error process is

. Wi, iFUL =1
B = ipi ioeyi
a Et + Wt IFut — O

T
min lim - [ [NU‘ 1—Ui)di(E1)H

Tooo | =
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Summary

Naive method

First simplification

B> For a given A%, Aind k*(A') by numerically solving the dynamic program.
> VOI'(e) can be computed by doing a binary search of At until ki(A!) = |e].
B> This method is extremely inefficient because solving DP is hard.

Let f. denote the threshold policy with threshold k.
T—1

i ] 1 qi(Ei i N - i
Define D _Tlinoo:rIE {ém — Uyl (Et)} and Ni = linooT]E [;ut]

Then, Ji(fl) = DL + A'NL. The policy is optimal if 9, D + A9 NL = 0.

_ 9Dy
AN

Therefore, VOI'(k) =




Summary

£ ° [ d

=

[computing 9« Di. and 9N

Renewal relationships

Let T denote the stopping time of the first transmission.

=]
Define L (x) = E { a(eh)|es = x} and Mi(x) = E [t|E5 =x].
t=0

Dt — (0 i1
Then, from renewal theory: D} = ML (0] and Ny, = ML)

ok Li(0)

VOI* (k) = ML(0) 3u ML (0)

Therefore, — Lk(0)

Need to compute Mi (0), Lt (0), 9, M1 (0), 9 LL(0) to compute VOL.
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° rd -0

Balance equation

Solution using
quadrature method

rrComputing‘l_}{(O) and‘l\g/l};(O)

K
Lt (x) = di(x) +J ©'(y—ax)Li(y)dy (Fredholm integral eqn of the 2nd kind)
—k

Let {W_my..., Wt and {x_m,...,xm} be the weights and abscissas for any
quadrature rule of 2m + 1 points over [—k,k]. Then the above integral equation

can be approximated as

Li(xp) ~di(xp) + D wqo(xp — axq)Li(xq)

q=—m

~
™,
j

Or, in matrix form,| Li= (I—®')'d!

and

Mi=(I- @)1




Summary

Balance equation

Take derivative

k
L (x) = di (x) +j oy — L)y

Using Leibniz rule

A m— —~
T EN
romputlng akv (0) and 9 M1 (0) )

K
OkLi (x) = @' (x — ak)Li (x) + @(x + ak)LL (—k) + J o' (x — ay)LL(y)dy

k
0xM{ (x) = @' (x — ak)M (x) + @' (x + ak)Mf (—k) + J @' (x — ay) My (y)dy

dli(x) _ Li(k)
My (x) My (k)

Taking ratios, we get

Final expression

VoIt (k) = M} ALA

— L., whereL!=(I-®") 'd'and M! = (I - @)~

1.




