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"The communication system

Markov X Y ~
L Transmitter —/——t- Receiver —» X
Source Uy

Source » Xi € Z

» Transition matrix P is Toeplitz, i.e., Py ; = pji_j|, wherepo > p1 > ---

Xt IFU.t = ]

Transmitter U; = f¢(X7.¢,U7.4—1) and Yy =
t = e (X, Upie—1) t {e FU, =0

Receiver » X¢ = g¢(Y1:¢)
» Distortion: d(X; — )A(t) where d(e) = d(—e) < d(e+1)

Communication » Transmission strategy f = {f¢}$2,.
Strategies » Estimation strategy g ={g}° .
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"The constrained optimization problem B

(nfwin) Dg(f,g) suchthat Ng(f,g) < «
Ne

Minimize expected distortion such that expected # of transmissions is less than «

(o)

Discounted Dg(f,g) = (1-B)EHY [Z Bd(X, — Xu) | Xo = O]
setup 0
Ng(f,g) = (1—B)E"9) [ 3 Bl | Xo =0)
t=0
T—1
Average cost D, (f,g) = llmsup—[z d(Xe — Xi) | Xo = o}
setup oo 70
T—1
N; (f,g) = limsup = [Zut XO_O}
T—oo t=0
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rSalient Features I

Comparision » As in information theory, the optimization problem may be viewed as
to Information minimizing average distortion under an average-power constraint.
Theory » Unlike information theory, the source reconstruction must be done in
real-time (or with zero delay).
» Therefore, classical information theory techniques do not work.
Source-channel separation is not optimal.
» We use the decentralized control approach to real-time communication
(Following Witsenhausen, Walrand-Varaiya, Teneketzis, . . .)

n,
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rSalient Features I

Comparision » As in information theory, the optimization problem may be viewed as
to Information minimizing average distortion under an average-power constraint.
Theory » Unlike information theory, the source reconstruction must be done in
real-time (or with zero delay).
» Therefore, classical information theory techniques do not work.
Source-channel separation is not optimal.
» We use the decentralized control approach to real-time communication
(Following Witsenhausen, Walrand-Varaiya, Teneketzis, . . .)

Comaprision to » Two decision makers—the transmitter and the receiver.
decentralized » (One-sided) nested information structure:
control the transmitter knows all the information available to the receiver.
» Constrained optimization problem, where the constraint does not
depend on the “common information” (i.e., the information at the
receiver).

n,
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Literature Overview

[Imer-Basar 2005 & 2010]
Fixed number of transmissions for Anite horizon LQG setup.

[Lipsa-Martins 2009 & 2011, Molin-Hirche 2009]
Remote estimation with communication cost for fnite horizon LQG setup.

[Nayyar-Basar-Teneketzis-Veeravalli 2013]

Remote estimation with communication cost for fnite horizon Markov chain setup.

Also considered energy harvesting at the transmitter.

A large literature on event-driven communication . . .
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rAssumptions on the model

(A0) X, € Z,and Xy = 0.

(A1) The transition matrix is Toeplitz with decaying off-diagonal terms.

Po
P: o o 0 ‘p] ‘po ’p]

~ P1 Po Pi1

W Do

» Nayyar et al, assumed that the transistion matrix was banded,
that is, 3b such that px =0, forall k > b.

(A2) The distortion function is even and increasing on Zxo.
Ve € Z>o: d(e)=d(—e) and d(e) < d(e+1).
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Wagrange Relaxation B

(nfwin) Dg(f,g) suchthat Ng(f,g) < «
Ne

Minimize expected distortion such that expected # of transmissions is less than «

n,
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ﬁagrange Relaxation I

(nfwin) Dg(f,g) suchthat Ng(f,g) < «
Ne

Minimize expected distortion such that expected # of transmissions is less than «

Lagrange Ch(A) = inf Cp(f,g;A) where Cg(f, g;A) = Dg(f,g) +ANg(f, g)
Relaxation e

n,
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ﬁagrange Relaxation I

(nfwin) Dg(f,g) suchthat Ng(f,g) < «
Ne

Minimize expected distortion such that expected # of transmissions is less than «

Lagrange Ch(A) =

l ifﬂgF) Cp(f,g;A) where Cg(f,g;A) = Dg(f,g) +ANg(f, g)
Relaxation ’

(

» Restrict the search space of strategies (f, g) by identifying structure

@ of optimal tranmission and estimation strategies.

» Difficulty: Non-classical information structure

Search space of
strategies (f, g)

i 6%
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rStructure of optimal estimator (Nayyar et al, 2013) B

Transmitted Let Z; denote the most recently transmitted value of the Markov
Process source.

Zo=0 and Z,= X !Fut:];

th] IFUt = O

The estimator can keep track of Z; as follows:

\a iF Yy # ¢;

Zo=0 and Z,=
0 ¢ {Zt_] iFYtZE.
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Structure of optimal estimator (Nayyar et al, 2013)
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)

Transmitted Let Z; denote the most recently transmitted value of the Markov
Process source.

Zo=0 and Z,= X !Fut:];

th] IFUt = O

The estimator can keep track of Z; as follows:

Yt |FYt 7£ €

Zo=0 and Z,=
0 ¢ {Zt_] iFYtZE.

Theorem 1 |[The process {Z{}°, is a sufficient statistic at the estimator and an
optimal estimation strategy is given by

>A<t = gi(Zy) = Z4 (*)

Remark » The optimal estimation strategy is time-homogeneous and can be
specified in closed form.



Structure of optimal transmitter (Nayyar et al, 2013) o

Error process Let Ey = Xy —Z_; denote the error process. {E¢}{°, is a controlled
Markov process where

Eo=0 and P(Eg=n|Ei=¢ U =u)= Pon, !Fu:1;
Pen) |Fu:0
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Structure of optimal transmitter (Nayyar et al, 2013) B

Error process Let Ey = Xy —Z_; denote the error process. {E¢}{°, is a controlled
Markov process where

Pon, IFu=T;
PeTL) |Fu:0

Theorem 2 When the estimation strategy is of the form (x), then {E¢}>, is a
sufficient statistic at the transmitter.

Furthermore, an optimal transmission strategy is characterized by a
time-varying threshold {k¢}% ,, i.e.,
T iF[E > ki

U, = f(Ey) =
¢ = fe(Ed) {o iF [Eo| < ke
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Structure of optimal transmitter (Nayyar et al, 2013) B

Error process Let Ey = Xy —Z_; denote the error process. {E¢}{°, is a controlled
Markov process where

Pon, IFu=T;
PeTL) |Fu:0

Theorem 2 When the estimation strategy is of the form (x), then {E¢}>, is a
sufficient statistic at the transmitter.

Furthermore, an optimal transmission strategy is characterized by a
time-varying threshold {k¢}% ,, i.e.,

T iF[E > ki
U = f(BEy) =
o =ellE) {o iF[Ee| < ke
Proof idea » The proof of [Nayyar et al, 2013] was based on some majorization
inequalities of [Hajek et al, 2009] for distributions with fnite support.
» We extend these inequalities to distributions over integers using
results of [Wang-Woo-Madiman, 2014].
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Infinite horizon setup (for Lagrange relaxation) B

Main idea » Based on Thm 1, restrict attention to time-homogeneous estimation
strategy

ﬁt = gi(Zt) = Z¢
» Consider the problem of fnding the “best response” estimation
strategy.
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Infinite horizon setup (for Lagrange relaxation) B

Main idea » Based on Thm 1, restrict attention to time-homogeneous estimation
strategy

ﬁt =9gi(Zt) = Z¢
» Consider the problem of fnding the “best response” estimation
strategy.

» Centralized stochastic control problem with countable state space
and unbounded cost.
» Standard MDP results apply under mild technical assumptions.
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Infinite horizon setup (for Lagrange relaxation) B

Main idea » Based on Thm 1, restrict attention to time-homogeneous estimation
strategy

ﬁt = Qt(zt) =7/

» Consider the problem of fnding the “best response” estimation
strategy.

» Centralized stochastic control problem with countable state space
and unbounded cost.
» Standard MDP results apply under mild technical assumptions.

Assum (A3) For every A > 0, there exists a function w : Z — R and postive and
Anite constants w; and w; such that for all e € Z, we have that

max{A, d(e)} < piw(e)
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Structure of optimal transmitter for infinite horizon I

Structure Under assumption (A3), optimal transmission strategy is characterized
by time-homogeneous threshold k, i.e.,
1 ifF|E > K;

U, = f(E,) =
¢ = fEe) {o iF [E.| < k.

103
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Structure of optimal transmitter for infinite horizon I

Structure Under assumption (A3), optimal transmission strategy is characterized

by time-homogeneous threshold k, i.e.,
1 iF[E = K

Uy =f(Ey) =
£ = fEe) {o if[E¢| < k.

Dynamic For B € (0,1), the optimal strategy is determined by the unique fixed
program point of the following DP:

Vg (e;A) = min {(1 —BA+PB Z PonVa(MA)y  Transmit

n=—oo

(1-pde)+p 3 Penvﬁ(n;x)} Don't

o Transmit

103
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Structure of optimal transmitter for infinite horizon I

Structure Under assumption (A3), optimal transmission strategy is characterized
by time-homogeneous threshold k, i.e.,
1 iF[E = K
Uy =f(E¢) =
p =zl {o if [E¢l < k.

Dynamic For B € (0,1), the optimal strategy is determined by the unique fixed
program point of the following DP:

Vg (e;A) = min {(1 —BA+PB Z PonVa(MA)y  Transmit

n=—oo

(1-pde)+p 3 Penvﬁ(n;x)} Don't

n=—oo Transmit
Lagrange Let f}(;;A) be the time-homogeneous optimal transmission strategy.

relaxation ¢y () = Inf Calf, giA) = ColFh, 9%A) = Va (02
»9
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"The SEN Conditions and the long-term average setup B

SEN Conditions For any A > 0, the value function Vg (+;A) satisfy the SEN condition:

(S1) There exists a reference state ey € Z such that Vg(eg;A) < oo
forall p € (0,1).

(S2) Define hg(e;A) = (1 —B)'[Vpa(e;A) — Vg (eo;A)l. There exists a
function K, : Z — R such that hg(e;A) < Ky(e) foralle € Z
and g € (0,1).

(S3) There exists a non-negative (finite) constant L such that —L, <
hg(e;A) foralle € Z and B € (0,1).

1=
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"The SEN Conditions and the long-term average setup B

SEN Conditions For any A > 0, the value function Vg (+;A) satisfy the SEN condition:

(S1) There exists a reference state ey € Z such that Vg(eg;A) < oo
forall p € (0,1).

(S2) Define hg(e;A) = (1 —B)'[Vpa(e;A) — Vg (eo;A)l. There exists a
function K, : Z — R such that hg(e;A) < Ky(e) foralle € Z
and g € (0,1).

(S3) There exists a non-negative (finite) constant L such that —L, <
hg(e;A) foralle € Z and B € (0,1).

Vanishing Let f}(-A) be any limit point of f§(;A) as 3 T 1.
discount Then the time-homogeneous transmission strategy f*(-;A) is optimal
approach for g =1 (the long-term average setup).

Furthermore, the performance of this optimal strategy is
CI(A) = (lff’lg) Ci(f,g;A) = Ci(f7, g% A) = gm Vg (0;A) = glﬁ Ch(A).

1=
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"Performance of a threshold based strategy

Threshold-based We analyze the performace of (f(¥), g*), where

strategy 1ol S T
f(k)(e) — 1) |F|€| = k;
0, iflel <k.
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"Performance of a threshold based strategy A

Threshold-based We analyze the performace of (f(¥), g*), where

strategy 1ol S T
f(k)(e) — 1) |F|€| = k;
0, iflel <k.

Cost until first Define S’ = {e € Z : |e] < k— 1} and let T(¥) be the stopping time
transmission when the Markov process starting at state 0 at time t = 0 escapes the
set S(K).

123
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"Performance of a threshold based strategy A

Threshold-based We analyze the performace of (f(¥), g*), where

strategy 1ol S T
f(k)(e) — 17 |F|e| = k;
0, iflel <k.

Cost until first Define S’ = {e € Z : |e] < k— 1} and let T(¥) be the stopping time
transmission when the Markov process starting at state 0 at time t = 0 escapes the

set St
(k)1
Define L) :— IE‘,[ 3 Btd(Ed)|Eo :o]
t=0
mk) _ 1—EB™" |Eo=0]
4 1—pB
and
()
L = E [ Y d(EJ[Eo = o]
t=0

Mgk) =E[t®) —1|Ey =0]
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"Performance of a threshold based strategy (cont.) B

Renewal . k)
relationships

n,
132
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"Performance of a threshold based strategy (cont.)

Renewal " " L
. . — X\ _ P
relationships Dy~ =Dg(f*,g") = MK
B
1
Mg
Vanishing L =timrLl, MM ={mmP¥.
: Toenn P R
discount
relationships and "
L
D =lmDy = =1
BT Me
1
N(k) — i N(k) _
1 A g M)
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"Performance of a threshold based strategy: Computationg

Analytic Let P(*) and Qg{) be square matrices and d'*) is a column vector indexed
expressions by S(*) defined as follows:
for performace pi(]k) =Py, Vi,je Sk,
Q) = [ly—y — P,
d® =[d(—k+1),...,dk—1)]7
Then,
Lék) = [Qék)]od(k) and M|(3k) = [Q(ﬁk)]012k—1-

=142
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"Performance of a threshold based strategy: Computationg

Analytic Let P(*) and Qfsk) be square matrices and d'*) is a column vector indexed
expressions by S(*) defined as follows:
for performace pi(]k) =Py, Vi,je Sk,
Qék) = [y — BPMI] T,
d™ =[d(—k+1),...,d(k—1)]T
Then,
Lék) = [Qék)]od(k) and M(Bk) = [Q(Bk)]012k—1-

Dék) and Ng{) can be computed using these expressions.

=142
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r0ptimal stategy for the Lagrange relaxation

Some inequalities Lék) < Lgﬁ”, ng < Mgﬁ”, Dék) < Dgﬁ”,

\ Optimal threshold strategies for remote state estimation— (Chakravorty and Mahajan)
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rOptimal stategy for the Lagrange relaxation B

Some inequalities Ly <LEH, M <MEFY) DR <D,
Lagrangian cost CHI(A) = C(f¥), g% A) = DY + ANG
Dng)
Dékﬂ)
Dy
> A\

n,

2152
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rOptimal stategy for the Lagrange relaxation B

Some inequalities Ly <LEH, M <MEFY) DR <D,
Lagrangian cost CHI(A) = C(f¥), g% A) = DY + ANG
Dng)
Dékﬂ)
Dy
> A\

n,

2152
\ Optimal threshold strategies for remote state estimation— (Chakravorty and Mahajan) K ‘



rOptimal stategy for the Lagrange relaxation B

Some inequalities Ly <LEH, M <MEFY) DR <D,
Lagrangian cost CHI(A) = C(f¥), g% A) = DY + ANG

n,
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rOptimal stategy for the Lagrange relaxation B

Some inequalities Ly <LEH, M <MEFY) DR <D,
Lagrangian cost CHI(A) = C(f¥), g% A) = DY + ANG

n,

2152
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r0ptimal stategy for the Lagrange relaxation B

Some inequalities Ly <LEH, M <MEFY) DR <D,
Lagrangian cost CHI(A) = C(f¥), g% A) = DY + ANG

Optimal |» Forall A € (AU, A1) the threshold strategy £+ is optimal.

B B
performance _ 0 o _
» Ch(A) = minkez C5 is piecewise linear, continuous, concave, and

increasing function of A.

n,
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"Back to the constrained optimization problem I

Bernoulli Let 6 € [0,1] and f; and f, be two stationary strategies.
randomized The Bernoullirandomized strategy (f1, f2, 0) randomizes between f; and
strategy f, at each stage, choosing f; with probability 6 and f, with probability
(1—0).

Simple rand. A Bernoulli randomized strategy (fi,f2,0) is simple if the actions
strategy prescribed by f; and f; differ only at one state.

Main result |Define ki =sup{k € Zxo : N}Bk) > «} and let 0 be such that

ONG P+ (10N, —

Then, the Bernoulli simple randomized strategy (f(*&), f(*s*+1) ) is
optimal for the constrained optimization problem for B € (0, 1].

S163
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"An example: Symmetric birth-death Markov Chain

Py =4 1=2p, ifi=j where p € (0, 3), d(e) = le|
0, otherwise,

1—2p 1—-2p
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"An example: Symmetric birth-death Markov Chain

Py =4 1=2p, ifi=j where p € (0, 3), d(e) = le|
0, otherwise,

Discounted cost LetKg =—2— (1—pB)/Bp and mg = cosh™' (—Kg/2).

D _ sinh(kmg) — ksinh(mg)
P 2sinh?(kmg/2) sinh(mg)

_ 2Bp sinhz(mg/Z) cosh(kmg) _

Ng’ (1-)
P sinh? (km, /2)
2
() _ k1 (k) _ 2p
Average cost D;" = = and N;* = oz
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"An example: Symmetric birth-death Markov Chain

Py =4 1=2p, ifi=j where p € (0, 3), d(e) = le|
0, otherwise,

Discounted cost LetKg =—2— (1—pB)/Bp and mg = cosh™' (—Kg/2).
Dk _ sinh(kmg) — ksinh(mg)
? 2 sinhz(kmB/ZJ sinh(mg)

N _ 2Bp sinhz(mB/Z) cosh(kmg) _
P sinh? (kmg /2)

(1-8)

A can be computed in terms of D) and N/,

and

0 _ K1 N _ 2P
T 3k k2

Average cost D

O k(k+1)(k>+k+1)
L 6p(2k + 1)
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"An example: Symmetric birth-death Markov Chain B

Py =< 1-2p, ifFi=j; wherep € (0,3),  d(e) =el
0, otherwise,
Discour =03
2 B=1
1.5 B =09
Ch(A)
1 B =0.8
0.5
Ave % 5 10 15 0 A

STy,

2172
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"An example: Symmetric birth-death Markov Chain

Py =4 1=2p, ifi=j where p € (0, 3), d(e) = le|
0, otherwise,

Discounted cost LetKg =—2— (1—pB)/Bp and mg = cosh™' (—Kg/2).

D _ sinh(kmg) — ksinh(mg)
P 2sinh?(kmg/2) sinh(mg)

_ 2Bp sinhz(mg/Z) cosh(kmg) _

Ng* (1-8)
P sinh? (km, /2)
k2
k% = sup {k € Zzo: sinh (mBZ/Z) coshikmg) 5 £ B}
sinh”(kmg /2) 2pp

k? —1 2
(k) _ (k) _ <P
Average cost D;" = = and  N;™ =3
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"An example: Symmetric birth-death Markov Chain B

Py =< 1-2p, ifFi=j; wherep € (0,3),  d(e) =el
0, otherwise,
Discour P =03
7
=10—
6 B=09—
5 f=08——
k"‘B 4 ]-‘—‘
3
2
1
0 x
Ave 0 0.05 0.1 0.15 0.2

STy,

2172
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rSummary and Conclusion I

Problem » Real-time transmission of a Markov source under constraints on the
formulation  number of transmissions.
» Investigated both discounted and average cost infinite horizon setups.
» Modeled as a decentralized stochastic control problem with two
decision maker.
» As long as the transmitter uses a symmetric threshold based strategy,
the estimation strategy does not depend on the transmission strategy.
» The problem of Aind the “best response” transmitter is a centralized
stochastic control problem.

Main results » Simple Bernoulli randomized strategies ("), f(<'+1)/9) are optimal.
» k* and 6 can be computed easily.

S18%
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