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There is a need to revisit estimation theory

to take network resources into account.




Many applications require:
> Sequential transmission of data
> Zero- (or fnite-) delay reconstruction
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Salient features

I> Sensing is cheap

P> Transmission is expensive
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Many applications require:
B> Sequential transmission of data
P> Zero- (or fAnite-) delay reconstruction

Salient features

D> Sensing is cheap

P> Transmission is expensive

P> Size of data-packet is not critical
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D> First order time-homogeneous Markov process

D The transmitter decides whether or not to transmit the current state

B> The transmitted symbol is sent over an erasure channel (with acknowledgments)
B> The receiver generates an estimate based on received symbol
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D The transmitter decides whether or not to transmit the current state

B> The transmitted symbol is sent over an erasure channel (with acknowledgments)
B> The receiver generates an estimate based on received symbol
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Communication Strategies
P> Transmission strategy f = {f{}$2,.
D> Estimation strategy g = {g¢}$2,.
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Discounted setup, 3 € (0,1) d(X¢ — X¢)

Dy(h,0) = (1~ BIES [3_pra—RoJs  Nptho)=(1-BIES [3_pruy
t=0

. Average cost setup, p =1

T-1
D (f,g) = llmsupT (f,9) [det—Xt)} N;(f,g) = llmsup]T fgj{Zut}

T—oo T—o0 t=0
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Optimization problems

Constrained communication
For o € (0, 1),

Dk

() = (i{]g) {Dﬁ(f>g) : Nﬁ(f>g) < (X}
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Optimization problems

Constrained communication

For o € (0, 1), D’E(oc) = (ian) {Dﬁ(f,g) :Ng(f,g) < oc}
’9

x

D’f3 is cts, dec, and convex
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Constrained communication

For o € (0, 1), D’E(oc) = (ian) {Dﬁ(f,g) :Ng(f,g) < oc}
’9

Costly communication (Lagrange relaxation)
ForA e Roo,  Ch(A) = Cp(f,g%A) = (ifngF) {Dg(f,g) +ANg(f,g)}

x

D’f3 is cts, dec, and convex

Fudamental limits of remote estimation-(Mahajan and Chakravorty)




Optimization problems

Constrained communication

Foro € (0,1), Dj(«):= (LnF) {Ds(f,g): Ng(f,g) < a}
’9

Costly communication (Lagrange relaxation)
ForA€ Roo, Ch(A) = Cp(ff, g5A) = (Lng) {Dg(f,g) + ANg(f, )}

x

D’f3 is cts, dec, and convex

Fudamental limits of remote estimation-(Mahajan and Chakravorty)




Optimization problems

Constrained communication

For o € (0, 1), D’E(oc) = inf {Dg(f,g) :Ng(f,g) < oc}

(f,g)

Costly communication (Lagrange relaxation)
ForA€ Roo, Ch(A) = Cp(ff, g5A) = (ie”gF) {Dg(f,g) + ANg(f, )}

x

D’f3 is cts, dec, and convex
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Optimization problems

Constrained F,nmmlln'!;éligg

Our result: Provide computable expressions for these trade-offs
and identify optimal strategies that achieve them.

o
D’f3 is cts, dec, and convex C}g is cts, inc, and concave
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Comparison to Information Theory
P> Costly communication is analogous to communication under power constraint.
B> Constrained communication is analogous to distortion-rate function.
So, we call it distortion-transmission function.

> Due to zero-delay reconstruction, information theoretic approaches do not apply.
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So, we call it distortion-transmission function.

I> Due to zero-delay reconstruction, information theoretic approaches do not apply.

Previous work on remote-state estimation
&> [Marshak 1954] Static (one-shot) problem with arbitrary source distribution
P> [Kushner 1964] Off-line choice of measurement times
> [Astrom Bernhardsson 2002] Lebesque sampling (or event-based sampling)
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Comparison to Information Theory
P> Costly communication is analogous to communication under power constraint.
B> Constrained communication is analogous to distortion-rate function.
So, we call it distortion-transmission function.

P> Due to zero-delay reconstruction, information theoretic approaches do not apply.

Previous work on remote-state estimation
P> [Marshak 1954] Static (one-shot) problem with arbitrary source distribution
B> [Kushner 1964] Off-line choice of measurement times
> [Astrom Bernhardsson 2002] Lebesque sampling (or event-based sampling)

Other related work
P> Event-based estimation . . . > Sensor sleep scheduling . . .
B> Censoring censors . . . B> Age of Information . . .
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An illustrative example




Xit1 = X¢ + Wy, Wi ~N(0,1). Perfect channel
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Xit1 = X¢ + Wy, Wi ~N(0,1). Perfect channel

Strategy J

Randomized
Transmission
Strategy
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Xit1 = X¢ + Wy, Wi ~N(0,1). Perfect channel
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Distortion-transmission trade-off: Perfect channel

Randomized transmission strategy
Periodic transmission strategy
Optimal strategy

c
R
D
[
(@]
D
2
0O
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Distortion transmission function for discrete auto-regressive sources

1
o4
D’[‘; is PWL, dec, and convex
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Distortion transmission function for discrete auto-regressive sources

bl TP

o F 1
D’[‘; is PWL, dec, and convex

How to compute D’E ()
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Distortion transmission function for discrete auto-regressive sources

o F i
D’[‘; is PWL, dec, and convex

How to compute D’E ()
D> Compute Lg‘) =[1-ph® o PI=Th® o d.

M{ =[1— ph®) @ P]~Th(k).

1

M (0)

—(1—P)

> Then Dg‘) = and Ng‘) =
M5~ (
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Distortion transmission function for discrete auto-regressive sources

Optimal transmission strategy

B> Find k* such that « € (Ng‘**”, Ng‘*)].

> Compute 0* such that
ONG) + (1 — 09 NGH) = o

1
x
Dj is PWL, dec, and convex B IF [X¢ — aXi_1] > k*(«), transmit.
B IF X, — aXi_1] = k*(«), transmit w.p. 0%,
D> Else, do not transmit.

£ S
How to Com(i?te D3 (‘X)(k) . Optimal estimation strategy
P> Compute L™ = [I - ph'* © PI""h'™ & d. o Y., iFY, £ ¢
)l aXer, FYe=¢

M{ = [1— ph(®) @ P]=Th(k).

B> Then Dfsk) =
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Identify strategies that achieve the optimal trade-off
Simple and intuitive threshold based strategies are optimal.

Provide computable expressions for distortion-transmission function
Based on simple matrix calculations for discrete Markov processes

Based on solving Fredholm integral equations for continuous processes
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Identify strategies that achieve the optimal trade-off
Simple and intuitive threshold based strategies are optimal.

Provide computable expressions for distortion-transmission function
Based on simple matrix calculations for discrete Markov processes

Based on solving Fredholm integral equations for continuous processes

Beautiful example of stochastics and optimization
Decentralized stochastic control (or team theory) and POMDPs

Stochastic orders and majorization
Markov chain analysis, stopping times, and renewal theory

Constrained MDPs and Lagrangian relaxations
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What'’s the conceptual difficulty?




Static (one-shot) problem

X
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Static (one-shot) problem

———— e )
8§ C X is the silence set
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Static (one-shot) problem

* :X:
8§ C X is the silence set
X is the estimate when no packet is received
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Static (one-shot) problem

Cost when x € 8
e N ——— ) d(x —R)
8§ C X is the silence set
X is the estimate when no packet is received
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Static (one-shot) problem

Cost when x € 8
e N ——— ) d(x —R)
8§ C X is the silence set
X is the estimate when no packet is received

Cost when x € 8§
A+ ed(x —X)
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Static (one-shot) problem

Cost when x € 8
e N ——— ) d(x —R)
8§ C X is the silence set
X is the estimate when no packet is received

Cost when x € 8§
A+ ed(x —X)

Total expected cost

c(%,8) =AP(X¢8)+¢e) P(X=x)dx—%)+) P(X=x)d(x—%)
XES XES
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Static (one-shot) problem

Cost when x € 8
e N ——— ) d(x —R)
8§ C X is the silence set
X is the estimate when no packet is received

Cost when x € 8§
A+ ed(x —X)

Total expected cost

c(%,8) =AP(X¢8)+¢e) P(X=x)dx—%)+) P(X=x)d(x—%)
XES XES

Choose (X, 8) to minimize c(X, 8).
Set-valued (or combinatorial) optimization problem.

Fudamental limits o




Dynamic problem

e —— ()

8] C X is the silence set

X1 is the estimate when no packet is received
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Dynamic problem

e —— ()

8] C X is the silence set

If a packet is received (UiHy = 1)
* x
X1 is the estimate when no packet is received

8}(x1) C X is the silence set

X} is the estimate when no packet is received
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Dynamic problem

e —— ()

8] C X is the silence set

X1 is the estimate when no packet is received
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If a packet is received (UiHy = 1)
—— N — ()

8}(x1) C X is the silence set

X} is the estimate when no packet is received

If a packet is not received (U H; = 0)

) C X is the silence set

) is the estimate when no packet is rece
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Dynamic problem

If a packet is received (UiHy = 1)
—— N — ()

8}(x1) C X is the silence set

. S —— X} is the estimate when no packet is received

8] C X is the silence set
X1 is the estimate when no packet is received

If a packet is not received (U H; = 0)

) C X is the silence set
) is the estimate when no packet is rece

Sequential optimization problem where the optimization problem
at each step is a set-valued optimization problem that depends
on a history of previously chosen sets!.

[ 2|
Exhaustive search complexity: (\X\Z'x')(z 07

H]
N

—_
—_

/N
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Decentralized stochastic control

AL
So how do we start? %




Dealing with non-classical information structure

Fﬁ

|

Classical info. struct.
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Dealing with non-classical information structure

Fﬁ

|

Classical info. struct.

Y11 ) Yi Xt
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Dealing with non-classical information structure

Non-Classical info. struct.

Y1 t—1y Yt

Fudamental limits of remote estimation-(Mahajan and Chakravorty)




Dealing with non-classical information structure

Non-Classical info. struct.
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The common information approach (Nayyar, Mahajan, Teneketzis 2013)

Original system

> Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information approach,” IEEE TAC 2013.
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The common information approach (Nayyar, Mahajan, Teneketzis 2013)

Original system Coordinated system

N Vi1 (@1, >/<\t—1 )

Ficticious coordinator

X1

> Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information approach,” IEEE TAC 2013.
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The common information approach (Nayyar, Mahajan, Teneketzis 2013)

Original system Coordinated system

N Vi1 (@1, >/<\t—1 )

Ficticious coordinator

Yieo1 | Xioq Xi—1

> The coordinated system is equivalent to the original system.

fe(x%Y1:e—1) = h{ (Y1:0-1)(x).
D> The coordinated system is centralized.  Belief state P(X; | Y7.¢—1).

> Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information approach,” IEEE TAC 2013.
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Information states and dynamic program

Information states Pre-transmission belief : Ty 1(x) = P(Xy =x | Y14 1).
Post-transmission belief : Ty (x) = P(X¢ =% | Y1.4).
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Information states and dynamic program

Information states Pre-transmission belief : T 1(x) = P(
Post-transmission belief : TT; ¢ (x) = P(

‘ 0 [IET ‘ Ty T2

N T N T N NS

©1 ©2

Structural results There is no loss of optimality in using
U = £ (X, TTge—1) and Qt = g¢(TTyje).
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Information states and dynamic program

Information states Pre-transmission belief : T 1(x) = P(
Post-transmission belief : TT; ¢ (x) = P(

‘ 0 [IET ‘ Ty T2

N T N T N NS

() ©2

Structural results There is no loss of optimality in using
U = £ (X, TTge—1) and >?t = g¢(TTyje).

Dynamic Program Vigr(m) =0, andfort=T,...,0

Vi () = g"eg E[d(X¢ —X) + Vg (Meger) [ Tl = 7,

Vije—1 (M) = min  ER@(X¢) + tht(”t\t) | Mije—1 =7, @ = @l.
@:X—{0,1}
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Information states and dynamic program

Information

“Standard” POMDP. Optimal strategies can
be computed numerically (at least, in principle).

ﬂ1|0 T fﬁ EF 32— t13(3 f H473 i

N T N T N NS

®1 ©2 ©3 ©4

Structural results There is no loss of optimality in using
U = £ (X, TTge—1) and >?t = g¢(TTyje).

Dynamic Program Vigr(m) =0, andfort=T,...,0

Vi () = g"eg E[d(X¢ —X) + Vg (Meger) [ Tl = 7,

Vije—1 (M) = min  ER@(X¢) + tht(”t\t) | Mije—1 =7, @ = @l.
@:X—{0,1}
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Can we use the DP to say something

more about the optimal strategy?




Simplifying modeling assumptions

Markov process Xip1 = aXy + Wy
P> Discrete state process: X, a, W € Z
B> Continuous state process: Xy, a, Wy € R

Noise Distribution Unimodal and symmetric

Distortion function Even and increasing
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Simplifying modeling assumptions

Markov process Xip1 = aXy + Wy
P> Discrete state process: X, a, Wy € Z
P> Continuous state process: Xy, a, Wy € R

Noise Distribution Unimodal and symmetric

Distortion function Even and increasing

Proof outline Show that threshold-based strategies are optimal

Find performance of arbitrary threshold based strategies
Solution to the costly communication problem

s[4 28 Solution to the constrained communication problem
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Preliminaries [Hajek Mitzel Yang 2008, Lipsa Martins 2011, Nayyar et. al. 2013]
Almost uniform and

unimodal (ASU)
distribution about c

T TT Te 2 Teq] 2 Te] 2 Teqg2 2 °°°

T
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Preliminaries [Hajek Mitzel Yang 2008, Lipsa Martins 2011, Nayyar et. al. 2013]

Almost uniform and

il 2l (510) M 2 Moyt 2 Mot 2 Mgz 2+
distribution about ¢ ? T T 9

ASU Rearrangement
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Preliminaries

Almost uniform and
unimodal (ASU)
distribution about ¢

ASU Rearrangement

Majorization

[Hajek Mitzel Yang 2008, Lipsa Martins 2011, Nayyar et. al. 2013]

TYTT Te 2 Teq] 2 Te] 2 Teqg2 2 °°°

> &iff

inj; iaj and

1="n 1="n

Invariant to permutations.
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Properties of the value function

Backward induction B> Value function is “almost” Schur-concave:
argument |FE, > T and 7t is ASU, then Vt|tf] (E,) = Vt|tf] (7’[) and Vt|t(£») = Vt|t(7-()
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Properties of the value function

Backward induction B> Value function is “almost” Schur-concave:
argument |FE, Z 7tand 7t is ASU, then Vt‘tf] (E,) = Vt|tf] (7’[) and Vt|t(£») = Vt|t(7T)

B> Optimal estimation strategy:

IF 7t is ASU about ¢, then ¢ is the arg min of
Vi () = )[(ne'g E[d(Xe —X) + Vi1t (Tegape) | TTyye = 7,

> Optimal transmission strategy:
IF 7t is ASU about c, then the arg min of

Vije—1 (m) = min EAe(X¢)+ tht(ntlt) | Iy =7, @ = @]
@:X—{0,1}

is of the threshold form in [x — ac]|.
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Properties of the value function

Define Oblivious estimation process Error process
7. {xt, ifY, # ¢

Ei =Xy —aZi_
aZi 1, FYy=¢ LA R
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Properties of the value function

Define Oblivious estimation process Error process

. {xt, iFY, + ¢

Ei =Xy —aZi_
aZi 1, IfFY,=¢ Lo AT e

Forward induction B> 1Ty is ASU around Z;_;
argument B> TTy¢ is ASU around Z,
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Properties of the value function

Define

Forward induction
argument

Structure of
optimal strategies

Oblivious estimation process Error process

X, iFY, # ¢
M = Ei =Xy —aZi_
¢ { aZi g, IFY,=¢ LA R

B> TTyt—1 is ASU around Z;_;
B> TTy¢ is ASU around Z

> Optimal transmitter: There exists thresholds {k¢}+>¢ such that

1 iflE > k¢
0 iF|E¢] < k¢

U = fi(Ee) = {

B> Optimal estimator: X = gi(Zy) =27
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Some comments

The result is non-intuitive
> The transmitter does not try to send information through timing information.

B> The estimation strategy is the same to the one for intermittent observations and
does not depend on the choice of the threshold
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For infinite-horizon setup time-homogeneous
threshold-based strategies are optimal.

How do we find the optimal threshold-based strategy?




NN Performance of threshold-based strategies

Consider a threshold-based strategy

(M) (e) = 1 iflel >k
] 0 otherwise
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NN Performance of threshold-based strategies

Consider a threshold-based strategy Let T(%) denote the stopping time of first reception
(starting at Ey = 0).

(M) (e) = 1 iflel >k
0 otherwise

Fudamental limits of remote estimation-(Mahajan and Chakravorty)




NN Performance of threshold-based strategies

Consider a threshold-based strategy Let T(%) denote the stopping time of first reception

(starting at Ey = 0).
(M) (e) = ifle] >k
0 otherwise

@M@

(k)1

Define L) =(1-B)E| Y Bd(E)
t=0

(k)1
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NN Performance of threshold-based strategies

Consider a threshold-based strategy Let T(%) denote the stopping time of first reception

(starting at Ey = 0).
(M) (e) = ifle] >k
0 otherwise

@M@

(k)1

Define L (e) (1—[5)151[ Yy Btd(Et)EO:e].
t=0

(k)1

E[é%ﬁ%%z%.

Proposition {E¢J$2, is a regenerative process. By renewal theory,

and NG =Ng(f®) g*) = —(1—B).
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NN Performance of threshold-based strategies

Consider

Computing Lg{) and Mg() is sufficient to compute the

performance of f(*) (i.e., to compute Dék) and Ng()).

(k)1

1-B)E| > BUd(E)[Eo=¢|.
t=0

(k)1

()=0-BE[ X B'Eo=¢|
t=0

Proposition {E¢J$2, is a regenerative process. By renewal theory,

L(k) (0)

D(k) ::D[S(f(k),g*) _ _B

B and NG =Ng(f®) g*) = —(1—B).
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Computing Lg‘) and Mék)

dle)+B X pncli’(m), if le] < k
nez

L(k)(e) _
' B
@m& E[d(e) + Z ‘pn—ae]—ék)(n”) iflel >k

nez

148 X pneMg?(n),  iflel <k
nez

e[1+B Zzpn_aemgk)(n)], ifle] > k
ne
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Computing Lg‘) and Mék)

dle)+B X pncli’(m), if le] < k
nez

L(k)(e) _
' B
@m& E[d(e) + Z ‘pn—ae]—ék)(n”) iflel >k

nez

148 Y pn_eMi(n),
nez

e[1+B L PnaeMy’

ne.

* Po P1

I Po
) P-1
* E€p—_3 Ep—2
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Computing Lg‘) and Mék)

dle)+B X pncli’(m), if le] < k
nez

L(k)(e) _
' B
@m& E[d(e) + Z ‘pn—ae]—ék)(n”) iflel >k

nez

148 X pneMg?(n),  iflel <k
nez

e[1+B Zzpn_aemgk)(n)], ifle] > k
ne

Proposition h(®) ® P is substochastic.
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N QPN Computing Lg‘) and ng
(de)+B ¥ pnclg’(n),  iflef<k
@m Dg‘) and N}S can be computed using these expressions. m

TP /. Pn— elVLB Ity
nez

e[1+B X PnaeMi’(m)], iflel >k
nez

Proposition (k) “Thikl @4, h(®) ® P is substochastic.
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N JER Solution to costly optimization problem

Proposition > clR) =D + AN is submodularin (k,A).
B B B )
. _ : . L
P> Hence, ki (A) = arg T;'Q Cp (A) is increasing in A
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N JER Solution to costly optimization problem

Proposition > CclM) =D + AN is submodularin (k,A).
B B B )
> « — : . i in A
Hence, kBO\) arg gg CB (A) is increasing in

Define A == {A € R>o: K5 (A) =k}

— \k=1) 4 (k)

Cg() (Aék)) — Cg(Jr] ) (Aék))
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N JER Solution to costly optimization problem

Define A == {A € R>o: K5 (A) =k}

— \k=1) 4 (k)
—[AB )AB‘ ].

Cg() ()\ék)) — Cg(-F] ) ()\é}k))
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Define A == {A € R>o: K5 (A) =k}

— \k=1) 4 (k)
—[AB )AB‘ ].

Cg() ()\ék)) — Cg(-F] ) ()\é}k))
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N JER Solution to costly optimization problem

Define A == {A € R>o: K5 (A) =k}

— \k=1) 4 (k)
—[AB )AB‘ ].

Cg() ()\ék)) — Cg(-F] ) ()\é}k))
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N JER Solution to costly optimization problem

SCoocooooooooooooocoooooss

Cg() ()\ék)) — Cg(-F] ) ()\é}k))

Fudamental limits of remote estimation-(Mahajan and Chakravorty)




N JER Solution to costly optimization problem

Cg() ()\ék)) — Cg(-F] ) ()\é}k))
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N JER Solution to costly optimization problem

Cg() ()\ék)) — Cg(-F] ) ()\é}k))
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JJER Solution to costly optimization problem

Dgch]) E
DY’ |
0 (k+1>\(k1+1) =
)\B AB B
Theorem Strategy f(**1) is optimal for A € (A, A5 ] .

Ch(A) = minkez,, Cg‘) is piecewise linear, continuous, concave, and increasing
function of A.

|

s

JI\y

O
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N{J Wl Solution to constrained communication problem

Sufficient condition for optimality
A strategy (f°, g°) is optimal for the constrained problem if

(C1) Np(f%g°) =«

(C2) There exists A° > 0 such that (f°, g°) is optimal for the Lagrange relaxation with parameter A°.
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N{J Wl Solution to constrained communication problem

Sufficient condition for optimality
A strategy (f°, g°) is optimal for the constrained problem if

(C1) Np(f%g°) =«

(C2) There exists A° > 0 such that (f°, g°) is optimal for the Lagrange relaxation with parameter A°.

Let k’é be such that

K K 41
Néﬁ)>oc>Né‘5+)
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N{J Wl Solution to constrained communication problem

Sufficient condition for optimality
A strategy (f°, g°) is optimal for the constrained problem if

(C1) Ng(f° g°) =

(C2) There exists A° > 0 such that (f°, g°) is optimal for the Lagrange relaxation with parameter A°.

Let k’é be such that

K K 41
Néﬁ)>oc>Né‘5+)

I
I
I
|
I
Optlmail

A
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N{J Wl Solution to constrained communication problem

Sufficient condition for optimality
A strategy (f°, g°) is optimal for the constrained problem if

(C1) Ng(f° g°) =

(C2) There exists A° > 0 such that (f°, g°) is optimal for the Lagrange relaxation with parameter A°.

Let k’é be such that

K K 41
Néﬁ)>oc>Né‘5+)

optlmail

A
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N{J Wl Solution to constrained communication problem

Sufficient condition for optimality
A strategy (f°, g°) is optimal for the constrained problem if

(C1) Np(f%g°) =«

(C2) There exists A° > 0 such that (f°, g°) is optimal for the Lagrange relaxation with parameter A°.

fl<+1) gptimal

T » such that

(K5+1)
> NB

Randomized strategy (6*, f%), f**+1) is optimal where

O*NG) + (1 — 0N = «
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N{J Wl Solution to constrained communication problem

Sufficient_condition for optimality

A strat
(C!
(Ca

'

1
D’E is PWL, dec, and convex

— ﬁ
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N{J Wl Solution to constrained communication problem

Sufficient_condition for optimality

A strat
(C!
(Ca

'

Xc 1
X

D’E is PWL, dec, and convex

ﬁ

—
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iFm| =1;
1_2p)

Felul 8 Symmetric birth-death Markov chain
o

= ifn =0;

0,

otherwise,

where p € (0, %),

1—2p

1—-2p 1—-2p 1—2p 1—2p
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eI Symmetric birth-death Markov chain (p = 0.3)

e =0
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eI Symmetric birth-death Markov chain (p = 0.3)

0.3 0.4
a

e =0.3
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eI Symmetric birth-death Markov chain (p = 0.3)

5*

"0 001 002 003 004 005 0.06 0.07 0.08
a

e = 0.7
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Summary
r

Y _ Xt) IFUth = 1
) "7 le iFUH =0

ut = ft(th,Y]:t—]) )/(\t = gt(Ym)

Wireless
Markov | X¢ ) ) N
Transmitter ——=1 Erasure T Receiver —> X,
Process U

Channel

HEIAE Distortion
Discounted setup, 3 € (0,1) d(Xe —X¢)

Dg(f,9) = (1—BIE"Y [} Btax —Ro|;  Nplf,)=(1-B)EY |3 piuy]
t=0 t=0

. Average cost setup, p =1

T—1 N 1 c T—1

> ARy Nilf,g) =limsup 1 ESO [ 3
t=0 T—oo t=0

; 1
D, (f,g) = limsup _TE(()f‘g) [
T—oo
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Summary

r B

[Distortion transmission function for discrete auto-regressive sources |

Optimal transmission strategy

B> Find k* such that « € (N(Bk*“), Nék*]}.

B> Compute 6* such that
O NG + (1 -0 NG =«

1
(08
D, is PWL, dec, and convex B IF Xy — aX¢_1] > k*(«), transmit.
B IFIX, — aXi_q| = k*(o), transmit w.p. 6*.
D> Else, do not transmit.

*
How to Com&‘;te DB(O‘)M - Optimal estimation strategy
P> Compute L™ = [I - Bh'™ © PI"'h' © d. o Yy, ifY, £ ¢
e (l)?t_], |FYt =¢

M{ = 1—ph® @ P]-Th(.

L(k)(O)

& Then D =
b MY 0)

NG — =
amdl W™ = 0) (1-8)
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Summary

r A
IDistortion transmission function for discrete auto-regressive sourcesj
[The common information approach (Nayyar, Mahajan, Teneketzis 201;)1

Original system Coordinated system

— hel Vi (oo Xe1)

Ficticious coordinator

Yieor | Keg Xe—1

> The coordinated system is equivalent to the original system.
(%, Yr:e—1) = A (Yre—1) ().
D> The coordinated system is centralized.  Belief state (X | Y7.¢_1).
B Nayyar, Mahajan and Teneketzis, “Decentralized stochastic control with partial history sharing: A common information approach,” IEEE TAC 2013.
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Summary

r

2

IDistortion transmission function for discrete auto-regressive sourcesj

Fhe common information approach (Nayyar, Mahajan, Teneketzis 201
\: Simplifying modeling assumptions

Markov process Xer1 = aXy + W,
P> Discrete state process: X, a, Wy € Z

P Continuous state process: X, a, Wy € R T

Noise Distribution Unimodal and symmetric

Distortion function Even and increasing [

Proof outline Show that threshold-based strategies are optimal
Find performance of arbitrary threshold based strategies

> | Solution to the costly communication problem

>
‘ Fug 1728 Solution to the constrained communication problem
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Concluding Remarks

Presented results for discounted cost and countable state space
The results also apply to
B> Long-term average setup (using the vanishing discount approach)
P> Continuous state space (use Fredholm integral equations to compute Lg‘) and Mg‘))
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Presented results for discounted cost and countable state space
The results also apply to
P> Long-term average setup (using the vanishing discount approach)
B> Continuous state space (use Fredholm integral equations to compute Lg‘) and Mg‘))

Results are derived under idealized assumptions
Future directions

> Power or rate control . . .

P> Scheduling multiple sources . . .

> Model network delays . . .
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Concluding Remarks

Presented results for discounted cost and countable state space
The results also apply to
I> Long-term average setup (using the vanishing discount approach)
B> Continuous state space (use Fredholm integral equations to compute Lfgk) and Mg‘))

Results are derived under idealized assumptions
Future directions

B> Power or rate control . . .

B> Scheduling multiple sources . . .

B> Model network delays . . .

Full version available at arXiv:1505.048289.
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