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@ Sequential transmission of data

@ Zero delay in reconstruction
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Motivation

@ Sequential transmission of data

@ Zero delay in reconstruction

@ Smart grids
@ Environmental monitoring

@ Sensor networks

@ Sensing is cheap

@ Transmission is expensive

@ Size of data-packet is not critical
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The remote-state estimation setup

X . Uy Y; . Xt
‘ Gauss-Markov process }—" Transmitter —| Receiver

Source process Xer1 = X¢ + Wi, Wi ~ N(0,02), i.id.
Uncontrolled Gauss-Markov process.

. Xt, if Ut = 1;
T tter Uy = fi(X1:t, Ur:p—1) and Yy =
ransmitter U; t(Xi:t, Ur:e-1) and Ve {(’3, if Us =0,

Receiver X; = gt(Y1:t)
Distortion: (X; — X;)?

Communication Transmission strategy f = {f;}32,

strategies Estimation strategy g = {g:}20
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The optimization problem

e D(f,g) = I|msup 7_]E(’cg)[

T-1 .
d(Xe — Xe) | Xo = 0]
t=0
T-—1
N(f, g) = limsup TIE)(f»g)[ U | X =0]
T—o0 —0
D*(a) = D(f*,g"):= i

inf D(f, g
(f.g):N(f.g)<a ( )
transmissions is less than «

Minimize expected distortion such that expected number of
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The system Main result Optimal strategies Performance

Literature overview

Costly communication: analysis of optimal performance

@ Estimation with measurement cost: estimator decides whether
the sensor should transmit - Athans, 1972; Geromel, 1989: Wu
et al, 2008.

@ Sensor sleep scheduling: sensor is allowed to sleep for a
pre-specified amount of time - Shuman and Liu, 2006; Sarkar
and Cruz, 2004, 2005; Federgruen and So, 1991.

@ Censoring sensors: sequential hypothesis testing setup; sensor

decides whether to transmit or not - Rago et al, 1996;
Appadwedula et al, 2008.
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Literature overview

Remote state estimation: focus on structure of optimal strategies

@ Gauss-Markov source with finite number of transmissions -
Imer and Basar, 2005.

@ Gauss-Markov source with costly communication (finite

horizon) - Lipsa and Martins, 2011; Molin and Hirche, 2012;
Xu and Hespanha, 2004.

e Countable Markov source with costly communication (finite
horizon) - Nayyar et al, 2013.
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Literature overview

Remote state estimation: focus on structure of optimal strategies

@ Gauss-Markov source with finite number of transmissions -
Imer and Basar, 2005.

@ Gauss-Markov source with costly communication (finite

horizon) - Lipsa and Martins, 2011; Molin and Hirche, 2012;
Xu and Hespanha, 2004.

e Countable Markov source with costly communication (finite
horizon) - Nayyar et al, 2013.

Gauss-Markov source; infinite horizon setup; constrained
optimization.
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Main result: the Distortion-Transmission function

Variance: 02 =1
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How to compute D*(«) for a given a € (0,1) ?
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Main result: the Distortion-Transmission function

How to compute D*(«) for a given o € (0,1) ?

e Find k*(a) € R such that M (®)(0) = 1/a, where

ME(e) = 1+ [* p(w — e)MB) (w)dw.
o Compute LK (@)(0) where

LI (e) = e+ [*, d(w — &)L (w)dw.
o D*(a) = L(k*(a))(o)/M(k*(a))( ).

@ Scaling of distortion-transmission function with variance.
Di(a) = 02Di ().
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Comparison with periodic strategy
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Source process X;
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An illustration

a = 1/6, Periodic strategy

Source process X;
1] ] .
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Error process E;
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An illustration

a = 1/6, Threshold strategy; Threshold=2

Source process X;

]

Error process E;
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:
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Distortion

— Threshold strategy
— Periodic strategy
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and a converse | Instead,

We don't proceed in the usual way to find the achievable scheme

«40)>» «F» « =)

it
-

Do
8/16



and a converse | Instead,

We don't proceed in the usual way to find the achievable scheme

o Identify structure of optimal strategies.

o Find the best strategy with that structure
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cr(\) = (ifn;‘) C(f,g: N,

where C(f,g;\) = D(f,g) + AN(f,g), A > 0.
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The system Main result Optimal strategies Performance

Structure of optimal strategies

The structure of optimal transmitter and estimator follows from
[Lipsa-Martins 2011] and [Nayyar-Basar-Teneketzis-Veeravalli 2013].J

Finite horizon setup; results for Lagrange relaxation
Optimal estimation Let Z; be the most recently transmitted symbol.

strategy X, = gi (Z:) = Z;; Time homogeneous!

Optimal transmission Let E; = X; — Z;_1 be the error process and
strategy f; be the threshold based strategy such that

1 if 6] > k
£(Xes You1) = { o l Efl o
) t t-

10/16



The system Main result Optimal strategies Performance

Structure of optimal strategies

The structure of optimal transmitter and estimator follows from
[Lipsa-Martins 2011] and [Nayyar-Basar-Teneketzis-Veeravalli 2013].J

Finite horizon setup; results for Lagrange relaxation

Optimal estimation Let Z; be the most recently transmitted symbol.
strategy X; = gl (Z:) = Z;; Time homogeneous!

Optimal transmission Let E; = X; — Z;_1 be the error process and
strategy f; be the threshold based strategy such that

1, if |E| >k
f(Xe, You1) = {O y :E: -
9 t t-

We prove that the results generalize to infinite horizon setup; the
optimal thresholds are time - homogeneous.
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Performance of threshold based strategies

Fix a threshold based startegy f(K). Define
o D(K): the expected distortion.

o N(K): the expected number of transmissions.
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The system Main result Optimal strategies Performance

Performance of threshold based strategies

Fix a threshold based startegy f(¥). Define
o D). the expected distortion.
o N(K: the expected number of transmissions.

{E:}, is regenerative process.

7(K): stopping time when the Gauss-Markov process starting at
state 0 at time t = O enters the set {e € R : |e| >k}
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The system Main result Optimal strategies

Performance of threshold based strategies

Fix a threshold based startegy f(¥). Define
o D). the expected distortion.
o N(): the expected number of transmissions.

{E:}32, is regenerative process.

o L(M(e): the expected distortion until the first transmission,
starting from state e.

o M()(e): the expected time until the first transmission,
starting from state e.

Performance
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The system Main result Optimal strategies Performance

Performance of threshold based strategies

Fix a threshold based startegy f(¥). Define
e D). the expected distortion.
e N(): the expected number of transmissions.

{E+}22, is regenerative process.

o L(K)(e): the expected distortion until the first transmission,
starting from state e.

o M(K)(e): the expected time until the first transmission,
starting from state e.

Renewal relationship

k) — LW Ky _ 1
D) = O N(K) = )
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Performance of threshold based strategies

LIV (e) = & + [X d(w — )L (w)dw;
MW (e) = 1+ [* ¢(w — e)M®F) (w)dw.

@ Derived using balance equations.

@ Solutions of Fredholm Integral Equations of second kind.
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The system Main result Optimal strategies Performance

Performance of threshold based strategies

LW (e) = €2 + [, p(w — )LK) (w)dw;
MW(e) = 1+ [*, ¢(w — e)M®P) (w)dw.

@ Derived using balance equations.

@ Solutions of Fredholm Integral Equations of second kind.
Contraction. Use Banach fixed point theorem to show that

@ Fredholm Integral Equations have a solution.

@ the solution is unique.
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The system Main result Optimal strategies Performance

Performance of threshold based strategies

LW (e) = €2 + [, p(w — )LK) (w)dw;
MW(e) = 1+ [*, ¢(w — e)M®P) (w)dw.

@ Derived using balance equations.

@ Solutions of Fredholm Integral Equations of second kind.

Computation
@ Well-studied numerical methods.

@ Examples - use the resolvent kernel of the integral equation -
the Liouville-Neumann series; use quadrature method to
discretize the integral.
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o LK) MK DK and N(K) are continuous, differentiable in k
o L, M) and D) monotonically increasing in k.

o N is strictly monotonically decreasing in k.
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Main theorem
o LK, MK, DK and N(K) are continuous, differentiable in k.

o L, M) and D) monotonically increasing in k.

o N is strictly monotonically decreasing in k.

e Forany a € (0,1), 3k*(a) : Nk (@) = o
o If the pair (X, k), A, k € R>q, satisfies A\ =

C*(A) = C(FW), g% ).
o D*(a) = D*"(@),

9, D)
—W, then
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Le) = *L/7 (), MB(e) = M (2),
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Le) = *L/7 (), MB(e) = M (2),

Scaling: distortion-transmission function
Di(a) = 02Di(a).
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Summary

@ Remote state estimation of a Gauss-Markov source under
constraints on the number of transmissions.

@ Computable expression for distortion-transmission function.
@ Simple threshold based strategies are optimal !
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Summary

@ Similar results hold - Kalman-like estimator is optimal.

o Randomized threshold based transmission strategy is optimal.
convex.

D*(a)

o Distortion-transmission function is piecewise linear, decreasing,

(N(k+1) (0)7 D(lc+1) (0))

(N®(0), D®)(0))
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Summary

@ Similar results hold - Kalman-like estimator is optimal.

o Randomized threshold based transmission strategy is optimal.
convex.

@ Distortion-transmission function is piecewise linear, decreasing,

JC and AM, "Distortion-transmission trade-off in real-time
transmission of Markov sources”, ITW 2015.
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Future directions

@ The results are derived under an idealized system model.

@ When the transmitter does transmit, it sends the complete
state of the source.

@ The channel is noiseless and does not introduce any delay.
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o Effects of quantization, channel noise and delay. '
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Future directions

@ The results are derived under an idealized system model.
state of the source.

@ When the transmitter does transmit, it sends the complete

@ The channel is noiseless and does not introduce any delay.

o Effects of quantization, channel noise and delay. I

http://arxiv.org/abs/1505.04829
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Some parameters

Let 7(K) be the stopping time of first transmission (starting from
Eo = 0), under £f(K). Then

o L(e) = (1= ME[ 1% std(E) | £ = 0]
o M{(e) = (1- BE[L7g ! 6

Fo=0].
Regenerative process: The process {X;}32, if there exist
0<To<Thi<Ta<--

such that {X;
o has the same distribution as {X¢}3° 1 .,

}?iTk-I—S' s2>0,
@ is independent of {Xt}thko-
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The system Main result Optimal strategies Performance

Step 1: Main idea

Proof technique followed after Lerma, Lasserre - Discrete-time
Markov control processes: basic optimality criteria, Springer

@ The model satisfies certain assumptions (4.2.1, 4.2.2)

@ Hence, the structural results extend to the infinite horizon
discounted cost setup (Theorem 4.2.3)

@ The discounted model satisfies some more assumptions (4.2.1,
5.4.1)

@ Hence, structural results extend to long-term average setup
(Theorem 5.4.3)
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The system

Main result Optimal strategies Performance

Assumption 4.2.1 - The one-stage cost is |.s.c, non-negative
and inf-compact on the set of feasible state-action pairs. The
stochastic kernel ¢ is strongly continuous.

Assumption 4.2.2 - There exists a strategy m such that the
value function V/(m, x) < oo for each state x € X.

Theorem 4.2.3 - Suppose Assumptions 4.2.1 and 4.2.2 hold.
Then, in the discounted setup, there exists a selector which
attains the minimum V;; and the optimal strategy, if it exists,
is deterministic stationary.

Assumption 5.4.1 - There exixts a state z € X and scalars
a € (0,1) and M > 0 such that
Q (1-H)Vi(z) < M, Y5 € [,1).
@ Let hg(x) == Va(x) — Vg(z). There exists N >0 and a
non-negative (not necessarily measurable) function b(-) on X
such that =N < hg(x) < b(x), Vx € X and § € [a, 1).
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@ Theorem 5.4.3 - Suppose that Assumption 4.2.1 holds. Then
the optimal stategy for average cost setup is deterministic
stationary and is obtained by taking limit 8 1 1. The vanishing

discount method is applicable and is employed to compute the
optimal performance.
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Step 1: Optimal threshold-type transmitter strategy for
long-term average setup

The DP satisfies some suitable conditions so that, the vanishing
discount approach is applicable.

J
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The system Main result Optimal strategies Performance

Step 1: Optimal threshold-type transmitter strategy for
long-term average setup

The DP satisfies some suitable conditions so that, the vanishing
discount approach is applicable.

e For discounted setup, § € (0, 1], optimal transmitting strategy
fﬁ*(-; A) is deterministic, threshold-type.

o Let *(-;\) be any limit point of £7(-;A) as 5 1 1.
Then the time-homogeneous transmission strategy *(-; \) is
optimal for 8 =1 (the long-term average setup).

@ Performance of optimal strategy:

C*(A) = C(f", g% \) = ('frj;) C(f,g:4) =lim G5(V)
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The system Main result Optimal strategies Performance

Step 1: The SEN conditions

For any A > 0, the value function V;(-; \), as given by a suitable
DP, satisfies the following SEN conditions of [Lerma, Lasserre]:

SEN conditions
(S1) There exists a reference state ey € R and a non-negative
scalar M such that Vj3(eg, A) < M, for all g € (0, 1).
(S2) Define hz(e; A) = (1 — B) [ Vs(e; A) — Vis(eo; A)]. There
exists a function Ky : Z — R such that hg(e; ) < K)\(e)
forall ee R and 8 € (0,1).

(S3) There exists a non-negative (finite) constant Ly such that
—Ly < hg(e; A) for all e € R and § € (0,1).
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The system Main result Optimal strategies Performance

Step 2: Performance of threshold based strategies

Cost until first transmission: solution of FIE

Let 7(K) be the stopping time when the Gauss-Markov process
starting at state 0 at time t = 0 enters the set {e € R : |e| > }.
Expected distortion incurred until stopping and expected stopping
time under (k) are solutions of Fredholm integral equations of
second kind.

LK) (e) = % + ffk d(w — )L (w)dw;
MW(e) = 1+ [* (w — )M (w)dw.

Note that we have dropped the subscript 1 for ease of notation.
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The system Main result Optimal strategies Performance

Step 2: Performance of threshold based strategies

Solutions to FIE

o Let C(K) denote the space of bounded functions from [—k, k]
to R. Define the operator BK) : ¢(k) — (k) as follows. For
any v e C(R,

B(k) /QS w — e)v(w)dw.

@ The operator B(K) is a contraction
@ Hence, FIE has a unique bounded solution L) and M(K),
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The system Main result Optimal strategies Performance

Step 2: Performance of threshold based strategies

Renewal relationship

D(")(O) =

L&) (0
wogy V90 = mg

Properties
o L) and M) are continuous, differentiable and monotonically
increasing in k.

o D((0) and N()(0) are continuous and differentiable in k.
Furthermore, N(K)(0) is strictly decreasing in k.

o D()(0) is increasing in k.
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N0

Ng9(0)

(1)
(F(9), g*) is X(K)-optimal for Lagrange relaxation. Furthermore, for
any k > 0, there exists a A = A(K) > 0 that satisfies (1).
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The system Main result Optimal strategies Performance

Step 3: Identify critical Lagrange multipliers

Critical Lagrange multipliers

Optimal transmission startegy

(F(), g*) is A(K)-optimal for Lagrange relaxation. Furthermore, for
any k > 0, there exists a A = A\(K) > 0 that satisfies (1).

Proof

@ The choice of X implies that C,Ek)(O; A) = 0. Hence strategy
(K g*) is A-optimal.
o A(K) >0, by the properties of D()(0) and N(K)(0).
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Step 4: The constrained setup
problem, if

A strategy (f°, g°) is optimal for a constrained optimization

(C1) N(f°,8°) =,

(C2) There exists a Lagrange multiplier A° > 0 such that
(f°,g°) is optimal for C(f, g; \°).
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e For a € (0,1), let k*() be such that N(k(@)) = o Find
k*(«) for a given «;

Optimal deterministic strategy f* = f(K"()),
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Step 4: The constrained setup

e For a € (0,1), let k*(c) be such that N(K"(®)) = o Find
k*(a) for a given «;

Optimal deterministic strategy f* = f(k"()),

e (C1) is satisfied by f° = f(k"(®)) and g° = g*.

@ For k*(a), we can find a A satisfying (1). Hence we have that
(F(°(@)) | g*) is optimal for C(f,g; \).
o Thus, (F(K'(@) g*) satisfies (C2).

o D*(a) == D(fK"(@) g*) = p(k(@))(()




The system Main result Optimal strategies

Algorithm

Performance

Algorithm 1: Computation of D(«)

input : a€(0,1), B€(0,1], e € Rxo
output: Dék )(a), where \Nék )(O) —al<e
Pick k and k such that N[(f)(O) <a< Nék)(O)
ke = (k+k)/2
while ]Néfo)(O) —al >edo

if Nk )(0) < «a then

k=K
else

L k=k°

ko = (k+k)/2
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