
Fundamental limits of remote estimation

under communication constraints

Aditya Mahajan
McGill University

Joint work with Jhelum Chakravorty

Modeling and Optimization in Mobile, Ad-Hoc Wireless Networks (WiOpt)
11 May, 2016



There is a need to revisit estimation theory

to take network resources into account.
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Sensor Networks

Smart Grids
Internet of Things

Many applications require:
Sequential transmission of data
Zero- (or inite-) delay reconstruction

Salient features
Sensing is cheap
Transmission is expensive
Size of data-packet is not critical

Analyze a stylized model and evaluate fundamental trade-ofs
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Estimation strategy g = {gt}∞t=й.
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1. Discounted setup, β č (∑, −)
Dβ(f, g) = (− Ĕ β)�

ٿѣ̟Ѥپ
й [

∞∑
t=й

βtd(Xt Ĕ X̂t)]; Nβ(f, g) = (− Ĕ β)�
ٿѣ̟Ѥپ
й [

∞∑
t=й

βtUt]

2. Average cost setup, β = −
Dк(f, g) = lim sup

T→∞

−T �
ٿѣ̟Ѥپ
й [

T−к∑
t=й

d(Xt Ĕ X̂t)]; Nк(f, g) = lim sup
T→∞

−T �
ٿѣ̟Ѥپ
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T−к∑
t=й

Ut]
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Our result: Provide computable expressions for these trade-ofs
and identify optimal strategies that achieve them.
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Comparison to Information Theory
Costly communication is analogous to communication under power constraint.
Constrained communication is analogous to distortion-rate function.
So, we call it distortion-transmission function.

Due to zero-delay reconstruction, information theoretic approaches do not apply.

Previous work on remote-state estimation
[Marshak 1954] Static (one-shot) problem with arbitrary source distribution
[Kushner 1964] Off-line choice of measurement times
[Åstrom Bernhardsson 2002] Lebesque sampling (or event-based sampling)

Other related work
Event-based estimation . . .
Censoring censors . . .

Sensor sleep scheduling . . .
Age of Information . . .



An illustrative example
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ƽ�̞� = ƽ� ∉Ƽ�, Ƽ� ∼ �(ʟ, ʠ). Perfect channel

Periodic
Transmission

Strategy

D = ∑.67N ≈ −/3

Randomized
Transmission

Strategy

D = 2.∑∑N ≈ −/3

Optimal
Transmission

Strategy

D = ∑.24N ≈ −/3
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Distortion-transmission trade-off: Perfect channel
D

is
to

rt
io

n

α∑ ∑.25 ∑.5 ∑.75 −∑
∑.25

∑.5
∑.75

−
−.25

Randomized transmission strategy
Periodic transmission strategy
Optimal strategy



Main results
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Optimal transmission strategy
Find k∗ such that α č (Nپk∗̞кٿ

β , Nپk∗ٿ
β ].

Compute θ∗ such thatθ∗Nپkٿ
β ∉ (− Ĕ θ∗)Nپk̞кٿ

β = α
If |Xt Ĕ aX̂t−к| > k∗(α), transmit.
If |Xt Ĕ aX̂t−к| = k∗(α), transmit w.p. θ∗.
Else, do not transmit.

Optimal estimation strategy

X̂t = {
Yt, if Yt ≠ �aX̂t−к, if Yt = �
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Identify strategies that achieve the optimal trade-off
Simple and intuitive threshold based strategies are optimal.

Provide computable expressions for distortion-transmission function
Based on simple matrix calculations for discrete Markov processes

Based on solving Fredholm integral equations for continuous processes

Beautiful example of stochastics and optimization
Decentralized stochastic control (or team theory) and POMDPs

Stochastic orders and majorization

Markov chain analysis, stopping times, and renewal theory

Constrained MDPs and Lagrangian relaxations



What’s the conceptual difficulty?
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Static (one-shot) problem

�� ⊂ � is the silence setx̂ is the estimate when no packet is received

Cost when x Ď �λ ∉ εd(x Ĕ x̂)

Cost when x č �d(x Ĕ x̂)

Total expected cost≥(x̂, �) ∶= λℙ(X Ď �) ∉ ε∑
xۖ�

ℙ(X = x)d(x Ĕ x̂) ∉∑
xە�

ℙ(X = x)d(x Ĕ x̂)

Choose (x̂, �) to minimize ≥(x̂, �).
Set-valued (or combinatorial) optimization problem.



Fudamental limits of remote estimation–(Mahajan and Chakravorty)
11

Dynamic problem

��кк ⊂ � is the silence setx̂к is the estimate when no packet is received



Fudamental limits of remote estimation–(Mahajan and Chakravorty)
11

Dynamic problem

��кк ⊂ � is the silence setx̂к is the estimate when no packet is received

If a packet is received (UtHt = −)��кл(xк) ⊂ � is the silence setx̂кл is the estimate when no packet is received



Fudamental limits of remote estimation–(Mahajan and Chakravorty)
11

Dynamic problem

��кк ⊂ � is the silence setx̂к is the estimate when no packet is received

If a packet is received (UtHt = −)��кл(xк) ⊂ � is the silence setx̂кл is the estimate when no packet is received

If a packet is not received (UtHt = ∑)��йл(�кк) ⊂ � is the silence setx̂йл(�кк) is the estimate when no packet is received



Fudamental limits of remote estimation–(Mahajan and Chakravorty)
11

Dynamic problem

��кк ⊂ � is the silence setx̂к is the estimate when no packet is received

If a packet is received (UtHt = −)��кл(xк) ⊂ � is the silence setx̂кл is the estimate when no packet is received

If a packet is not received (UtHt = ∑)��йл(�кк) ⊂ � is the silence setx̂йл(�кк) is the estimate when no packet is received

Sequential optimization problem where the optimization problem
at each step is a set-valued optimization problem that depends
on a history of previously chosen sets!.

Exhaustive search complexity: Tٿ|�|лپځ|�|2|�|ڀ



So how do we start?

Decentralized stochastic control
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The common information approach (Nayyar, Mahajan, Teneketzis 2013)

Nayyar, Mahajan and Teneketzis, ąDecentralized stochastic control with partial history sharing: A common information approach,Ć IEEE TAC 2013.
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Nayyar, Mahajan and Teneketzis, ąDecentralized stochastic control with partial history sharing: A common information approach,Ć IEEE TAC 2013.
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Yк:t−к
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Ɵ Yк:t−к

Xt

–

Coordinated system

ht (φt, X̂t−к)
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The common information approach (Nayyar, Mahajan, Teneketzis 2013)

The coordinated system is equivalent to the original system.ft(x, yк:t−к) = hкt(yк:t−к)(x).
The coordinated system is centralized. Belief state ℙ(Xt | Yк:t−к).

Nayyar, Mahajan and Teneketzis, ąDecentralized stochastic control with partial history sharing: A common information approach,Ć IEEE TAC 2013.
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Original system

Ɵ Yк:t−к
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Information states Pre-transmission belief : Πt|t−к(x) = ℙ(Xt = x | Yк:t−к).
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Structural results There is no loss of optimality in using

Ut = ft(Xt, Πt|t−к) and X̂t = gt(Πt|t).
Dynamic Program VT̞к|T(π) = ∑, and for t = T, . . . , ∑

Vt|t(π) = min
x̂ە�

�[d(Xt Ĕ x̂) ∉ Vt̞к|t(Πt̞к) | Πt|t = π],
Vt|t−к(π) = min

φ:�→{й̟к}
�[λφ(Xt) ∉ Vt|t(Πt|t) | Πt|t−к = π,φt = φ].

ąStandardĆ POMDP. Optimal strategies can
be computed numerically (at least, in principle).



Can we use the DP to say something

more about the optimal strategy?
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Simplifying modeling assumptions

Markov process Xt̞к = aXt ∉Wt

Discrete state process: Xt, a, Wt č ℤ

Continuous state process: Xt, a, Wt č ℝ

Noise Distribution Unimodal and symmetric

Distortion function Even and increasing
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Markov process Xt̞к = aXt ∉Wt

Discrete state process: Xt, a, Wt č ℤ

Continuous state process: Xt, a, Wt č ℝ

Noise Distribution Unimodal and symmetric

Distortion function Even and increasing

Proof outline Step 1 Show that threshold-based strategies are optimal

Step 2 Find performance of arbitrary threshold based strategies

Step 3 Solution to the costly communication problem

Step 4 Solution to the constrained communication problem
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Preliminaries

Almost uniform and
unimodal (ASU)

distribution about ≥ ≥
πc ņ πc̞к ņ πc−к ņ πc̞л ņ ⋅ ⋅ ⋅

[Hajek Mitzel Yang 2008, Lipsa Martins 2011, Nayyar et. al. 2013]
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Preliminaries

Almost uniform and
unimodal (ASU)

distribution about ≥ ≥
πc ņ πc̞к ņ πc−к ņ πc̞л ņ ⋅ ⋅ ⋅

ASU Rearrangement ƞ
π π̞

Majorization π ⪰ � if
n∑

i=−n

π̞i ņ n∑
i=−n

�̞i and
n̞к∑
i=−n

π̞i ņ n̞к∑
i=−n

�̞i
Invariant to permutations.

[Hajek Mitzel Yang 2008, Lipsa Martins 2011, Nayyar et. al. 2013]

⪰



Fudamental limits of remote estimation–(Mahajan and Chakravorty)
17

Step 1 Properties of the value function

Backward induction
argument

Value function is ąalmostĆ Schur-concave:
If � ⪰ π and π is ASU, then Vt|t−к(�) ņ Vt|t−к(π) and Vt|t(�) ņ Vt|t(π)
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Step 1 Properties of the value function

Backward induction
argument

Value function is ąalmostĆ Schur-concave:
If � ⪰ π and π is ASU, then Vt|t−к(�) ņ Vt|t−к(π) and Vt|t(�) ņ Vt|t(π)
Optimal estimation strategy:
If π is ASU about ≥, then ≥ is the arg min of

Vt|t(π) = min
x̂ە�

�[d(Xt Ĕ x̂) ∉ Vt̞к|t(Πt̞к|t) | Πt|t = π],
Optimal transmission strategy:
If π is ASU about ≥, then the arg min of

Vt|t−к(π) = min
φ:�→{й̟к}

�[λφ(Xt) ∉ Vt|t(Πt|t) | Πt|t = π,φt = φ]
is of the threshold form in |x Ĕ a≥|.
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Step 1 Properties of the value function

Define Oblivious estimation process Error process

Zt = {
Xt, if Yt ≠ �aZt−к, if Yt = � Et = Xt Ĕ aZt−к
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Step 1 Properties of the value function

Define Oblivious estimation process Error process

Zt = {
Xt, if Yt ≠ �aZt−к, if Yt = � Et = Xt Ĕ aZt−к

Forward induction
argument

Πt|t−к is ASU around Zt−кΠt|t is ASU around Zt

Structure of
optimal strategies

Optimal transmitter: There exists thresholds {kt}t≥й such that

Ut = f∗t(Et) = {
− if |Et| ņ kt∑ if |Et| < kt

Optimal estimator: X̂t = g∗t(Zt) = Zt
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Some comments

The result is non-intuitive
The transmitter does not try to send information through timing information.

The estimation strategy is the same to the one for intermittent observations and
does not depend on the choice of the threshold



For infinite-horizon setup time-homogeneous

threshold-based strategies are optimal.

How do we find the optimal threshold-based strategy?
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Step 2 Performance of threshold-based strategies

Consider a threshold-based strategy

fپkٿ(e) = {
− if |e| ņ k∑ otherwise

Ĕk k
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Proposition {Et}∞t=й is a regenerative process. By renewal theory,
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β (e) = (− Ĕ β)� [
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Proposition {Et}∞t=й is a regenerative process. By renewal theory,

Dپkٿ
β ∶= Dβ(fپkٿ, g∗) = Lپkٿβ (∑)

Mپkٿ
β (∑) and Nپkٿ

β ∶= Nβ(fپkٿ, g∗) = −Mپkٿ
β (∑) Ĕ (− Ĕ β).

Consider a threshold-based strategy

fپkٿ(e) = {
− if |e| ņ k∑ otherwise

Ĕk k

Let τپkٿ denote the stopping time of irst reception
(starting at Eй = ∑).

τپkٿ t

k

Ĕk

Et

Computing Lپkٿβ and Mپkٿ
β is suicient to compute the

performance of fپkٿ (i.e., to compute Dپkٿ
β and Nپkٿ

β ).
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Step 2 Computing Ʊٿ�پβ and Ʋٿ�پ
β

Lپkٿβ (e) =
ƌƏƏƏ
ƍƏƏƏƎ

d(e) ∉ β ē
nەℤ

pn−ѢLپkٿβ (n), if |e| < k
ε[d(e) ∉ β ē

nەℤ

pn−aѢLپkٿβ (n)], if |e| ņ k

Mپkٿ
β (e) =

ƌƏƏƏ
ƍƏƏƏƎ

− ∉ β ē
nەℤ

pn−ѢMپkٿ
β (n), if |e| < k

ε[− ∉ β ē
nەℤ

pn−aѢMپkٿ
β (n)], if |e| ņ k

Ĕk k



Fudamental limits of remote estimation–(Mahajan and Chakravorty)
21

Step 2 Computing Ʊٿ�پβ and Ʋٿ�پ
β

Lپkٿβ (e) =
ƌƏƏƏ
ƍƏƏƏƎ

d(e) ∉ β ē
nەℤ

pn−ѢLپkٿβ (n), if |e| < k
ε[d(e) ∉ β ē

nەℤ

pn−aѢLپkٿβ (n)], if |e| ņ k

Mپkٿ
β (e) =

ƌƏƏƏ
ƍƏƏƏƎ

− ∉ β ē
nەℤ

pn−ѢMپkٿ
β (n), if |e| < k

ε[− ∉ β ē
nەℤ

pn−aѢMپkٿ
β (n)], if |e| ņ k

Ĕk k

ƆƇƇƇƇƇƇƇƇƇƇƇƇ
ƈ

⋮

Lپkٿβ (−2)
Lپkٿβ (−1)
Lپkٿβ (0)
Lپkٿβ (1)
Lپkٿβ (2)
⋮

ƉƊƊƊƊƊƊƊƊƊƊƊƊ
Ƌ

=

ƆƇƇƇƇƇƇƇƇƇƇƇ
ƈ

⋮

εd(−2)
d(−1)
d(0)
d(1)
εd(2)
⋮

ƉƊƊƊƊƊƊƊƊƊƊƊ
Ƌ

+ β

ƆƇƇƇƇƇƇƇƇƇƇƇ
ƈ

⋮ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋮

⋅ ⋅ ⋅ εpк εpл εpм εpн εpо ⋅ ⋅ ⋅
⋅ ⋅ ⋅ pй pк pл pм pн ⋅ ⋅ ⋅
⋅ ⋅ ⋅ p−к pй pк pл pм ⋅ ⋅ ⋅
⋅ ⋅ ⋅ p−л p−к pй pк pл ⋅ ⋅ ⋅
⋅ ⋅ ⋅ εp−м εp−л εp−к εpй εpк ⋅ ⋅ ⋅
⋮ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋮

ƉƊƊƊƊƊƊƊƊƊƊƊ
Ƌ

ƆƇƇƇƇƇƇƇƇƇƇƇƇ
ƈ

⋮

Lپkٿβ (−2)
Lپkٿβ (−1)
Lپkٿβ (0)
Lپkٿβ (1)
Lپkٿβ (2)
⋮

ƉƊƊƊƊƊƊƊƊƊƊƊƊ
Ƌ
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β (n), if |e| < k
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Proposition Lپkٿβ = [I Ĕ βhپkٿ ⊙ P]−кhپkٿ ⊙ d, hپkٿ ⊙ P is substochastic.

Mپkٿ
β = [I Ĕ βhپkٿ ⊙ P]−кhپkٿ.

Ĕk k
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β (n)], if |e| ņ k

Proposition Lپkٿβ = [I Ĕ βhپkٿ ⊙ P]−кhپkٿ ⊙ d, hپkٿ ⊙ P is substochastic.

Mپkٿ
β = [I Ĕ βhپkٿ ⊙ P]−кhپkٿ.

Ĕk kDپkٿ
β and Nپkٿ

β can be computed using these expressions.



Fudamental limits of remote estimation–(Mahajan and Chakravorty)
22

Step 3 Solution to costly optimization problem

Proposition Cپkٿ
β (λ) ∶= Dپkٿ

β ∉ λNپkٿ
β is submodular in (k, λ).

Hence, k∗β(λ) ∶= arg min
k≥й

Cپkٿ
β (λ) is increasing in λ
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λ

�∗β(λ)

λپk−кٿ λپkٿ

Deine Λپkٿ
β ∶= {λ č ℝ≥й : k∗β(λ) = k}= [λپk−кٿ

β , λپkٿβ ].
Cپkٿ

β (λپkٿβ ) = Cپk̞кٿ
β (λپkٿβ )
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Theorem Strategy fپk̞кٿ is optimal for λ č (λپkٿβ , λپk̞кٿ
β ] .

C∗
β(λ) = minkەℤ≥0

Cپkٿ
β is piecewise linear, continuous, concave, and increasing

function of λ.
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Step 4 Solution to constrained communication problem

Sufficient condition for optimality
A strategy (f∘, g∘) is optimal for the constrained problem if

(C1) Nβ(f∘, g∘) = α
(C2) There exists λ∘ ņ ∑ such that (f∘, g∘) is optimal for the Lagrange relaxation with parameter λ∘.
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Randomized strategy (θ∗, fپkٿ, fk̞к) is optimal where

θ∗Nپkٿ
β ∉ (− Ĕ θ∗)Nپk̞кٿ

β = α
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(C1) Nβ(f∘, g∘) = α
(C2) There exists λ∘ ņ ∑ such that (f∘, g∘) is optimal for the Lagrange relaxation with parameter λ∘.

λپkٿβ

fپkٿ optimal

fپk̞кٿ optimal

λ
Dپkٿ

β

Dپk̞кٿ
β

Dپk̞лٿ
β

Randomized strategy (θ∗, fپkٿ, fk̞к) is optimal where

θ∗Nپkٿ
β ∉ (− Ĕ θ∗)Nپk̞кٿ

β = α
∑ −α

D∗
β

(Nپkٿ
β , Dپkٿ

β )
(Nپk̞кٿ

β , Dپk̞кٿ
β )

D∗
β is PWL, dec, and convex
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Example Symmetric birth-death Markov chain

pn = ƌƏƍƏƎ
p, if |n| = −;− Ĕ 2p, if n = ∑;∑, otherwise,

where p č (∑, −3), d(e) = |e|

∑ − 2 ⋅ ⋅ ⋅Ĕ−Ĕ2⋅ ⋅ ⋅ p
− Ĕ 2p

p
− Ĕ 2p

p
− Ĕ 2p

p
− Ĕ 2p

p
− Ĕ 2p

p
pppppp
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Example Symmetric birth-death Markov chain (� = ʟ.�)
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Summary
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3

Markov
Process

Transmitter
Wireless
Erasure
Channel

Receiver
Xt Ut

Yt X̂t

ACK/NACK

1. Discounted setup, β č (∑, −)
Dβ(f, g) = (− Ĕ β)�

ٿѣ̟Ѥپ
й [

∞∑
t=й

βtd(Xt Ĕ X̂t)]; Nβ(f, g) = (− Ĕ β)�
ٿѣ̟Ѥپ
й [

∞∑
t=й

βtUt]

2. Average cost setup, β = −
Dк(f, g) = lim sup

T→∞

−T �
ٿѣ̟Ѥپ
й [

T−к∑
t=й

d(Xt Ĕ X̂t)]; Nк(f, g) = lim sup
T→∞

−T �
ٿѣ̟Ѥپ
й [

T−к∑
t=й

Ut]

Ut = ft(Xк:t, Yк:t−к)
ℙ(Ht = ∑) = ε

Yt = {
Xt, if UtHt = −�, if UtHt = ∑

X̂t = gt(Yк:t)

Distortiond(Xt Ĕ X̂t)
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How to compute D∗
β(α)

Compute Lپkٿβ = [I Ĕ βhپkٿ ⊙ P]−кhپkٿ ⊙ d.

Mپkٿ
β = [I Ĕ βhپkٿ ⊙ P]−кhپkٿ.

Then Dپkٿ
β = Lپkٿ(∑)

Mپkٿ
β (∑) and Nپkٿ

β = −
Mپkٿ

β (∑) Ĕ (− Ĕ β)

Distortion transmission function for discrete auto-regressive sources

∑ −α

D∗
β

αc

(Nپkٿ
β , Dپkٿ

β )
(Nپk̞кٿ

β , Dپk̞кٿ
β )

D∗
β is PWL, dec, and convex

Optimal transmission strategy
Find k∗ such that α č (Nپk∗̞кٿ

β , Nپk∗ٿ
β ].

Compute θ∗ such thatθ∗Nپkٿ
β ∉ (− Ĕ θ∗)Nپk̞кٿ

β = α
If |Xt Ĕ aX̂t−к| > k∗(α), transmit.
If |Xt Ĕ aX̂t−к| = k∗(α), transmit w.p. θ∗.
Else, do not transmit.

Optimal estimation strategy

X̂t = {
Yt, if Yt ≠ �aX̂t−к, if Yt = �
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The common information approach (Nayyar, Mahajan, Teneketzis 2013)

The coordinated system is equivalent to the original system.ft(x, yк:t−к) = hкt(yк:t−к)(x).
The coordinated system is centralized. Belief state ℙ(Xt | Yк:t−к).

Nayyar, Mahajan and Teneketzis, ąDecentralized stochastic control with partial history sharing: A common information approach,Ć IEEE TAC 2013.

Xt, Yк:t−к

Yк:t−к

Original system

Ɵ Yк:t−к

Xt

–

Coordinated system

ht (φt, X̂t−к)

φt

X̂t−к

Ut

X̂t−к

Ficticious coordinator

ft

gt−к

Ut

X̂t−к
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Simplifying modeling assumptions

Markov process Xt̞к = aXt ∉Wt

Discrete state process: Xt, a, Wt č ℤ

Continuous state process: Xt, a, Wt č ℝ

Noise Distribution Unimodal and symmetric

Distortion function Even and increasing

Proof outline Step 1 Show that threshold-based strategies are optimal

Step 2 Find performance of arbitrary threshold based strategies

Step 3 Solution to the costly communication problem

Step 4 Solution to the constrained communication problem
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Concluding Remarks

Presented results for discounted cost and countable state space
The results also apply to

Long-term average setup (using the vanishing discount approach)
Continuous state space (use Fredholm integral equations to compute Lپkٿβ and Mپkٿ

β )
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