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Motivation

Sequential transmission of data

Zero delay in reconstruction

2 / 18



Motivation

Applications?

Smart grids

2 / 18



Motivation

Applications?
Environmental monitoring, sensor network

2 / 18



Motivation

Applications?
Internet of things

2 / 18



Motivation

Applications?

Smart grids

Environmental monitoring, sensor network

Internet of things

Salient features

Sensing is cheap

Transmission is expensive

Size of data-packet is not critical
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Motivation

We study the structure of optimal strategies for a fundamental
trade-off between estimation accuracy and transmission cost!
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The model
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The remote-state estimation setup

Markov
Process Transmitter Erasure

Channel Receiver
𝑋𝑡 𝑈𝑡 𝑌𝑡 𝑋̂𝑡

ACK/NACK

Source model Generic: Xt ∈ X, X: finite or Borel-measurable;
Stylized: Xt+1 = aXt +Wt ; Xt ∈ X, Wt i.i.d.
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Markov
Process Transmitter Erasure

Channel Receiver
𝑋𝑡 𝑈𝑡 𝑌𝑡 𝑋̂𝑡

ACK/NACK

Transmitter Ut = ft(X0:t , S0:t−1,Y0:t−1) ∈ {0, 1}
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The remote-state estimation setup

Markov
Process Transmitter Erasure

Channel Receiver
𝑋𝑡 𝑈𝑡 𝑌𝑡 𝑋̂𝑡

ACK/NACK

Channel model St Markovian; St = 1: channel ON, St = 0: channel
OFF
State transition matrix Q.

Yt =











Xt , if Ut = 1 and St = 1

E1, if Ut = 0 and St = 1

E0, if St = 0.
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The remote-state estimation setup

Markov
Process Transmitter Erasure

Channel Receiver
𝑋𝑡 𝑈𝑡 𝑌𝑡 𝑋̂𝑡

ACK/NACK

Receiver X̂t = gt(Y0:t)
Per-step distortion: d(Xt − X̂t).
d(·): even and quasi-convex.

Communication Transmission strategy f = {ft}
∞

t=0

strategies Estimation strategy g = {gt}
∞

t=0
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The infinite horizon optimization problem

Discounted setup: β ∈ (0, 1)

Dβ(f , g) := (1 − β)E(f ,g)
[

∞
∑

t=0

βtd(Xt − X̂t)
∣

∣

∣
X0 = 0

]

Nβ(f , g) := (1 − β)E(f ,g)
[

∞
∑

t=0

βtUt

∣

∣

∣
X0 = 0

]

Long-term average setup: β = 1

D1(f , g) := lim sup
T→∞

1
T
E

(f ,g)
[

T−1
∑

t=0

d(Xt − X̂t)
∣

∣

∣
X0 = 0

]

N1(f , g) := lim sup
T→∞

1
T
E

(f ,g)
[

T−1
∑

t=0

Ut

∣

∣

∣
X0 = 0

]
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The infinite horizon optimization problem

Problem

C ∗

β (λ) := inf
(f ,g)

Dβ(f , g) + λNβ(f , g), β ∈ (0, 1]
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The infinite horizon optimization problem

Problem

C ∗

β (λ) := inf
(f ,g)

Dβ(f , g) + λNβ(f , g), β ∈ (0, 1]

Salient features

Multiple decision makers — Transmitter and Estimator:
decentralized control system

Cooperative set-up — minimization of a common objective

function

Modeled as a Team problem; Team: Multiple decision
makers to achieve a common goal

5 / 18



Decentralized control systems

Pioneers: Theory of teams

Economics: Marschak, 1955; Radner, 1962

Systems and control: Witsenhausen, 1971; Ho, Chu, 1972
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Decentralized control systems

Pioneers: Theory of teams

Economics: Marschak, 1955; Radner, 1962

Systems and control: Witsenhausen, 1971; Ho, Chu, 1972

Remote-state estimation as Team problem

No packet drop - Marshak, 1954; Kushner, 1964; Åstrom,
Bernhardsson, 2002; Xu and Hespanha, 2004; Imer and Başar,
2005; Lipsa and Martins, 2011; Molin and Hirche, 2012;
Nayyar, Başar, Teneketzis and Veeravalli, 2013; D. Shi, L. Shi
and Chen, 2015

With packet drop - Ren, Wu, Johansson, G. Shi and L. Shi,
2016; Chen, Wang, D. Shi and L. Shi, 2017;

With noise - Gao, Akyol and Başar, 2015–2017
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Structural results
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Structure of optimal strategies

Generic model: X is finite or Borel-measurable.

Belief states based on common information

π1
t (x) := P

f (Xt = x | S0:t−1 = s0:t−1,Y0:t−1 = y0:t−1),

π2
t (x) := P

f (Xt = x | S0:t = s0:t ,Y0:t = y0:t).

Theorem 1: structure of optimal strategies

Ut = f ∗t (Xt , St−1,Π
1
t ),

X̂t = g∗

t (Π
2
t ).

POMDP-like dynamic programming formulation.
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Structure of optimal strategies

Stylized model: Xt+1 = aXt +Wt ; Wt : Unimodal and symmetric.

Theorem 2: Optimal estimator

Time homogeneous!

X̂t =

{

Yt , if Yt 6∈ {E0,E1};

aX̂t−1, if Yt ∈ {E0,E1}.
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Structure of optimal strategies

Stylized model: Xt+1 = aXt +Wt ; Wt : Unimodal and symmetric.

Theorem 2: Optimal estimator

Time homogeneous!

X̂t =

{

Yt , if Yt 6∈ {E0,E1};

aX̂t−1, if Yt ∈ {E0,E1}.

Theorem 2: Optimal transmitter

Xt ∈ R; Ut is threshold based action:

Ut =

{

1, if |Xt − aX̂t−1| ≥ k(St−1)

0, if |Xt − aX̂t−1| < k(St−1)
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Proof sketch

Theorem 1

Use notion of Irrelevant Information to show that
(Xt , S0:t−1,Y0:t−1) is sufficient information at the transmitter

Identify the common information (S0:t−1,Y0:t−1) at the
transmitter and (S0:t ,Y0:t) at the receiver

Local information at the transmitter: Xt and at the receiver: ∅

Belief states: at the transmitter π1
t := P(Xt | S0:t−1,Y0:t−1),

at the receiver π2
t := P(Xt | S0:t ,Y0:t)

Common information approach - Nayyar, Mahajan,

Teneketzis TAC’13: show that (Xt , St−1, π
1
t ) is sufficient

statistic at the transmitter and π2
t is sufficient statistic at the

receiver

9 / 18



Proof sketch

Theorem 2

Change of variables: Et ,E
+
t , Êt

Zt =

{

aZt−1, if Yt ∈ {E0,E1}

Yt , if Yt 6∈ {E0,E1}

Et := Xt − aZt−1, E+
t := Xt − Zt , Êt := X̂t − Zt

Step 1: Forward induction method utilizing majorization
properties to show optimal Êt = 0 — leads to the structure of
optimal estimator

Step 2: Fix the optimal estimator. Show by constructing a

threshold based prescription that such a transmission
strategy is optimal
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Computation of optimal

performances: autoregressive model
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Step 1: computation of the performance of a threshold

based strategy

f (k)(Et , St−1) =

{

1, if St−1 = 0 & |Et | ≥ k(St−1)

0, if St−1 = 0 & |Et | < k(St−1).

τ (k): the time a packet was last received successfully.
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Step 1: computation of the performance of a threshold

based strategy

τ (k): the time a packet was last received successfully.

Till first successful reception

L
(k)
β

:= E

[

τ (k)−1
∑

t=0

βtd(Et)
∣

∣

∣
E0 = 0, S0 = 1

]

M
(k)
β

:= E

[

τ (k)−1
∑

t=0

βt
∣

∣

∣
E0 = 0, S0 = 1

]

K
(k)
β

:= E

[

τ (k)
∑

t=0

βtUt

∣

∣

∣
E0 = 0, S0 = 1

]
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Step 1: computation of the performance of a threshold

based strategy

Et is regenerative process

Renewal relationships

D
(k)
β

:= Dβ(f
(k), g∗) =

L
(k)
β

M
(k)
β

N
(k)
β

:= Nβ(f
(k), g∗) =

K
(k)
β

M
(k)
β
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Step 2: Optimality condition (JC & AM: TAC’17, NecSys

’16)

D
(k)
β , N(k)

β , C (k)
β - differentiable in k .

Theorem

If (k , λ) satisfies ∇kD
(k)
β + λ∇kN

(k)
β = 0, then, (f (k), g∗) optimal

for costly comm. with cost λ.
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Step 2: Optimality condition (JC & AM: TAC’17, NecSys

’16)

D
(k)
β , N(k)

β , C (k)
β - differentiable in k .

Theorem

If (k , λ) satisfies ∇kD
(k)
β + λ∇kN

(k)
β = 0, then, (f (k), g∗) optimal

for costly comm. with cost λ.

C ∗

β (λ) := Cβ(f
(k), g∗;λ) is continuous, increasing and concave in λ.
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Step 2: Computation of optimal thresholds

Numerically compute L
(k)
β , M(k)

β and K
(k)
β ; Renewal relationship

to compute C
(k)
β .

Analytical formulae are difficult to obtain.
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Numerically compute L
(k)
β , M(k)

β and K
(k)
β ; Renewal relationship

to compute C
(k)
β .

Analytical formulae are difficult to obtain.

Simulation based approach - JC, JS & AM ACC’17

Two DP based approaches - Monte Carlo (MC) and Temporal
Difference (TD)

MC - High variance due to one sample path; low bias

TD - Low variance due to bootstrapping; high bias
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Numerically compute L
(k)
β , M(k)

β and K
(k)
β ; Renewal relationship

to compute C
(k)
β .

Analytical formulae are difficult to obtain.

Simulation based approach - JC, JS & AM ACC’17

Two DP based approaches - Monte Carlo (MC) and Temporal
Difference (TD)

MC - High variance due to one sample path; low bias

TD - Low variance due to bootstrapping; high bias

Exploit regenerative property of the underlying state (error)
process

Renewal Monte Carlo (RMC) - low variance (independent
sample paths from renewal) and low bias (since MC)
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Step 2: Computation of optimal thresholds

Numerically compute L
(k)
β , M(k)

β and K
(k)
β ; Renewal relationship

to compute C
(k)
β .

Analytical formulae are difficult to obtain.

Key idea

Renewal Monte Carlo

Pick a k , compute sample values L, M, K till first successful

reception

Sample average to compute L
(k)
β , M

(k)
β , K

(k)
β .

Stochastic approximation techniques to compute optimal k .
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Step 2: Computation of optimal thresholds

Key steps of the algorithms

Noisy policy evaluation - MC till successful reception:
constitutes one episode; sample average over few episodes to
find L̂, M̂, K̂ and hence Ĉ .

Policy improvement - Smoothed Functional

k̂i+1 = k̂i − γi
η

2β̃

(

Ĉ (k̂i + β̃η)− Ĉ (k̂i − β̃η)
)

k = [k(0), k(1)]⊺; η : 2 × 1 Gaussian perturbation vector, β̃ :
tuning parameter
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Smoothed Functional algo.- Katkovnik & Kulchitsky ’72

A Simultaneous Perturbation variant to estimate the
gradient: ∇kC

(k)
β

Interpretation - Cost function is convolved with a particular
smooth kernel (e.g. Gaussian, Cauchy), effectively making the
cost function more convex-esque

Efficient scalability to higher dimensions
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Simulation results to find optimal thresholds
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vs iterations; λ: 500

Figure: k∗

0
, k∗

1
plots for λ = 500: β = 0.9, q00 = 0.3, q10 = 0.1.
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Optimal performance from simulation
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Figure: C∗

0.9(λ) vs λ: q00 = 0.3, q10 = 0.1.
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Future work

Computation of the optimal constrained performance using
stochastic approximation based method

Extension of the results to vector valued source processes.
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Thank you
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