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Motivation

Sequential transmission of data

Zero delay in reconstruction
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Motivation

Applications?
Smart grids

Environmental monitoring, sensor network

Internet of things

Salient features

Sensing is cheap

Transmission is expensive

Size of data-packet is not critical
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Motivation

We study a stylized model.

Characterization of the fundamental trade-off between estimation
accuracy and transmission cost!
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The remote-state estimation setup

TransmitterMarkov process ReceiverErasure channel
Xt Ut Yt X̂t

Xt+1 = aXt +Wt

Ut = ft(X0:t, Y0:t−1), 2 {0, 1}

X̂t = gt(Y0:t)ACK/NACK

St 2 {ON(1-ε), OFF(ε)}

Source model Xt+1 = aXt +Wt , Wt i.i.d.
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Source model Xt+1 = aXt +Wt , Wt i.i.d.

a,Xt ,Wt ∈ R, pdf of Wt : φ(·) - Gaussian.
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TransmitterMarkov process ReceiverErasure channel
Xt Ut Yt X̂t

Xt+1 = aXt +Wt

Ut = ft(X0:t, Y0:t−1), 2 {0, 1}

X̂t = gt(Y0:t)ACK/NACK

St 2 {ON(1-ε), OFF(ε)}

Source model Xt+1 = aXt +Wt , Wt i.i.d.

Channel model St i.i.d.; St = 1: channel ON, St = 0: channel OFF
Packet drop with probability ε.
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The remote-state estimation setup

Transmitter Ut = ft(X0:t ,Y0:t−1) and Yt =

{

Xt , if UtSt = 1

E, if UtSt = 0.

Receiver X̂t = gt(Y0:t)
Per-step distortion: d(Xt − X̂t) = (Xt − X̂t)

2.

Communication Transmission strategy f = {ft}
∞
t=0

strategies Estimation strategy g = {gt}
∞
t=0
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The optimization problem

Discounted setup: β ∈ (0, 1)

Dβ(f , g) := (1 − β)E(f ,g)
[

∞
∑

t=0

βtd(Xt − X̂t)
∣

∣

∣
X0 = 0

]

Nβ(f , g) := (1 − β)E(f ,g)
[

∞
∑

t=0

βtUt

∣

∣

∣
X0 = 0

]

Long-term average setup: β = 1

D1(f , g) := lim sup
T→∞

1
T
E

(f ,g)
[

T−1
∑

t=0

d(Xt − X̂t)
∣

∣

∣
X0 = 0

]

N1(f , g) := lim sup
T→∞

1
T
E

(f ,g)
[

T−1
∑

t=0

Ut

∣

∣

∣
X0 = 0

]
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The optimization problem

Constrained performance: The Distortion-Transmission function

D∗
β(α) := Dβ(f

∗, g∗) := inf
(f ,g):Nβ(f ,g)≤α

Dβ(f , g), β ∈ (0, 1]

Minimize expected distortion such that expected number of
transmissions is less than α
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The optimization problem

Constrained performance: The Distortion-Transmission function

D∗
β(α) := Dβ(f

∗, g∗) := inf
(f ,g):Nβ(f ,g)≤α

Dβ(f , g), β ∈ (0, 1]

Minimize expected distortion such that expected number of
transmissions is less than α

Costly performance: Lagrange relaxation

C ∗
β (λ) := inf

(f ,g)
Dβ(f , g) + λNβ(f , g), β ∈ (0, 1]
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Decentralized control systems

Team: Multiple decision makers to achieve a common goal
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Decentralized control systems

Pioneers:

Theory of teams

Economics: Marschak, 1955; Radner, 1962

Systems and control: Witsenhausen, 1971; Ho, Chu, 1972
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Decentralized control systems

Pioneers:

Theory of teams

Economics: Marschak, 1955; Radner, 1962

Systems and control: Witsenhausen, 1971; Ho, Chu, 1972

Remote-state estimation as Team problem

No packet drop - Marshak, 1954; Kushner, 1964; Åstrom,
Bernhardsson, 2002; Xu and Hespanha, 2004; Imer and Basar,
2005; Lipsa and Martins, 2011; Molin and Hirche, 2012;
Nayyar, Başar, Teneketzis and Veeravalli, 2013; D. Shi, L. Shi
and Chen, 2015

With packet drop - Ren, Wu, Johansson, G. Shi and L. Shi,
2016; Chen, Wang, D. Shi and L. Shi, 2017;

With noise - Gao, Akyol and Başar, 2015–2017
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Remote-state estimation - Steps towards optimal solution

Establish the structure of optimal strategies (transmission and
estimation)

Computation of optimal strategies and performances
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Step 1 - Structure of optimal strategies: Lipsa-Martins 2011

& Molin-Hirsche 2012 - no packet drop

Optimal estimator

Time homogeneous!

X̂t = g∗
t (Yt) = g∗(Yt) =

{

Yt , if Yt 6= E;

aX̂t−1, if Yt = E.
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Optimal estimator

Time homogeneous!

X̂t = g∗
t (Yt) = g∗(Yt) =

{

Yt , if Yt 6= E;

aX̂t−1, if Yt = E.

Optimal transmitter

Xt ∈ R; Ut is threshold based action:

Ut = f ∗t (Xt ,U0:t−1) = f ∗(Xt) =

{

1, if |Xt − aX̂t | ≥ k

0, if |Xt − aX̂t | < k
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Step 1 - Structure of optimal strategies: Lipsa-Martins 2011

& Molin-Hirsche 2012 - no packet drop

Optimal estimator

Time homogeneous!

X̂t = g∗
t (Yt) = g∗(Yt) =

{

Yt , if Yt 6= E;

aX̂t−1, if Yt = E.

Optimal transmitter

Xt ∈ R; Ut is threshold based action:

Ut = f ∗t (Xt ,U0:t−1) = f ∗(Xt) =

{

1, if |Xt − aX̂t | ≥ k

0, if |Xt − aX̂t | < k

Similar structural results for channel with packet drops.
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Step 2 - The error process Et

τ (k): the time a packet was last received successfully.
Et := Xt − at−τ (k)Xτ (k) , Êt := X̂t − at−τ (k)Xτ (k) ;
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Step 2 - The error process Et

τ (k): the time a packet was last received successfully.
Et := Xt − at−τ (k)Xτ (k) , Êt := X̂t − at−τ (k)Xτ (k) ;

d(Xt − X̂t) = d(Et − Êt).
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Step 2 - The error process Et

τ (k): the time a packet was last received successfully.
Et := Xt − at−τ (k)Xτ (k) , Êt := X̂t − at−τ (k)Xτ (k) ;

= Xt − a(X̂t−1 − Êt−1)

=

{

aEt−1 +Wt−1, if Yt = E

Wt , if Yt 6= E
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Performance evaluation - JC-AM TAC ’17, NecSys ’16

f (k)(e) =

{

1, if |e| ≥ k

0, if |e| < k

Till first successful reception

L
(k)
β (0) := E

[

τ (k)−1
∑

t=0

βtd(Et)
∣

∣

∣
E0 = 0

]

M
(k)
β (0) := E

[

τ (k)−1
∑

t=0

βt
∣

∣

∣
E0 = 0

]

K
(k)
β (0) := E

[

τ (k)
∑

t=0

βtUt

∣

∣

∣
E0 = 0

]
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Performance evaluation - JC-AM TAC ’17, NecSys ’16

f (k)(e) =

{

1, if |e| ≥ k

0, if |e| < k
Et is regenerative process

Renewal relationships

D
(k)
β (0) := Dβ(f

(k), g∗) =
L
(k)
β (0)

M
(k)
β (0)

N
(k)
β (0) := Nβ(f

(k), g∗) =
K

(k)
β (0)

M
(k)
β (0)
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Computation of D, N

L
(k)
β (e) =















ε
[

d(e) + β

∫

n∈R

φ(n − ae)L
(k)
β (n)dn

]

, if |e| ≥ k

d(e) + β

∫

n∈R

φ(n − ae)L
(k)
β (n)dn, if |e| < k ,
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
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







ε
[

d(e) + β

∫

n∈R

φ(n − ae)L
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β (n)dn

]

, if |e| ≥ k

d(e) + β

∫

n∈R

φ(n − ae)L
(k)
β (n)dn, if |e| < k ,

M
(k)
β (e) and K

(k)
β (e) defined in a similar way.
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Computation of D, N

L
(k)
β (e) =















ε
[

d(e) + β

∫

n∈R

φ(n − ae)L
(k)
β (n)dn

]

, if |e| ≥ k

d(e) + β

∫

n∈R

φ(n − ae)L
(k)
β (n)dn, if |e| < k ,

ε = 0: Fredholm integral equations of second kind - bisection
method to compute optimal threshold

ε 6= 0: Fredholm-like equation; discontinuous kernel, infinite
limit - analytical methods difficult
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Optimality condition (JC & AM: TAC’17, NecSys ’16)

D
(k)
β ,N(k)

β , C (k)
β - differentiable in k

Theorem - costly communication

If (k , λ) satisfies ∂kD
(k)
β + λ∂kN

(k)
β = 0, then, (f (k), g∗) optimal

for costly comm. with cost λ.
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D
(k)
β ,N(k)

β , C (k)
β - differentiable in k

Theorem - costly communication

If (k , λ) satisfies ∂kD
(k)
β + λ∂kN

(k)
β = 0, then, (f (k), g∗) optimal

for costly comm. with cost λ.

C ∗
β (λ) := Cβ(f

(k), g∗;λ) is continuous, increasing and concave in λ.

Theorem - constrained communication

k∗β(α) := {k : N
(k)
β (0) = α}. (f k

∗

β
(α)

, g∗) is optimal for the
optimization problem with constraint α ∈ (0, 1).

D∗
β(α) := Dβ(f

(k), g∗) is continuous, decreasing and convex in α.
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Main results
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Computation of optimal thresholds

Difficulty

Numerically compute L
(k)
β , M(k)

β and K
(k)
β ; use renewal

relationship to compute C
(k)
β and D

(k)
β .

Need to solve Fredholm-like integral - computationally difficult.
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Simulation based approach

Two main approaches - Monte Carlo (MC) and Temporal
Difference (TD)

MC - High variance due to one sample path; low bias

TD - Low variance due to bootstrapping; high bias

Exploit regenerative property of the underlying state (error)
process

Renewal Monte Carlo (RMC) - low variance (independent
sample paths from renewal) and low bias (since MC)
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Computation of optimal thresholds

Difficulty

Numerically compute L
(k)
β , M(k)

β and K
(k)
β ; use renewal

relationship to compute C
(k)
β and D

(k)
β .

Need to solve Fredholm-like integral - computationally difficult.

Key idea

Renewal Monte Carlo

Pick a k , compute sample values L, M, K till first successful

reception

Sample average to compute L
(k)
β , M

(k)
β , K

(k)
β .

Stochastic approximation techniques to compute optimal k .
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Computation of optimal thresholds
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Computation of optimal thresholds

Key steps of the algorithms

Noisy policy evaluation - MC until successful reception:
constitutes one episode; sample average over few episodes to
find L̂, M̂, K̂ and hence Ĉ and D̂.

Policy improvement - Smoothed Functional

k̂i+1 = k̂i − γi
η

2β̃

(

Ĉ (k̂i + β̃η)− Ĉ (k̂i − β̃η)
)

Policy improvement - Robbins-Monro

k̂i+1 = k̂i − γi (αM̂ − K̂ ).
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Validation of simulation results

Results validated by comparing with analytical results of no
packet-drop case: JC-AM, TAC ’17.

Costly performance - Error in k∗: 10−2 − 10−3; Error in C ∗:
10−4 − 10−5

Constrained performance - Error in k∗: 10−3; Error in D∗:
10−3 − 10−5
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Optimal thresholds from simulations

Costly performance:

1 2 3 4 5 6 7

·104
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λ = 500
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T
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s
h

o
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Figure: Costly communication: β = 0.9, ε = 0.3.
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Optimal thresholds from simulations

Constrained performance:
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Figure: Constrained communication using RM: β = 0.9, ε = 0.3.
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Optimal trade-off between distortion and communication

cost

20 40 60

2

4

6

8

10

λ

C
∗ 0
.9
(λ
)

ε = 0.0

ε = 0.3

ε = 0.7

Figure: Costly communication: β = 0.9, ε ∈ {0, 0.3, 0.7}.
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Optimal trade-off between distortion and communication

cost
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(α
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ε = 0.0

ε = 0.3

ε = 0.7

Figure: Constrained communication: β = 0.9, ε ∈ {0, 0.3, 0.7}.
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Future work

Markovian erasure channel -
Thresholds at t are function of channel-state at t − 1

Higher dimension -

Xt ∈ R
m is ASU

?
=⇒ AXt +Wt is ASU

Notion of stochastic dominance in higher dimension
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Thank you!
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