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Motivation

Applications

Smart grid

Environmental monitoring

Sensor networks

Salient features

Sensing is cheap

Transmission is expensive

Size of data-packet is not critical
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The remote-state estimation setup

TransmitterMarkov process Receiver
Xt Ut Yt X̂t

State process Xt ∈ Z

Uncontrolled symmetric Markov process.

Transmitter Ut = ft(X1:t ,U1:t−1) and Yt =

{

Xt , if Ut = 1;

E, if Ut = 0,

Receiver X̂t = gt(Y1:t)
Distortion: d(Xt − X̂t),
d(−e) = d(e) ≤ d(e + 1), e ∈ Z≥0

Communication Transmission strategy f = {ft}
∞
t=0

strategies Estimation strategy g = {gt}
∞
t=0
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The constrained optimization problem

D∗
β(α) := Dβ(f

∗, g∗) := inf
(f ,g):Nβ(f ,g)≤α

Dβ(f , g), β ∈ (0, 1]

Minimize expected distortion such that expected number of
transmissions is less than α

1. Discounted setup

Dβ(f , g) := (1 − β)E(f ,g)
[

∞
∑

t=0

βtd(Xt − X̂t)
∣

∣

∣
X0 = 0

]

Nβ(f , g) := (1 − β)E(f ,g)
[

∞
∑

t=0

βtUt

∣

∣

∣
X0 = 0

]
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The constrained optimization problem

D∗
β(α) := Dβ(f

∗, g∗) := inf
(f ,g):Nβ(f ,g)≤α

Dβ(f , g), β ∈ (0, 1]

Minimize expected distortion such that expected number of
transmissions is less than α

2. Long-term average setup

D1(f , g) := lim sup
T→∞

1

T
E

(f ,g)
[

T−1
∑

t=0

d(Xt − X̂t)
∣

∣

∣
X0 = 0

]

N1(f , g) := lim sup
T→∞

1

T
E

(f ,g)
[

T−1
∑

t=0

Ut

∣

∣

∣
X0 = 0

]
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Literature overview

[Imer-Basar 2005 and 2010]
Remote estimation problem with communication a finite
number of times.

[Lipsa-Martins 2009 and 2011], [Molin-Hirche 2009]
Remote estimation with communication cost for finite horizon
LQG setup.

[Nayyar-Basar-Teneketzis-Veeravalli 2013]
Remote estimation with communication cost for finite horizon
Markov chain setup. Also considered energy harvesting at the
transmitter.

A long list of literature on event-driven communication

Key differences in our model

Infinite horizon setup

Constrained formulation
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Salient features

Decentralized control

Two decision makers – the transmitter and the receiver.

(One-sided) nested information structure: the transmitter
knows all the information available to the receiver.

Non-classical information structure.
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Salient features

Decentralized control

Two decision makers – the transmitter and the receiver.

(One-sided) nested information structure: the transmitter
knows all the information available to the receiver.

Non-classical information structure.

Our contributions

Identify qualitative properties of optimal strategies

Identify a dynamic programming decomposition

Determine optimal strategies in closed form based on the DP.
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Assumptions on the model

(A0) Xt ∈ Z, X0 = 0

(A1) Toeplitz transition matrix with decaying off-diagonal terms












. . . p0
. . .

· · · p1 p0 p1 · · ·
. . . p1 p0 p1 · · ·

. . .
. . . p0

. . .













, where where p0 ≥ p1 ≥ · · ·

(A2) The distortion function is even and increasing on Z≥0.
∀e ∈ Z≥0: d(e) = d(−e) and d(e) ≤ d(e + 1).
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An example: aperiodic, symmetric birth-death Markov chain

0 1 2 · · ·−1−2· · ·

p

1− 2p

p

1− 2p

p

1− 2p

p

1− 2p

p

1− 2p

p

pppppp

Pij =











p, if j = i + 1, i − 1

1 − 2p, if j = i

0, otherwise.

, p ∈ (0, 1) and d(e) = |e|.
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Main results: structural of optimal strategies

Lagrange relaxation C ∗
β (λ) := inf

(f ,g)
Cβ(f , g ;λ),

where Cβ(f , g ;λ) = Dβ(f , g) + λNβ(f , g)

Optimal estimation Let Zt be the most recently transmitted symbol.

strategy X̂t = g∗
t (Zt) = Zt ; Time homogeneous!

Optimal transmission Let Et = Xt − Zt−1 be the error process and

strategy f (k) be the threshold based strategy such that

f (k)(Xt ,Y0:t−1) =

{

1, if |Et | ≥ k

0, if |Et | < k .
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Main results: constrained optimization

Optimal strategy

The optimal transmission strategy is a possibly randomized strategy
that, at each stage picks

f (k
∗) w.p. θ∗

f (k
∗+1) w.p. 1 − θ∗

Let D
(k)
β = Dβ(f

(k), g∗), N
(k)
β = Nβ(f

(k), g∗), then

k
∗: Largest k such that N

(k)
β ≥ α

θ∗: Solution of θ∗N
(k∗)
β + (1 − θ∗)N

(k∗+1)
β = α
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Main results: constrained optimization

Distortion-transmission trade-off:
D∗
β(α) = θ∗D

(k∗)
β + (1 − θ∗)D

(k∗+1)
β

αc := N
(1)
β = β(1 − p0)

0 1���

�∗�(�)
(� (�)� , � (�)� )

(� (�+1)� , � (�+1)� )
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Proof outline

The structure of optimal transmitter and estimator follows from
[Lipsa-Martins 2011] and [Nayyar-Basar-Teneketzis-Veeravalli 2013].

Optimal estimation Let Zt be the most recently transmitted symbol.
strategy X̂t = g∗

t (Zt) = Zt ; Time homogeneous!

Optimal transmission Let Et = Xt − Zt−1 be the error process and
strategy ft be the threshold based strategy such that

ft(Xt ,Y0:t−1) =

{

1, if |Et | ≥ kt

0, if |Et | < kt .
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Proof outline

Step 1 DP to identify best response transmitter.

Key concern: the cost may be unbounded.

Step 2 Closed form expressions for D
(k)
β = Dβ(f

(k), g∗) and

N
(k)
β = Nβ(f

(k), g∗).

Step 3 Identify

Λ(k) =
{

λ ≥ 0 : C ∗
β (λ) = Cβ(f

(k), g∗;λ)
}

= (λ
(k)
β , λ

(k+1)
β ].

Step 4 Identify optimal randomized strategy for constrained setup.
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Step 1: Main idea

Main idea

Restrict attention to time-homogeneous estimation strategy
X̂t = g∗

t (Zt) = Zt

Consider the problem of finding the “best response”
transmission strategy.

Centralized stochastic control problem with countable state
space and unbounded cost.

Standard MDP results apply under mild technical assumptions.
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Step 1: DP for discounted setup

Structure Under a standard technical assumption (A3), the optimal
transmission strategy is characterized
by time-homogeneous threshold k , i.e.,

Ut = f (Et) =

{

1, if |Et | ≥ k

0, if |Et | < k .

Dynamic For β ∈ (0, 1), the optimal strategy is determined by
program the unique fixed point of the following DP:

Vβ(e;λ) = min
{

λ+ β
∑∞

n=−∞ P0nVβ(n;λ), Transmit

d(e) + β
∑∞

n=−∞ PenVβ(n;λ)
}

Don’t transmit.
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by time-homogeneous threshold k , i.e.,

Ut = f (Et) =

{

1, if |Et | ≥ k

0, if |Et | < k .

Dynamic For β ∈ (0, 1), the optimal strategy is determined by
program the unique fixed point of the following DP:

Vβ(e;λ) = min
{

λ+ β
∑∞

n=−∞ P0nVβ(n;λ), Transmit

d(e) + β
∑∞

n=−∞ PenVβ(n;λ)
}

Don’t transmit.

Note that C ∗
β (λ) = Vβ(0;λ).
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Step 1: DP for long-term average setup

Vβ(·;λ) satisfies SEN conditions. Therefore, the vanishing discount
approach is applicable.
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Step 1: DP for long-term average setup

Vβ(·;λ) satisfies SEN conditions. Therefore, the vanishing discount
approach is applicable.

Let f ∗1 (·;λ) be any limit point of f ∗β (·;λ) as β ↑ 1.
Then the time-homogeneous transmission strategy f ∗1 (·;λ) is
optimal for β = 1 (the long-term average setup).

Performance of optimal strategy:
C ∗

1 (λ) := C1(f
∗, g∗;λ) := inf

(f ,g)
C1(f , g ;λ)

= lim
β↑1

Vβ(0;λ) = lim
β↑1

C ∗
β (λ)
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Step 1: The SEN conditions

For any λ ≥ 0, the value function Vβ(·;λ) satisfies the SEN
conditions:

SEN conditions

(S1) There exists a reference statee e0 ∈ Z such that
Vβ(e0;λ) < ∞ for all β ∈ (0, 1).

(S2) Define hβ(e;λ) = (1 − β)−1[Vβ(e;λ)− Vβ(e0;λ)]. There
exists a function Kλ : Z → R such that hβ(e;λ) ≤ Kλ(e)
for all e ∈ Z and β ∈ (0, 1).

(S3) There exists a non-negative (finite) constant Lλ such that
−Lλ ≤ hβ(e;λ) for all e ∈ Z and β ∈ (0, 1).
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Step 2: Performance of threshold based strategies

Cost until first transmission

Let S (k) := {e ∈ Z : |e| ≤ k − 1} and let τ (k) be the stopping time
when the Markov process starting at state 0 at time t = 0 escapes
the set S (k). Then, for β ∈ (0, 1),

L
(k)
β := E

[

∑τ (k)−1
t=0 βtd(Et)

∣

∣

∣
E0 = 0

]

M
(k)
β := 1−E[βτ(k) |E0=0]

1−β .
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Step 2: Performance of threshold based strategies

Renewal relationship

D
(k)
β =

L
(k)
β

M
(k)
β

, N
(k)
β = 1

M
(k)
β

− (1 − β)
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Step 2: Performance of threshold based strategies

Renewal relationship

D
(k)
β =

L
(k)
β

M
(k)
β

, N
(k)
β = 1

M
(k)
β

− (1 − β)

Vanishing discount relationships

L
(k)
1 := lim

β↑1
L
(k)
β , M

(k)
1 := lim

β↑1
M

(k)
β ,

D
(k)
1 := lim

β↑1
D

(k)
β =

L
(k)
1

M
(k)
1

N
(k)
1 := lim

β↑1
N

(k)
β =

1

M
(k)
1
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Step 2: Closed form expressions

Analytic expressions Define

for performance P
(k)
ij

:= Pij , i , j ∈ S (k);

Q
(k)
β := [I2k−1 − βP(k)]−1;

d (k) := [d(−k + 1), · · · , d(k − 1)]⊺. Then
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(k)
ij

:= Pij , i , j ∈ S (k);

Q
(k)
β := [I2k−1 − βP(k)]−1;

d (k) := [d(−k + 1), · · · , d(k − 1)]⊺. Then

L
(k)
β =

〈

[Q
(k)
β ]0, d

(k)
〉

; M
(k)
β =

〈

[Q
(k)
β ]0, 12k−1

〉

.

D
(k)
β and N

(k)
β can be computed using these

expressions.
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Step 2: Closed form expressions

Analytic expressions Define

for performance P
(k)
ij

:= Pij , i , j ∈ S (k);

Q
(k)
β := [I2k−1 − βP(k)]−1;

d (k) := [d(−k + 1), · · · , d(k − 1)]⊺. Then

L
(k)
β =

〈

[Q
(k)
β ]0, d

(k)
〉

; M
(k)
β =

〈

[Q
(k)
β ]0, 12k−1

〉

.

D
(k)
β and N

(k)
β can be computed using these

expressions.

Some inequalities L
(k)
β < L

(k+1)
β , M

(k)
β < M

(k+1)
β , D

(k)
β < D

(k+1)
β .
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Step 3: Identify critical Lagrange multipliers

Critical Lagrange multipliers

Let λ
(k)
β be the value of the Lagrange multiplier for which, starting

from state 0, one is indifferent between transmission strategies f (k)

and f (k+1)
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Step 3: Identify critical Lagrange multipliers

Critical Lagrange multipliers

Let λ
(k)
β be the value of the Lagrange multiplier for which, starting

from state 0, one is indifferent between transmission strategies f (k)

and f (k+1)

λ
(k)
β =

D
(k+1)
β

−D
(k)
β

N
(k)
β

−N
(k+1)
β

.
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Step 3: Identify critical Lagrange multipliers

λ

C
(k)
β (0;λ)

D
(k)
β

Slope N
(k)
β
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Step 3: Identify critical Lagrange multipliers

λ

C
(k)
β (0;λ)

D
(k)
β

Slope N
(k)
β

D
(k+1)
β

λ
(k)
β

D
(k+2)
β

λ
(k+1)
β

C ∗
β (λ)

f (k+1)

is optimal
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Step 4: The constrained setup

A (possibly randomized) strategy (f ◦, g◦) is optimal for a
constrained optimization problem with β ∈ (0, 1], if

Sufficient conditions for optimality [Sennott, 1999]

(C1) Nβ(f
◦, g◦) = α,

(C2) There exists a Lagrange multiplier λ◦ ≥ 0 such that
(f ◦, g◦) is optimal for Cβ(f , g ;λ

◦).
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Step 4: The constrained setup

Let k∗ be largest k such that N
(k)
β ≥ α. Find k∗ for a given α;

Find θ∗ such that θ∗N(k∗) + (1 − θ∗)N(k∗+1) = α;

Optimal randomized strategy f ∗ = θ∗f (k
∗) + (1 − θ∗)f (k

∗+1).
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Find θ∗ such that θ∗N(k∗) + (1 − θ∗)N(k∗+1) = α;

Optimal randomized strategy f ∗ = θ∗f (k
∗) + (1 − θ∗)f (k

∗+1).

λ

C
(k)
β (0;λ)

D
(k)
β

D
(k+1)
β

λ
(k)
β

Slope N
(k)
β

f (k) is optimal

f (k+1) is optimal
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Step 4: The constrained setup

Salient features

Randomization between two strategies that differ only at one
state;

Equivalently, take random action only at one state.
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Step 4: The constrained setup

Salient features

Randomization between two strategies that differ only at one
state;

Equivalently, take random action only at one state.

Randomized strategy

f ∗(e) =























0, if |e| < k∗;

0, w.p. 1 − θ∗, if |e| = k∗;

1, w.p. θ∗, if |e| = k∗;

1, if |e| > k∗.
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Distortion-transmission trade-off

αc := N
(1)
β = β(1 − p0)

0 1���

�∗�(�)
(� (�)� , � (�)� )

(� (�+1)� , � (�+1)� )

D∗
β(α) is piecewise linear, continuous, convex and decreasing in α.
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Birth Death Markov Chain

0 1 2 · · ·−1−2· · ·

p

1− 2p

p

1− 2p

p

1− 2p

p

1− 2p

p

1− 2p

p

pppppp

Pij =











p, if j = i + 1, i − 1

1 − 2p, if j = i

0, otherwise.

, p ∈ (0, 1) and d(e) = |e|.
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Example: discounted setup

Define
Kβ = −2 − (1 − β)/(βp) and mβ = cosh−1(−Kβ/2). Then

D
(k)
β =

sinh(kmβ)−k sinh(mβ)

2 sinh2(kmβ/2) sinh(mβ)
;

N
(k)
β =

2βp sinh2(mβ/2) cosh(kmβ)

sinh2(kmβ/2)
− (1 − β).

k∗
β = sup

{

k ∈ Z≥0 :
2 cosh(kmβ)
cosh(kmβ)−1

≥ 1+α−β
βp(cosh(mβ)−1)

}

;
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Example: long-term average setup

D
(k)
1 = k2−1

3k
, N

(k)
1 = 2p

k2 ;

λ
(k)
1 = k(k+1)(k2+k+1)

6p(2k+1)

k∗
1 =

⌊
√

2p
α

⌋

;
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Example: Lagrange cost for different β

1 5 10 15 20 25 30 35
0.5

1

1.5

2

2.5

λ

C
∗ β
(λ
)

 

 

β = 0.9
β = 0.95
β = 1.0
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Example: distortion-transmission trade-off

0.2 0.4 0.6 0.8 1

1

2

3

β = 0.9

α

D
∗ β
(α

)
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Summary and conclusion

Solution approach

Remote state estimation of a Markov source under constraints
on the number of transmissions.

Investigated both discounted cost and long-term average cost
infinite horizon setups.

Modeled as a decentralized stochastic control problem with
two decision maker.

As long as the transmitter uses a symmetric threshold based
strategy, the estimation strategy does not depend on the
transmission strategy.

The problem of finding the “best response” transmitter is a
centralized stochastic control problem.
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Summary and conclusion

Main results

Simple Bernoulli randomized strategies (f (k
∗), f (k

∗+1), θ∗) are
optimal

k∗ and θ∗ can be computed easily.

Characterized the distortion-transmission function.

Closed form expressions of parameters for infinite horizon
discounted cost setup.

Used vanishing discount approach to compute the results for
long-term average setup.

Evaluated the performance for the constrained optimization for
both infinite horizon discounted and long-term average setups.
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Thank you !

http://arxiv.org/abs/1412.3199
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