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2. Average cost setup, β = 1
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We provide explicit computable expressions for both curves
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Costly communication is analogous to communication under power constraint.

Distortion-transmission is analogous to distortion-rate trade-off.

The source reconstruction must be done in real-time (or with zero delay).

Comparison to real-time communication

Special case of the real-time communication model
[Witsenhausen 1979, Walrand-Varaiya 1983, Teneketzis 2006, Teneketzis-Mahajan 2009 . . . ].

Existing results in the literature establish structure of optimal coding strategies

and a dynamic program to identify optimal strategies.

The resultant dynamic programs correspond to decentralized control problem

and are hard to solve.

Our approach
Previous results have established the structure of optimal strategies.

Exploit the structural results to explicitly identify optimal strategies.
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Modeling assumptions

Markov chain setup Guass-Markov setup

State spaces Xt, Wt ∈ ℤ Xt, Wt ∈ ℝ

Noise distribution Unimodal and symmetricpe = p−e ņ pe+1

Zero-mean Gaussianφσ(⋅)
Distortion Even and increasingd(e) = d(−e) ņ d(e + 1) Mean-squaredd(e) = |e|2

Unimodal and symmetric distribution Even and increasing distortion
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Step 1 Structure of optimal strategies

Model the communication system as decentralized stochastic control
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Common-information approach [Nayyar-Mahajan-Teneketzis 2013]

Equivalent centralized problem from the point of view of a coordinator.

Choose code functions at each step (rather than actions).
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Step 1 Structure of optimal strategies

Model the communication system as decentralized stochastic control
Two decision makers: transmitter and receiver. Non-nested information.

Common-information approach [Nayyar-Mahajan-Teneketzis 2013]

Equivalent centralized problem from the point of view of a coordinator.

Choose code functions at each step (rather than actions).

Previous results
Guass-Markov setup [Lipsa-Martins 2009 and 2011, Molin-Hirche 2009]

Markov-chain setup [Nayyar-Başar-Teneketzis-Veeravalli 2013]

Proof idea: Majorization-based partial order on belief states.

Prove that π ⪰m φ⟹V(π) ņ V(φ).



Distortion-transmission trade-off– (Chakravorty and Mahajan)
6

Step 1 Structure of optimal estimator (Nayyar et al, 2013)

Transmitted
Process

Let Zt denote the most recently transmitted value of the Markov

source.

Z0 = 0 and Zt = {
Xt if Ut = 1;Zt−1 if Ut = 0.

The estimator can keep track of Zt as follows:

Z0 = 0 and Zt = {
Yt if Yt ≠ ε;Zt−1 if Yt = ε.
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Step 1 Structure of optimal estimator (Nayyar et al, 2013)

Transmitted
Process

Let Zt denote the most recently transmitted value of the Markov

source.

Z0 = 0 and Zt = {
Xt if Ut = 1;Zt−1 if Ut = 0.

The estimator can keep track of Zt as follows:

Z0 = 0 and Zt = {
Yt if Yt ≠ ε;Zt−1 if Yt = ε.

Theorem 1 The process {Zt}∞t=0 is a sufficient statistic at the estimator and an

optimal estimation strategy is given byX̂t = g∗t(Zt) = Zt (⋆)

Remark The optimal estimation strategy is time-homogeneous and can be

specified in closed form.
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Step 1 Structure of optimal transmitter (Nayyar et al)

Error process Let Et = Xt − Zt−1 denote the error process. {Et}∞t=0 is a controlled

Markov process where

E0 = 0 and ℙ(Et+1 = n | Et = e,Ut = u) = {
p|e−n|, if u = 0;pn, if u = 1.



Distortion-transmission trade-off– (Chakravorty and Mahajan)
7

Step 1 Structure of optimal transmitter (Nayyar et al)

Error process Let Et = Xt − Zt−1 denote the error process. {Et}∞t=0 is a controlled

Markov process where

E0 = 0 and ℙ(Et+1 = n | Et = e,Ut = u) = {
p|e−n|, if u = 0;pn, if u = 1.

Theorem 2 When the estimation strategy is of the form (⋆), then {Et}∞t=0 is a

sufficient statistic at the transmitter.

Furthermore, an optimal transmission strategy is characterized by a

time-varying threshold {kt}∞t=0, i.e.,

Ut = ft(Et) = {
1 if |Et| ņ kt;0 if |Et| < kt.
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Step 1 Main idea

Restrict attention to time-homogeneous estimation strategies of the form

X̂t = g∗t(Zt) = Zt.
Consider the problem of finding the best-response transmission strategy.

Under appropriate technical conditions, the best-response strategy is time-homogeneous.
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Restrict attention to time-homogeneous estimation strategies of the form

X̂t = g∗t(Zt) = Zt.
Consider the problem of finding the best-response transmission strategy.

Under appropriate technical conditions, the best-response strategy is time-homogeneous.

Find the best treshold-based strategy within the class ℱ = {f(k) : k ∈ ℤ≥0} where

f(k)(e) = {
1 if |e| ņ k0 otherwise

Search space of

strategies (f, g)
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Step 2 Performance of threshold strategies

Consider a threshold-based strategy

f(k)(e) = {
1 if |e| ņ k0 otherwise

−k k
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Step 2 Performance of threshold strategies

Define L(k)β = (1 − β)𝔼 [
τ(k)−1󰀖
t=0

βtd(Et)|E0 = 0].
M(k)

β = (1 − β)𝔼 [
τ(k)−1󰀖
t=0

βt|E0 = 0].

Proposition {Et}∞t=0 is a regenerative process and by renewal theory, we have that

D(k)
β ∶= Dβ(f(k), g∗) = L(k)βM(k)

β

and N(k)
β ∶= Nβ(f(k), g∗) = 1M(k)

β

− (1 − β).

Consider a threshold-based strategy

f(k)(e) = {
1 if |e| ņ k0 otherwise

−k k

Let τ(k) denote the stopping time of

first transmission (starting at E0 = 0).

τ(k) t

k

−k
Et
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Step 2 Computing 𝐃(u�)
β and 𝐍(u�)

β

Notation 𝒮(k) = {−(k − 1), . . . , k − 1}.
[P(k)]ij = p|i−j|, for i, j ∈ 𝒮(k).
[d(k)]i = d(i), for i ∈ 𝒮(k).
[𝟏(k)]i = 1, for i ∈ 𝒮(k).

τ(k) t

k

−k
Et

−k k
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β and 𝐍(u�)

β

Notation 𝒮(k) = {−(k − 1), . . . , k − 1}.
[P(k)]ij = p|i−j|, for i, j ∈ 𝒮(k).
[d(k)]i = d(i), for i ∈ 𝒮(k).
[𝟏(k)]i = 1, for i ∈ 𝒮(k).

Proposition L(k)β = [[I − βP(k)]−1d(k)]0.

M(k)
β = [[I − βP(k)]−1𝟏(k)]0.

τ(k) t

k

−k
Et

−k k
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Step 2 Computing 𝐃(u�)
β and 𝐍(u�)

β

Notation 𝒮(k) = {−(k − 1), . . . , k − 1}.
[P(k)]ij = p|i−j|, for i, j ∈ 𝒮(k).
[d(k)]i = d(i), for i ∈ 𝒮(k).
[𝟏(k)]i = 1, for i ∈ 𝒮(k).

Proposition L(k)β = [[I − βP(k)]−1d(k)]0.

M(k)
β = [[I − βP(k)]−1𝟏(k)]0.

D(k)
β and N(k)

β can be computed using these expressions.

τ(k) t

k

−k
Et

−k k
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Step 3 Properties of optimal thresholds

Monotonicity L(k+1)
β > L(k)β and M(k+1)

β > M(k)
β

Depends on

unimodularity of noise
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Step 3 Properties of optimal thresholds

Monotonicity L(k+1)
β > L(k)β and M(k+1)

β > M(k)
β

Implication:

D(k+1)
β ņ D(k)

β and N(k+1)
β < N(k)

β

Use DP and

monotonicity of

Bellman operator
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Step 3 Properties of optimal thresholds

Monotonicity L(k+1)
β > L(k)β and M(k+1)

β > M(k)
β

Implication:

D(k+1)
β ņ D(k)

β and N(k+1)
β < N(k)

β

Submodularity C(k)
β (λ) ∶= D(k)

β + λN(k)
β is submodular in (k, λ).

Proof: C(k+1)
β (λ) − C(k)

β (λ) = D(k+1)
β (λ) − D(k)

β (λ) − λ(N(k)
β (λ) − N(k+1)

β (λ)⏝⏝⏝⏝⏝⏝⏝⏝⏝⏝⏝
≥0

).
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Step 3 Properties of optimal thresholds

Monotonicity L(k+1)
β > L(k)β and M(k+1)

β > M(k)
β

Implication:

D(k+1)
β ņ D(k)

β and N(k+1)
β < N(k)

β

Submodularity C(k)
β (λ) ∶= D(k)

β + λN(k)
β is submodular in (k, λ).

Proposition k∗β(λ) ∶= arg min
k∈ℤ≥0
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Step 4 Distortion-transmission trade-off

Sufficient conditions for constrained optimality
A strategy (f∘, g∘) is optimal for the constrained communication problem if

(C1) Nβ(f∘, g∘) = α
(C2) There exists λ∘ ņ 0 such that (f∘, g∘) is optimal for Cβ(f, g; λ∘).
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Step 4 Features of optimal strategy

Optimal strategy

f∗(e) =
ƌƏƏƏƏ
ƍƏƏƏƏƎ

1 if |e| > k∗β1 w.p. θ∗ if |e| = k∗β0 w.p. 1 − θ∗ if |e| = k∗β0 if |e| < k∗β
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Deterministic implementation
Time-sharing strategies

Assume θ∗ = a/(a + b).
Choose strategy f(k∗) for a visits to state zero and strategy f(k∗+1) for b visits to state

zero and so on.

Steering strategies:

Let ait denote the number of times action i is chosen in the past.

At states {−k∗, k∗} choose an action that steers the empirical frequency closer to the

desired randomization probability.

Randomized action

at a single state
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An example: Symmetric birth-death Markov Chain
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1 − 2𝑝
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1 − 2𝑝
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1 − 2𝑝
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𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

Pij = ƌƏƍƏƎ
p, if |i − j| = 1;1 − 2p, if i = j;0, otherwise,

where p ∈ (0, 12), d(e) = |e|
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Discounted cost Let Kβ = −2 − (1 − β)/βp and mβ = cosh−1(−Kβ/2).
D(k)

β = sinh(kmβ) − k sinh(mβ)2 sinh2(kmβ/2) sinh(mβ)
N(k)

β = 2βp sinh2(mβ/2) cosh(kmβ)
sinh2(kmβ/2) − (1 − β)

Average cost D(k)
1 = k2 − 13k and N(k)

1 = 2pk2

An example: Symmetric birth-death Markov Chain
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λ(k)β can be computed in terms of D(k)
β and N(k)

β .

Average cost D(k)
1 = k2 − 13k and N(k)

1 = 2pk2

λ(k)1 = k(k + 1)(k2 + k + 1)6p(2k + 1)
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k∗1 = ⌊√2pα ⌋

An example: Symmetric birth-death Markov Chain

-2

1 − 2𝑝

-1

1 − 2𝑝

0

1 − 2𝑝

1

1 − 2𝑝

2

1 − 2𝑝
𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝



Distortion-transmission trade-off– (Chakravorty and Mahajan)
15

Discounted cost Let Kβ = −2 − (1 − β)/βp and mβ = cosh−1(−Kβ/2).
D(k)

β = sinh(kmβ) − k sinh(mβ)2 sinh2(kmβ/2) sinh(mβ)
N(k)

β = 2βp sinh2(mβ/2) cosh(kmβ)
sinh2(kmβ/2) − (1 − β)

Average cost D(k)
1 = k2 − 13k and N(k)

1 = 2pk2

An example: Symmetric birth-death Markov Chain

-2

1 − 2𝑝

-1

1 − 2𝑝

0

1 − 2𝑝

1

1 − 2𝑝

2

1 − 2𝑝
𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

β = 1.0β = 0.9β = 0.8

p = 0.3

0
1
2
3
4
5
6
7

0 0.05 0.1 0.15 0.2 α

k∗β



Distortion-transmission trade-off– (Chakravorty and Mahajan)
15

Discounted cost Let Kβ = −2 − (1 − β)/βp and mβ = cosh−1(−Kβ/2).
D(k)

β = sinh(kmβ) − k sinh(mβ)2 sinh2(kmβ/2) sinh(mβ)
N(k)

β = 2βp sinh2(mβ/2) cosh(kmβ)
sinh2(kmβ/2) − (1 − β)

Average cost D(k)
1 = k2 − 13k and N(k)

1 = 2pk2

An example: Symmetric birth-death Markov Chain

-2

1 − 2𝑝

-1

1 − 2𝑝

0

1 − 2𝑝

1

1 − 2𝑝

2

1 − 2𝑝
𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

β = 1.0β = 0.9β = 0.8

p = 0.3

0
1
2
3
4
5
6
7

0 0.05 0.1 0.15 0.2 α

k∗β

0 1α

D∗
β(α)

1

β = 0.9



Distortion-transmission trade-off– (Chakravorty and Mahajan)
16

Summary

Distortion-transmission trade-off– (Chakravorty and Mahajan)
1

The system model

Markov

Source
Transmitter Receiver

Xt Ut

Yt X̂t

1. Discounted setup, β ∈ (0, 1)
Dβ(f, g) = (1 − β)𝔼

(f,g)
0 [

∞󰀖
t=0

βtd(Xt − X̂t)]; Nβ(f, g) = (1 − β)𝔼
(f,g)
0 [

∞󰀖
t=0

βtUt]

2. Average cost setup, β = 1
D1(f, g) = lim sup

T→∞

1T 𝔼
(f,g)
0 [

T−1󰀖
t=0

d(Xt − X̂t)]; N1(f, g) = lim sup
T→∞

1T 𝔼
(f,g)
0 [

T−1󰀖
t=0

Ut]

Xt+1 = Xt +Wt Ut = ft(X1:t, U1:t−1)

Yt = {
Xt, if Ut = 1ε, if Ut = 0

X̂t = gt(Y1:t)

Distortiond(Xt, X̂t)
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2

Optimization problems

Costly communication
For any λ ∈ ℝ>0, C∗

β(λ) = Cβ(f∗, g∗; λ) ∶= inf
(f,g)

{Dβ(f, g)+λNβ(f, g)}

Constrained communication
For any α ∈ (0, 1), D∗

β(α) ∶= inf
(f,g)

{Dβ(f, g) : Nβ(f, g) Ņ α}

λ

C∗
β

C∗
β is cts, inc, and concave

α

D∗
β

D∗
β is cts, dec, and convex
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β(λ)

λ(k−1) λ(k)
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0 1α𝑐α

𝐷∗
β(α)

(𝑁 (𝑘)
β ,𝐷(𝑘)

β )
(𝑁 (𝑘+1)

β ,𝐷(𝑘+1)
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