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Overview

What is Real-Time Communication?

@ Real-Time (zero or finite delay) encoding,
@ Real-Time (zero or finite-delay) decoding.
Why consider Real-Time Communication?
Motivated by informationally decentralized system
@ QoS (delay) requirements in communication networks,
@ Sensor networks,
o Traffic flow control in transportation networks,

@ Decentralized resource allocation (decentralized routing)
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Literature Overview

@ Problem has received considerable attention in past.

o Zero-delay and finite-delay source coding.

o Causal Source coding.

e Performance bounds of systems with a real-time or finite-delay
constraint.

e Zero-delay joint source channel coding.

e Real-time quantization of Markov sources (noiseless channel).

e Real-time encoding/decoding for noisy channels with noiseless
feedback.

e Real-time encoding/decoding for noisy channels (no feedback)
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Literature Overview

@ Problem has received considerable attention in past.
o Different approaches can be classified into two categories

e Information Theoretic approach.
e Decision Theoretic approach

Limitations of Standard Results of Information Theory

@ Fundamental Results of Information Theory are asymptotic.
@ Based on encoding/decoding of typical sequences.

@ Small delay schemes work only when the time horizon goes to
infinity.
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@ Source is first order Markov with known statistics.
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System Model i
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@ Source is first order Markov with known statistics.
@ Encoder is real-time

Zt = Ct(X]_,X2, e 7Xt)
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@ Source is first order Markov with known statistics.
@ Encoder is real-time

Zt = Ct(X]_,X2, e 7Xt)

@ Discrete Memoryless Channel, known statistics.

Pr (v ‘ xt,z") = Pr(y: | z)
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Source is first order Markov with known statistics.
Encoder is real-time

Zt = Ct(X]_,X2, e 7Xt)

Discrete Memoryless Channel, known statistics.

Pr (v ‘ xt,z") = Pr(y: | z)

Finite memory receiver.

Mt = /t(Yt; Mt—l)
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Source is first order Markov with known statistics.
Encoder is real-time

Zy = (X1, X, ..., Xt)
Discrete Memoryless Channel, known statistics.
Pr ()/t ‘ thzr) = Pr(y:|z)
Finite memory receiver.
M = 1:( Yy, M_1)
Real-time decoder.
5\<t = ge( Y, M;_1)
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System Performance P
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@ Distortion measure
pr: X X X —[0,+00)
@ Design: Choice of ¢ 2 (c1,¢,...,¢71), & = (81,82, ---,8T)
and / = (/1, /2, ey /T)-

@ Performance measure

-
J(f,g,1) {Z Xt,Xt }
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Problem Formulation

Problem
Assume that both encoder and decoder know
@ statistics of the source,
@ statistics of the channel,
@ and the time horizon T
choose an optimal design (c¢*, g*, I*) such that

T =J(c" g% ") = (min J(c.g1)

c.g,l

Salient Features
@ dynamic team problem

@ non-classical information structure

@ non-convex (in policy space) optimization problem
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Structural Results .

@ D. Teneketzis.

On the structure of optimal real-time encoders and decoders in noisy communication.

submitted for publication in IEEE Trans. Inform. Theory.
Structure of Optimal Encoder

Consider any fixed (but arbitrarily) g = (g1,...,g7) and
12 (h,... 07).
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Structural Results oy

@ D. Teneketzis.
On the structure of optimal real-time encoders and decoders in noisy communication.

submitted for publication in IEEE Trans. Inform. Theory.
Structure of Optimal Encoder

Consider any fixed (but arbitrarily) g = (g1,...,g7) and
I 2 (h,...,IT). then,

There is no loss of optimality in restricting attention to encoding
rules of the form

Zt:Ct(XhPI\/It_l), t:2,3,...,T

where,
Py, (m) = Pr (My = m| X*, Z*, ¢, I'1)



Structural Results .

@ D. Teneketzis.

On the structure of optimal real-time encoders and decoders in noisy communication.

submitted for publication in IEEE Trans. Inform. Theory.
Structure of Optimal Decoder

Consider any fixed (but arbitrarily) ¢ £ (c1,...,cr) and
/é(lla"'a/T)y
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Structural Results

@ D. Teneketzis.
On the structure of optimal real-time encoders and decoders in noisy communication.
submitted for publication in IEEE Trans. Inform. Theory.

Structure of Optimal Decoder

Consider any fixed (but arbitrarily) ¢ £ (c1,...,cr) and
|2 (h,...,IT), then
@ Obtaining the optimal decoder is a filtering problem — At
each t obtain g; to minimize

Jr = E{ pt(Xh)?t) ‘ Yi=y,Mi1= m}
o An optimal decoding rule g* £ (g, &3, ..,8%) is given by

g:()/ta mt—l) = Tt(ft(}/t, mt—l))
where f’/(y, m)(x)=Pr(Xe=x|Ye =y, mi—1 = m)

and  7e(&(y, m)) = argmin Y pe(x, a)e(y, m)(x)



Simplification of the Problem Py

Implication of Structural Results

@ Without loss of optimality we can restrict attention to
encoders of the form Z; = ¢¢(X¢, Pum,_, ).

@ Structure of optimal decoder depends only on the distortion
measure and the conditional PMF &;.

o &; depends on choice of ct, /71,
° gf =g/(ct, /t_l)
° g" = g*(C, /)

Equivalent Problem

min J(c, g, )—mmj(c g (c, 1), 1)

(c.g!
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Information States

Properties of Information States

@ Need to obtain information states for both agents sufficient
for performance evaluation.

@ Let 7 and (; be information states of encoder and memory
update respt. They should satisfy

t 1 /t—l

(S1la) 7t is a function of x* and

)
(S1b) ¢ is a function of y;, m;_1, ct and /71,
(S2a) ¢ can be determined from 7 and ¢;.
(S2b)

) -

(S3

741 can be determined from ¢; and /;.
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Information States

Properties of Information States

(S3) m; absorbs the effect of ct=1, /=1 and (; absorbs the
effect of ct, /t~! on expected future distortion, i.e.
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Information States

Properties of Information States

(S3) m; absorbs the effect of ct=1, /=1 and (; absorbs the
effect of ct, /t~! on expected future distortion, i.e.

T 4T
Tty Ct 7/t }

cg,} {Zps( Xs)
—B{ % (% %)

{i (X )

@t7ct+1=/T}
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Information States for the Problem y

Consider the random vectors

PMt(m) = Pr (Mt = m | Xt7Zf, Ct, It—l)
PYt:Mt—l(ya m) =Pr (Yt =y,Mi1=m | Xt,Zt, Ct, /t_l)

Information States

s = Pr (Xt, PMt—l) , (Info. state for Encoder)
ot = Pr (Xt, PYt,Mtfl) , (Info. state for Memory Update)
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Information States for the Problem 2

¢ and ¢y satisfy (S1)—(S3), i.e.

1. there is a linear transformation Q:(ct) such that
e = Qe(ce)me

2. there is a linear transformation (A\)t(lt) such that
Tt+1 = at(/t)%@t

3. for any choice of ¢ and /, the expected conditional
instantaneous cost can be expressed as

I { pt(Xtv)?t)

Ctvg:(ct7 /t71)7 /til } = ﬁt(gpt)

where g;(ct, I*=1) is an optimal decoding rule corresponding

to ct, I*71 and p;(-) is a deterministic function.

14 /19



Equivalent Deterministic Problem

@ System Equations

or = Qe(ct)me, t=1,...,T
mer1 = Qi(le)ept, t=1,....,T -1

Q:() and Q¢(-) are deterministic transformations depending
on ¢ and /; respt.

@ Initial state 7y is known.
@ Instantaneous cost j¢(¢t).

@ Optimization criterion

.
N
inf ;pt(tpt)
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Nested Optimality Equations

o
Vr(p) =0
Vi(m) = i?f [ﬁt(Qt(Ct)ﬂ') + Vt(Qt(Ct)ﬂ')}, t=1,...,T
Vale) = min [ Ve (Qulle)e)] t=1,...,T -1
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Nested Optimality Equations

VT(SO) =0

Vi(m) = i?f [ﬁt(Qt(Ct)ﬂ') + Vt(Qt(Ct)ﬂ')}, t=1,...

Vale) = min [ Ve (Qulle)e)] t=1,...
Q)

Vilps) = Vi (T41)
0} I

)

)

T

T-1
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Nested Optimality Equations

Vr(p)=0

Vt(ﬂ') = I?tf [ﬁt(Qt(Ct)ﬂ') + Vt(Qt(Ct)ﬂ'):|, t= ]., ey T

Vt(SO) = mlin [Vt+1(©t(/t)so)], t=1,...,T -1
N——

Vi) = clpr) + Velgy)
I1 ()
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Time Homogenous Case

@ source transition matrix @ noise statistics

@ channel @ distortion measure
are time invariant. Then, the same methodology works for

@ Finte time horizon,

@ Infinite time horizon with an expected discounted distortion
criterion.
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Extensions

@ A. Mahajan and D. Teneketzis

On jointly optimal encoding, decoding and memory update for noisy real-time
commuciation

Control Group Report CGR-05-07, Department of EECS, University of Michigan,
Ann Arbor, MI.

@ k-th order Markov source.
e Finite delay pt(Xt_g,)A(t).

@ Channels with memory.
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Summary

3
\

@ Provide a decision theoretic framework to study real-time
communication.

@ Use the stuctural results of Teneketzis 2004, to obtain jointly
optimal real-time encoding, decoding and memory update
rules.

o Extend the methodology to infinite horizon problems.

Future Work

o Extend the methodology to multi-terminal systems.
@ Performance bounds.

e Computational issues.
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