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Abstract— We consider a real--time communication system
with noisy feedback consisting of a Markov source, a forward
and a backward discrete memoryless channels, and a receiver
with finite memory. The objective is to design an optimal com-
munication strategy (that is, encoding, decoding, and memory
update strategies) to minimize the total expected distortion over
a finite horizon. We present a sequential decomposition for the
problem, which results in a set of nested optimality equations
to determine optimal communication strategies. This provides
a systematic methodology to determine globally optimal joint
source--channel encoding and decoding strategies for real--time
communication systems with noisy feedback.

I. Problem Formulation

Consider a real--time communication system with noisy

feedback as shown in Figure 1. This system consists of a

source, a real--time encoder, a noisy forward channel, a noisy

backward channel, and a real--time decoder with finite mem-

ory. The communication system operates in discrete time for

a time horizon T .

Source Encoder Forward
Channel

Backward
Channel

Decoder
Xt Zt Yt X̂t

Ỹt

Nt

Ñt

Fig 1. A real--time communication system with noisy feedback

At each stage t, the source produces an output Xt taking

values in a finite alphabet X . We assume that the output

sequence {Xt, t = 1, . . . , T} forms a first--order Markov

chain with initial distribution PX1 and matrix of transition

probabilities PXt+1|Xt .
The communication system consists of two channels: a for-

ward channel and a backward channel. We assume that both

channels are independent DMC (discrete memoryless chan-

nels). The forward channel is a |Z|--input |Y|--output DMC,

while the backward channel is a |Y|--input |Ỹ|--output DMC.

These channels can be described as

Yt = h(Zt, Nt), t = 1, . . . , T, (1a)

Ỹt−1 = h̃(Yt−1, Ñt−1), t = 2, . . . , T, (1b)

where h(·) and h̃(·) denote the forward and backward chan-

nels at time t, respectively; Zt and Yt−1 are the inputs to the

forward and the backward channels at time t, respectively;

Yt and Ỹt−1 are the outputs of the forward and the back-

ward channels at time t, respectively; and Nt and Ñt−1 are

the channel noise in the forward and the backward channels

at time t, respectively. The sequential order in which these

system variables are generated is shown in Figure 2. The

variables Zt, Yt, Ỹt, Nt, and Ñt take values in finite alpha-

bets Z , Y , Ỹ , N , and Ñ , respectively. We assume that {Nt,
t = 1, . . . , T} and {Ñt, t = 1, . . . , T} are sequences of i.i.d.

random variables with PMF (probability mass function) PN
and PÑ , respectively. These sequences are independent of

each other and are also independent of the source output {Xt,
t = 1, . . . , T}.

At each stage t, the encoder observes the output Xt of the

source and the output Ỹt−1 of the backward channel. It gen-

erates an encoded symbol Zt using all its past observations

using an encoding rule ct, i.e.,

Z1 = c1(X1), (2a)

Zt = ct(Xt, Zt−1, Ỹ t−1), t = 2, . . . , T, (2b)

where Xt is a short hand notation for the sequence

X1, . . . , Xt and Z
t−1 and Ỹ t−1 are similarly defined.

This encoded symbol is transmitted over the forward chan-

nel (1a) producing a channel output Yt. At the next time

instant, Yt gets transmitted over the backward channel (1b).

The receiver consists of a decoder and a memory. The

content of the memory is denoted by Mt and takes values in

a finite alphabetM. At each stage t, the receiver generates

an estimate X̂t of the source taking values in a finite alphabet

X̂ using a decoding rule gt, i.e.,

X̂1 = g1(Y1), (3a)

X̂t = gt(Yt,Mt−1), t = 2, . . . , T, (3b)

and updates the content of its memory using a memory up-

date rule lt, i.e.,

M1 = l1(Y1), (4a)

Mt = lt(Yt,Mt−1), t = 2, . . . , T. (4b)

The performance of the system is quantified by a uniformly

bounded distortion function ρ : X × X̂ → [0, ρmax], where

ρmax <∞. The distortion at time t is given by ρ(Xt, X̂t).
The collection C := (c1, . . . , cT ) of encoding rules for

the entire horizon is called an encoding strategy. Similarly,

the collection G := (g1, . . . , gT ) of decoding rules is called

a decoding strategy and the collection L := (l1, . . . , lT ) of

memory update rules is called a memory update strategy.
Further, the choice (C,G,L) of communication rules for the

entire horizon is called a communication strategy or a design.
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The performance of a communication strategy is quantified

by the expected total distortion under that strategy and is

given by

JT (C,G,L) := E

{
T∑
t=1
ρ(Xt, X̂t)

∣∣∣∣∣C,G,L
}
. (5)

We are interested in the following optimization problem:

Problem 1: Assume that the encoder and the receiver

know the source statistics PX1 and PXt+1|Xt , t = 1, . . . , T ,
the forward and backward channel functions h, h̃, the for-

ward and the backward channel noise statistics PN and PÑ ,

the distortion functions ρ and the time horizon T . Choose

a communication strategy (C∗, G∗, L∗) that is optimal with

respect to performance criterion of (5), i.e.,

JT (C∗, G∗, L∗) = J ∗T := min
C∈CT

G∈GT

L∈L T

JT (C,G,L), (6)

where C T := C1×· · ·×CT , Ct is the family of functions from

X t×Ỹt−1×Z̃t−1 to Z , G T := G × . . .×G (T --times), G is

the family of functions from Y×M to X̂ , L T := L ×. . .L
(T --times), and L is the family of functions from Y ×M to

M.

The design of an optimal communication strategy for a

real--time communication system with noisy feedback has not

been considered in the literature so far. The work on real--

time communication assumes either a noiseless forward chan-

nel [1]–[4], or no feedback [5]–[8], or it assumes noiseless

feedback [9]. The work on noisy feedback [10]–[13] does not

assume a real--time constraint on information transmission.

The key contribution of this paper is the presentation of

a systematic methodology for the design of globally optimal

strategies for real--time communication with noisy feedback.

We treat the design of an optimal communication strategy as

a decentralized multi--agent sequential optimization problem.

We show that an optimal communication strategy can be ob-

tained by proceeding backwards in time and solving a set of

nested optimality equations.

The rest of this paper is organized as follows. We present

some preliminary results in Section II. Then we present qual-

itative properties of optimal encoding and decoding strate-

gies in Section III and describe an algorithm for determining

globally optimal communication strategies in Section IV. We

conclude in Section V.

II. Some Preliminaries

A. Problem Classification
Problem 1 is a sequential stochastic optimization problem

as defined in [14]. To understand the sequential nature of the

problem, we need to refine the notion of time. We call each

step of the system a stage. For each stage, we consider three

time instances:1 t+, t + 1/2, and (t + 1)−. For the ease of

notation, we will denote these time instances by 1t, 2t, and 3t,

respectively. Assume that the system has three “agents”, the

encoder (agent 1), the decoder (agent 2), and the memory

update (agent 3), which act sequentially at 1t, 2t, and 3t,

respectively. The order in which the random variables are

generated in the system is illustrated in Figure 2. Since the

ordering of the decision makers can be done independently of

the realization of the system variables, Property C of [15] is

trivially satisfied and hence Problem 1 is a causal sequential
stochastic optimization problem as defined in [14].

Problem 1 is a multi--agent problem where all agents have

the same objective given by (6). Such problems are called

team problems [16], and are further classified as static teams

or dynamic teams on the basis of their information struc-

ture. In static teams, an agent’s information is a function

of primitive random variables only, while in dynamic teams,

in general, an agent’s information depends on the functional

form of the decision rules of other agents. In Problem 1 the

receiver’s information depends on the functional form of the

encoding rule. Thus Problem 1 is a dynamic team. Dynamic

teams are, in general, functional optimization problems hav-

ing a complex interdependence among the decision rules [17].

This interdependence leads to non--convex (in policy space)

optimization problems that are hard to solve.

For the ease of notation, at time instances 1t, 2t, and 3t,

we will denote the current decision rule by 1φt,
2φt, and

3φt
and the past decision rules by 1φt−1, 2φt−1, and 3φt−1, i.e.,

1φt := ct, 1φt−1 := (ct−1, gt−1, lt−1), (7a)

2φt := gt, 2φt−1 := (ct, gt−1, lt−1), (7b)

3φt := lt. 3φt−1 := (ct, gt, lt−1). (7c)

B. The Notion of Information
We believe that the traditional information theoretic no-

tions entropy and mutual information are asymptotic concepts

which are not directly applicable to real--time communication

problems. So, we first describe a decision theoretic notion

of information. Let (Ω,F, P ) be the probability field with

respect to which all primitive random variables are defined.

Suppose iOt is the observation of agent i at time it, and
iφt−1 is the past decision rules of all agents. Since the prob-

lem is sequential, for any choice of iφt−1, iOt is measurable

with respect to F. Furthermore, for any choice of iφt−1, let
σ(iOt; iφt−1) denote the smallest subfield of F with respect

to which iOt is measurable. Then, the information field of

agent k at time it is σ(iO; iφt−1). Using this notion of in-

formation, we define variables that represent the information

field at the encoder’s and receiver’s sites just before each

agent acts on the system.

Definition 1: Let 1Et, 2Et, and 3Et denote the observation

and 1Et,
2Et, and 3Et denote the information field at the

encoder’s site at time 1t, 2t, and 3t, respectively, i.e.,

1Et := (Xt, Zt−1, Ỹ t−1), 1Et := σ(1Et; 1φt−1), (8a)

The actual values of these time instances is not important; we just need1

three values in increasing order.
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Stage t

t+ t+ 1/2 (t+ 1)−
Actual Time

1t 2t 3t
Time Notation
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Decision Rules

1Bt 2Bt 3Bt

Belief of the
encoder

1At 2At 3At
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decoder

1πt 2πt 3πt

Information State

Fig 2. Sequential ordering of different variables in the system

2Et := (Xt, Zt, Ỹ t−1), 2Et := σ(2Et; 2φt−1), (8b)
3Et := (Xt, Zt, Ỹ t), 3Et := σ(3Et; 3φt−1). (8c)

Further, let 1Rt,
2Rt, and

3Rt denote the observation and
1Rt,

2Rt, and 3Rt denote the information field at the re-

ceiver’s site at time 1t, 2t, and 3t, respectively, i.e.,

1Rt := (Mt−1), 1Rt := σ(1Rt; 1φt−1), (9a)

2Rt := (Yt,Mt−1), 2Rt := σ(2Rt; 2φt−1), (9b)

3Rt := (Yt,Mt−1), 3Rt := σ(3Rt; 3φt−1). (9c)

Problem 1 is a decentralized problem because, at any time

t, the information fields at the encoder’s site and the re-

ceiver’s site are non--comparable, that is, 1Et �⊆ 1Rt and
1Et �⊇ 1Rt; and similar relations hold between 2Et and

2Rt,

and between 3Et and
3Rt. Thus, at no time during the evo-

lution of the system does the encoder “know” exactly what

is “known” to the receiver and vice--versa. Hence the infor-
mation in the system is decentralized. Notice that the in-

formation fields at the encoder and the receiver are coupled

through decision rules. 1E1 and 1R1 are known before the

system starts operating. The choice of 1φ1 determines 2E1
and 1R1, the choice of 2φ1 determines 3E1 and 3R1, and so

on. Thus, 1Et and 1Rt are determined completely by 1E1,
1φt−1 and 1R1,

1φt−1, respectively. Thus, the information
1Et and

1Rt is coupled through the past decision rules 1φt−1.
Hence, Problem 1 has a non--classical information structure
(see [18, 19]).

C. Agent’s Beliefs and their Evolution
Due to decentralization of information, it is important to

characterize what one agent thinks about the other agent’s

observation, i.e., what the encoder “thinks” that the receiver

“sees” and what the receiver “thinks” that the encoder “sees”.

This is captured by the encoder’s belief about the observa-

tions of the receiver, and the receiver’s belief about the ob-

servations of the encoder at time instances 1t, 2t, and 3t.

These beliefs are given below.

Definition 2: Let 1Bt,
2Bt, and

3Bt denote the encoder’s

belief about the receiver’s observation at 1t, 2t, and 3t, re-

spectively, i.e., for i = 1, 2, 3,
iBt(ir) := Pr

(
iRt = ir

∣∣ iEt) . (10)

Definition 3: Let 1At,
2At, and

3At denote the receiver’s

belief about the encoder’s observation at 1t, 2t, and 3t, re-

spectively, i.e., for i = 1, 2, 3,
iAt(ie) := Pr

(
iEt = ie

∣∣ iRt) . (11a)

Further, let Ât denote the receiver’s belief about the source

output at time instance 2t, i.e.,

Ât(xt) := Pr
(
Xt = xt

∣∣ 2Rt) . (11b)

The sequential ordering of these beliefs is shown in Fig-

ure 2. For any particular realization 1et of 1Et, and any

arbitrary (but fixed) choice of 1φt−1, the realization 1bt of
1Bt is a PMF on M. If Et is a random vector, then 1Bt is

a random vector belonging to P (M), the space of PMFs on

M. Similar interpretations hold for 2Bt,
3Bt,

1At,
2At, and

3At.

The time evolution of these beliefs of the encoder and the

receiver are coupled through their decision rules. Specifi-

cally,

Lemma 1: For each stage t, there exist deterministic func-

tions 1F , 2F , and 3F such that

1Bt = 1F (3Bt−1, lt−1), (12a)

2Bt = 2F (1Bt, Zt), (12b)

3Bt = 3F (2Bt, Ỹt). (12c)
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The functions 1F and 2F are linear in their first argument.

Lemma 2: For each stage t, there exist deterministic func-

tions 2K, 3K and K̂ such that

2At = 2K(1At, Yt, ct), (13a)

3At = 3K(2At), (13b)

Ât = K̂(2At). (13c)

The functions 3K and K̂ are linear in their first argument.

Further, there exist deterministic functions 1Kt for each t

such that

1At = 1Kt(1A1,Mt−1, ct−1, lt−1). (13d)

Due to lack of space the complete proofs of these lemmas

are omitted. Detailed proofs can be found in [20].

An observation that simplifies the global optimization prob-

lem is the fact that the beliefs 1Bt and
1At are independent

of the decoding strategy G. This is because decoding is a

filtering problem that does not affect the future evolution of

the system.

Before looking at the global optimization problem, we first

identify qualitative properties of optimal encoders and de-

coders.

III. Structural Results

In this section, we provide qualitative properties of opti-

mal encoders (respectively, decoders) that are true for all

arbitrary but fixed decoding and memory update strategies

(respectively, encoding and memory update strategies).

A. Structural Results of Optimal Real--Time Encoders
Theorem 1: Consider Problem 1 for any arbitrary (but

fixed) decoding and memory update strategies, G =
(g1, . . . , gT ) and L = (l1, . . . , lT ), respectively. Then there

is no loss in optimality in restricting attention to encoding

rules of the form

Zt = ct(Xt, 1Bt), t = 2, . . . , T. (14)

Proof. We look at the problem from the encoder’s point

of view. Note that {Xt, t = 1, . . . , T} is a Markov process

independent of the noise in the forward and the backward

channel. This fact together with the results of Lemma 1

implies that

Pr
(
Xt+1,

1Bt+1
∣∣Xt, 1Bt, Zt, ct, gt, lt)

= Pr (Xt+1 |Xt) Pr
(1Bt+1

∣∣ 1Bt, Zt, lt)
= Pr

(
Xt+1,

1Bt+1
∣∣Xt, 1Bt, Zt, lt) (15)

Thus {(Xt, 1Bt), t = 1, . . . , T} is a controlled Markov

process with control action Zt. Further, the expected con-

ditional instantaneous distortion can be written as

E
{
ρ(Xt, X̂t)

∣∣∣ 3Et} =

=
∑
yt∈Y
mt−1∈M

ρ
(
Xt, gt(yt,mt−1)

)
Pr
(
yt,mt−1

∣∣ 3Et)

=
∑
yt∈Y
mt−1∈M

ρ
(
Xt, gt(yt,mt−1)

) 2F (1Bt, Zt)
=: 1ρ(Xt, 1Bt, Zt, gt). (16)

Thus, the total expected distortion can be written as

E

{
T∑
t=1
ρ(Xt, X̂t)

∣∣∣∣∣C,G,L
}

= E

{
T∑
t=1

E
{
ρ(Xt, X̂t)

∣∣∣ 3Et}
∣∣∣∣∣C,G,L

}

= E

{
T∑
t=1

1ρ(Xt, 1Bt, Zt, gt)
∣∣∣∣∣C,G,L

}
. (17)

Hence from the encoder’s point of view, we have a per-

fectly observed controlled Markov process {(Xt, 1Bt), t =
1, . . . , T} with control action Zt and an instantaneous distor-

tion 1ρ(Xt, 1Bt, Zt, gt) (recall that G is fixed). From Markov

decision theory [21] we know that there is no loss of optimal-

ity in restricting attention to encoding rules of the form (14).

�
Theorem 1 immediately implies the following:

Corollary 1: The optimal performance J ∗T given by (6)

can be determined by

JT (C∗, G∗, L∗) = J ∗T := min
C∈CTS
G∈GT

L∈L T

JT (C,G,L), (18)

where C TS := CS × · · · ×CS (T --times), CS
2 is the space of

functions from X × P (M) to Z , G T and L T are defined

as before, and P (M) denotes the space of all probability

measures onM.

B. Structure of Optimal Real--Time Decoders
Theorem 2: Consider Problem 1 for any arbitrary (but

fixed) encoding and memory update strategies, C =
(c1, . . . , cT ) and L = (l1, . . . , lT ), respectively. Then there

is no loss in optimality in restricting attention to decoding

rules of the form

X̂t = ĝ(Ât) := argmin
x̂∈X̂

∑
x∈X
ρ(x, x̂)Ât(x). (19)

Proof. We look at the problem from the decoder’s point

of view. Since decoding is a filtering problem, minimiz-

ing the total distortion JT (C,G,L) is equivalent to min-

imizing the conditional expected instantaneous distortion

E
{
ρ(Xt, X̂t)

∣∣∣ 2Rt} for each time t. This conditional ex-

pected instantaneous distortion can be written as

Note that the S in CS is a short form of separated, and should not be2

confused with Ct defined in Problem 1.
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E
{
ρ(Xt, X̂t)

∣∣∣ 2Rt} =
∑
xt∈X
ρ(xt, X̂t) Pr

(
xt
∣∣ 2Rt)

=
∑
xt∈X
ρ(xt, X̂t)Ât(xt)

and is minimized by the decoding rule given in (19). �

IV. Determining Globally Optimal

Communication Strategy

A globally optimal design for Problem 1 always exists

because there are finitely many designs and we can always

choose the one with best performance. However, a brute

force evaluation of each design to find the optimal one is

computationally impractical. So we want to determine a sys-

tematic algorithm to search for an optimal design. One such

systematic approach, called sequential decomposition, is to

sequentially determine optimal decision rules for all stages

by proceeding backwards in time. This procedure simpli-

fies exponentially the complexity of searching for an optimal

solution. The resultant “simplified” problem is still exponen-

tial in complexity, which reflects the complexity of finding

optimal strategies in decentralized systems.

The key step in obtaining a sequential decomposition is

to identify an information state sufficient for performance
evaluation (also called a sufficient statistic for control). For

Problem 1 one such information state is given by the follow-

ing unconditional probability laws.

Definition 4: Define 1πt,
2πt, and

3πt as follows:

1πt = Pr
(
Xt,Mt−1, 1Bt

)
, (20a)

2πt = Pr
(
Xt, Yt,Mt−1, 2Bt

)
, (20b)

3πt = Pr
(
Xt, Yt, Ỹt,Mt−1, 3Bt

)
. (20c)

Let 1Π denote the space of probability measures on X ×
M× P (M), 2Π denote the space of probability measures

on X × Y ×M× P (Y ×M) and 3Π denote the space of

probability measures on X×Y×Ỹ×M×P (Y ×M). Then,
1πt takes values in 1Π, 2πt takes values in 2Π and 3πt takes

values in 3Π.

Lemma 3: 1πt,
2πt, and

3πt are information states for the

encoder, decoder, and memory update, respectively, i.e.,

1. there are linear transformations 1Q, 2Q, and 3Q such that

2πt = 1Q(ct) 1πt, (21a)

3πt = 2Q 2πt, (21b)

1πt+1 = 3Q(lt) 3πt. (21c)

2. the expected instantaneous cost can be expressed as

E
{
ρ(Xt, X̂t)

∣∣∣ ct, gt, lt−1} = 2ρ(2πt, gt) (22)

where 2ρ(·) is a deterministic function.

Due to lack of space, the proof of this Lemma is omitted.

Detailed proof can be found in [20]. Using this result, the

performance criterion of (5) can be rewritten as

JT (C,G,L) = E

{
T∑
t=1
ρ(Xt, X̂t)

∣∣∣∣∣C,G,L
}

(a)=
T∑
t=1

E
{
ρ(Xt, X̂t)

∣∣∣ ct, gt, lt−1}

(b)=
T∑
t=1

2ρ(2πt, gt) (23)

where (a) follows from the sequential ordering of system

variables and (b) follows from Lemma 3.

A. An Equivalent Optimization Problem
Consider a centralized deterministic optimization problem

with state space alternating between 1Π, 2Π, and 3Π and

action space alternating between CS , G , and L . The system

dynamics are given by (21) and at each stage t the decision

rules ct, gt and lt are determined according to meta--rules
1Δt, 2Δt, and 3Δt, where 1Δt is a function from 1Π to CS ,
2Δt is a function from 2Π to G and 3Δt is a function from
3Π to L . Thus the system equations (21) can be written as

ct = 1Δt(1πt), 2πt = 1Q(ct) 1πt, (24a)

gt = 2Δt(2πt), 3πt = 2Q 2πt, (24b)

lt = 3Δt(3πt), 1πt+1 = 3Q(lt) 3πt. (24c)

At each stage an instantaneous cost 2ρ(2πt, gt) is incurred.

The choice (1Δ1,
2Δ1,

3Δ1, . . . , ,
1ΔT , 2ΔT , 3ΔT ) is called

a meta--design and denoted by ΔT . The performance of a

meta--design is given by the total cost incurred by that meta--

design, i.e.,

JT (ΔT ) =
T∑
t=1

2ρ(2πt, gt). (25)

Now consider the following optimization problem:

Problem 2: Consider the dynamic system (24) with known

transformations 1Q, 2Q, and 3Q. The initial state 1π1 is

given. Determine a meta--design ΔT to minimize the total

cost given by (25).

Observe that for any initial state 1π1, a choice of meta--

design ΔT determines a design (C,G,L) through (24). Re-

lation (22) implies that the expected distortion under design

(C,G,L), given by (5), is equal to the cost under meta--de-

sign ΔT given by (25). Thus, if the transformation 1Q, 2Q,

and 3Q in Problem 2 are chosen as in Lemma 3, an optimal

meta--design for Problem 2 determines an optimal design for

Problem 1. Problem 2 is a classical deterministic control

problem and optimal meta--designs can be determined as fol-

lows:

Theorem 3: An optimal meta--design Δ∗,T for Problem 2,

and consequently an optimal design (C∗, G∗, L∗) for Prob-

lem 1 can be determined as follows. For any 1π ∈ 1Π,
2π ∈ 2Π, and 3π ∈ 3Π, define the following functions:

287



1VT+1(1π) = 0, (26a)

and for t = 1, . . . , T
1Vt(1π) = inf

c∈CS

2Vt
(1Q(c) 1π), (26b)

2Vt(2π) = min
g∈G

2ρ(2π, g) + 3Vt(2Q 2π), (26c)

3Vt(3π) = min
l∈L

1Vt+1
(3Q(l) 3π). (26d)

The arg min (or arg inf) at each step determines the optimal

meta--design Δ∗,T . After an optimal meta--design has been

determined, an optimal design (C∗, G∗, L∗) can be deter-

mined through (24). Furthermore, the optimal performance

is given by

J ∗T = 1V1(1π1). (27)

Proof. This is a standard result, see [21, Chapter 2].

�
The above nested optimality equations determine a glob-

ally optimal design and the globally optimal performance.

Observe that the functional form of the optimality equations

does not change with time. So, the results presented here can

be easily extended to infinite horizon problem with expected

discounted distortion or average distortion per unit time cri-

teria. Such an extension to infinite horizon will result in a

fixed point equation to determine a time--invariant (station-

ary) meta--design; the design at each stage will be time vary-
ing. Due to decentralization of information, optimal designs

for infinite horizon are not stationary. This phenomenon also

occurs in real--time communication with no feedback.

V. Discussion and Conclusion

The solution framework presented in this paper and some

of our previous papers [7, 8, 20] provides an alternative ap-

proach to real--time communication problems. Information

theoretic performance bounds or coding theoretic low--com-

plexity coding schemes are not known for noisy real--time

communication systems. In the absence of such results, the

designer of a real--time communication system has to choose

a good heuristic communication strategy and hope that it

meets the performance requirements. If it does not, the de-

signer needs to try different communication strategies until

one that meets the performance requirements is found.

In this paper we have presented an alternative, systematic

methodology to design an optimal communication strategy

for real--time communication systems with noisy feedback.

Instead of trying out heuristic strategies one by one, optimal

communication strategies can be determined by solving the

nested optimality equations of Theorem 3. Note that these

are not typical dynamic programming equations as each step

is a functional optimization problem. Hence, although the

systematic methodology presented here exponentially simpli-

fies the complexity of finding an optimal design as compared

to a brute force approach, solving the resultant nested opti-

mality equations is a formidable computational task. It may

be possible to extend the computational techniques for solv-

ing dynamic programming equations to efficiently solve equa-

tions of the form (26). The solution of (26) also determines

the optimal performance of the system and can be used to

check the degree of sub-optimality of heuristic designs.
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