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Abstract— We consider zero-delay or fixed finite-delay joint
source channel coding of Markov sources using finite memory en-
coder and decoder. The objective is to choose designs that minimize
expected total distortion over a finite horizon, expected discounted
distortion over an infinite horizon and average distortion per unit
time over an infinite horizon. The above problem is a dynamic team
with non-classical information structure. We develop a sequential
decomposition for this problem. The main contribution of this
paper is to provide a systematic methodology for determination
of optimal joint source-channel encoding-decoding strategies for
zero-delay or fixed finite-delay point-to-point communication with
limited memory.

I. INTRODUCTION

C
ONSIDER A FIRST ORDER Markov source that generates

output {Xn}
∞
n=1 belonging to a finite alphabet X �

{1, . . . , |X |} with a known transition matrix P . The probability

distribution PX0
of the initial state X0 is known. The source

outputs Xn are encoded by a transmitter with finite memory, the

encoded symbols are transmitted over a discrete memoryless

channel (DMC) and the received symbols are decoded by a

receiver with finite memory. The distortion metric accepts a fixed

delay of D units i.e., for any n, the receiver must generate an

estimate of xn at time n + D.

We model the transmitter and receiver as finite state machines

(FSMs). The encoded symbol Zn belongs to a discrete alphabet

Z � {1, . . . , |Z|} and is generated as follows

Zn = f(Xn, Sn−1), Sn = h(Xn, Sn−1),

where f(·) is the encoding function, h(·) is the transmitter’s

memory update function and Sn represents the transmitter’s

memory contents at time n. The transmitter has finite memory,

i.e., Sn takes values in a finite set S � {1, . . . , |S|}. The encoded

symbol Zn is transmitted over a DMC producing Yn that belongs

to Y � {1, . . . , |Y|}. We assume that the channel statistics are

known, i.e.,

Pr
(
yn

∣∣ zn, xn, yn−1
)

= Pr (yn | zn) = Q(yn, zn), (1)

where Q is a known transition matrix of the channel. The

receiver has finite memory. The receiver’s memory contents at

time n is denoted by Mn which takes values in a finite set

M � {1, . . . , |M|}. The receiver generates an estimate of the

source X̂n, belonging to X , as follows:

X̂n = g(Yn,Mn−1), Mn = l(Yn,Mn−1),

where g(·) is the decoding function, l(·) is the receiver’s memory

update function. A uniformly bounded distortion metric ρ : X ×
X → [0,K],K < ∞ is given and can accept a delay of D time

units i.e. the distortion at time n, n ≥ D is given by ρ(xn−D, x̂n).
Thus, we require the delay in reconstruction to be equal to D,

where D is a pre-specified constant. This restriction is stronger

than requiring the delay in reconstruction to be finite.

We shall refer to |S| as the “size of transmitter memory”, to

|M| as the “size of receiver memory” and to D as the “delay

acceptable by the distortion measure” or simply as “decoding

delay” or “delay”. We shall use the terms “distortion” and

“cost” interchangeably. The choice of f(·), g(·), h(·), l(·) is

called a design. We quantify the performance of a design by the

corresponding expected distortion per unit time, i.e.,

J (f, g, h, l) � lim
N→∞

E

{
1

Ñ

N∑

n=D+1

ρ(Xn−D, X̂n)

∣∣∣∣∣ f, g, h, l

}
.

where Ñ = N − D. The problem under consideration is as

follows:

Problem 1: Given a system (X ,Z,Y,S,M, PX0
, P, Q), a

uniformly bounded distortion ρ(·), delay D and any ε > 0,

choose a design (f∗, g∗, h∗, l∗) that performs ε close to the

minimum distortion, i.e.,

J (f∗, g∗, h∗, l∗) − ε ≤ J ∗ � min
f,g,h,l

J (f, g, h, l)

= min
f,g,h,l

lim
N→∞

E

{
1

Ñ

N∑

n=D+1

ρ(Xn−D, X̂n)

∣∣∣∣∣ f, g, h, l

}
.

where Ñ = N − D.

The salient features of this problem are: (i) finite size of

transmitter and receiver memory; and (ii) fixed finite decoding

delay. By sufficiently increasing the size of transmitter and

receiver memory |S|, |M| and delay D, results of rate-distortion

theory become applicable [1, Theorem 2]. We are however,

concerned with the case where |S|, |M| and D are finite and

small.

The motivation for studying this problem comes from problems

related to resource allocation in networks with QoS requirements

(e.g. end-to-end delay), distributed routing in wired and wireless

networks, decentralized detection in sensor networks, and traffic

flow control in transportation networks. Delay in information

transmission/exchange is an important consideration for many

such applications but is not taken into consideration in classical

information theory. Further, devices are getting smaller in size,

but the size of batteries is not reducing at the same rate. Small,

high density energy storage batteries are not available for small

devices. This restricts the power consumption and consequently

the data processing capabilities of such devices. Thus, even if

such devices have large memory, not all of it can be processed.

Moreover, for certain applications, having a large memory results

in an unacceptably high cost of the device. Hence, we want to

obtain a systematic methodology for finding optimal or nearly

optimal designs and to investigate good design heuristics for

delay and memory limited communication systems.

The problem with zero (and finite) delay coding, infinite size

of transmitter and receiver memory and noiseless channels was
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considered in [2], [3]; a similar setting for noisy channels was

considered in [4]. The problem with zero (and finite) delay coding,

infinite size of transmitter memory, finite size of receiver memory

and noiseless channel was considered in [5]. The same setting

with noisy channels was considered in [6], [7], [8]. The case of

zero (and finite) delay coding with finite size of transmitter and

receiver memory for noiseless channels was considered in [9],

[10]. The results of [9], [10] for the case of Markov sources

were inconclusive and the authors concluded by “The subject of

finite-state machines driven by Markov inputs warrants further

investigation”.

We use stochastic optimization theory to investigate the zero

(or fixed finite) delay encoding, decoding and memory update

problem with finite memory transmitters and receivers and a

noisy channel. Problem 1 is difficult to analyze, because for

each design we have to evaluate its asymptotic performance. We

circumvent this difficulty as follows. We start with a simpler

problem, namely, a zero-delay finite horizon problem (Section II)

where the functions f(·), g(·), h(·), l(·) are allowed to be time

varying. We develop a methodology to solve this problem. We

extend the solution methodology to an infinite horizon, zero-delay

expected discounted distortion problem in Section III. We consider

the zero-delay infinite horizon average distortion per unit time

problem in Section IV; we show that for a discount factor close

to 1, the solution of the problem of Section III is also a solution

of the problem of Section IV. Thus, we have a methodology for

solving Problem 1 with delay D = 0. In Section V we explain

how to transform the fixed finite delay problem to a zero-delay

problem. Consequently, we have a solution methodology for

Problem 1. There exist polynomial complexity algorithms to

solve the problem of Section III. Thus, these algorithms can be

used to obtain a solution of Problem 1.

II. THE FINITE HORIZON PROBLEM

In this section we consider a zero-delay finite horizon version

of Problem 1, i.e., D = 0. The encoding, decoding, transmitter

and receiver memory update functions are allowed to be time

varying.

A. Problem Formulation

Consider a first order Markov source that generates a

random sequence X1, . . . , XN , for each n = 1, . . . , N ,

Xn ∈ X . The transition matrix P is known and Pij �

Pr (Xn+1 = j |Xn = i) ,∀i, j ∈ X . The probability distribution

of the initial state X0, denoted by PX0
, is assumed to be known.

The encoder is a FSM which generates a sequence Z1, . . . , ZN ,

Zn ∈ Z as follows:

Zn = fn(Xn, Sn−1), (2)

Sn = hn(Xn, Sn−1), (3)

where Sn ∈ S is the transmitter’s memory content at time n.

S0 is arbitrarily initialized to 1, fn belongs to F , the family of

functions from X ×S to Z and hn belongs to H , the family of

functions from X ×S to S . The encoded sequence is transmitted

over a DMC, given by (1), producing Y1, . . . , YN . The decoder

is a FSM which generates a sequence X̂1, . . . , X̂N , X̂n ∈ X as

follows:

X̂n = gn(Yn,Mn−1), (4)

Mn = ln(Yn,Mn−1), (5)

where Mn ∈ M is the receiver’s memory content at time n and

M0 is arbitrarily initialized to 1, gn belongs to G , the family of

function from Y × M to X and ln belongs to L , the family

of function from Y × M to M. A bounded distortion metric

ρ : X×X → [0,K],K < ∞ is given and the acceptable decoding

delay D = 0. The choice of f � (f1, . . . , fN ), g � (g1, . . . , gN ),
h � (h1, . . . , hN ) and l � (l1, . . . , lN ) is called a design. Denote

by ΓN � (F × G × H × L )N the family of all designs.

The performance of any design is given by an expected total

distortion,

JN (f, g, h, l) � E

{
N∑

n=1

ρ(Xn, X̂n)

∣∣∣∣∣ f, g, h, l

}
. (6)

The optimization problem that we consider is as follows:

Problem 2: Given a system (X ,Z,Y,S,M, PX0
, P, Q, N),

a bounded distortion ρ(·) and delay D = 0, choose a design

(f∗, g∗, h∗, l∗) that is optimal with respect to the performance

criterion given by (6), i.e.,

JN (f∗, g∗, h∗, l∗) = J ∗
N � min

(f,g,h,l)∈ΓN

JN (f, g, h, l). (7)

B. Joint Optimization

Problem 2 is a dynamic team with non-classical information

pattern [11]. In this section we find information states sufficient

for performance evaluation, thereby obtaining a sequential

decomposition of the problem.

Definition 1: Let Π be the space of probability measures on

X × Y × S ×M and Ψ be the space of probability measures

on X × S ×M. Define the following for all n = 1, . . . , N ,

π0
n−1 = Pr (Xn−1, Sn−1,Mn−1) , (8)

π1
n = Pr (Xn, Yn, Sn−1,Mn−1) , (9)

π2
n = Pr (Xn, Sn−1,Mn) . (10)

Observe that π1
n ∈ Π, π0

n, π2
n ∈ Ψ and π0

0 is known.

Lemma 1: For all n = 1, . . . , N ,

(i) there exist linear transformations T 0
n−1(fn), T 1

n(ln), T 2
n(hn)

such that

π1
n = T 0

n−1(fn)π0
n−1. (11)

π2
n = T 1

n(ln)π1
n. (12)

π0
n = T 2

n(hn)π2
n. (13)

(ii) for any choice of f, g, h, l, the expected instantaneous cost

can be expressed as

E

{
ρ(Xn, X̂n)

∣∣∣ fn, gn, hn, ln
}

= ρ̃(π1
n, gn). (14)

where αn = (α1, . . . , αn), α = f, g, h, l and ρ̃(·) is a

deterministic function.

Proof:

(i) Consider a component of π1
n,

π1
n(x, y, s, m) =

∑

xn−1∈X

π0
n−1(xn−1, s, m)Px,xn−1

× Qy,fn(x,s) �
(
T 0

n−1(fn)π0
n−1

)
(x, y, s, m). (15)

(ii) Consider a component of π2
n,

π2
n(x, s,m) =

∑

mn−1∈M

∑

yn∈Y

π1
n(x, yn, s, mn−1)

× 1 [ m = ln(yn,mn−1) ]

�
(
T 1

n(ln)π1
n

)
(x, s,m), (16)
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where 1 [ · ] is the indicator function.

(iii) Consider a component of π0
n,

π0
n(x, s,m) =

∑

sn−1∈S

π2
n(x, sn−1,m) 1 [ s = hn(x, sn−1) ]

�
(
T 2

n(hn)π2
n

)
(x, s,m). (17)

(iv) Consider the expected instantaneous cost,

E

{
ρ(Xn, X̂n)

∣∣∣ fn, gn, hn, ln
}

=
∑

xn,yn,mn−1∈

X×Y×M

ρ
(
xn, gn(yn,mn−1)

)

×
∑

sn−1∈S

π1
n(xn, yn, sn−1,mn−1) � ρ̃(π1

n, gn). (18)

The choice of fn, gn, hn, ln makes the variable X̂n a random

variable with well-defined distribution. Thus, the performance

measure of (6) can be rewritten as

E

{
N

X

n=1

ρ(Xn, X̂n)

∣∣∣∣∣ f, g, h, l

}

=
N∑

n=1

E

{
ρ(Xn, X̂n)

∣∣∣ fn, gn, hn, ln
}

=
N

X

n=1

ρ̃(π1
n, gn) (19)

where the sequence π1
1 , . . . , π1

N depends on the choice of f, h, l.
Hence, Lemma 1 implies that Problem 2 is equivalent to the

following deterministic optimization problem:

Problem 3: Consider a discrete time, finite horizon, system

that evolves as follows

π1
n = T 0(fn)π0

n−1, n = 1, . . . , N, (20)

π2
n = T 1(ln)π1

n, n = 1, . . . , N, (21)

π0
n = T 2(hn)π2

n, n = 1, . . . , N, (22)

where fn, ln, hn are functions belonging to F ,L ,H , respec-

tively, and T i(·), i = 0, 1, 2 are known linear transforms. The

initial state π0
0 is known. When the system is in state π1

n, for

any choice of function gn belonging to G an instantaneous cost

ρ̃(π1
n, gn) is incurred.

The objective is to choose function f � (f1, . . . , fN ), g �

(g1, . . . , gN ), h � (h1, . . . , hN ), l � (l1, . . . , lN ) so as to

minimize the total cost given by

JN (f, g, h, l) =
N∑

n=1

ρ̃(π1
n, gn). (23)

This is a classical deterministic control problem and an optimal

design is given by the following.

Theorem 1: An optimal design for Problem 3, and conse-

quently, Problem 2 is given by the solution of the following

nested optimality gathers:

V 2
N (π2

N ) � 0, (24)

and for n = 1, . . . , N

V 0
n−1(π

0
n−1) = min

fn∈F

{
V 1

n

(
T 0(fn)π0

n−1

)}
, (25)

V 1
n (π1

n) = min
ln∈L

{
V n(π1

n) + V 2
n

(
T 1(ln)π1

n

)}
, (26)

V n(π1
n) = min

gn∈G

{
ρ̃(π1

n, gn)
}

, (27)

V 2
n (π2

n) = min
hn∈H

{
V 0

n

(
T 2(hn)π2

n

)}
, (28)

The arg min at each step determines the corresponding optimal

design rule. Furthermore, the optimal performance is given by

J ∗
N = V 0

0 (π0
0) (29)

Proof: This is a standard result, see [12, Chapter 2].

III. THE EXPECTED DISCOUNTED COST PROBLEM

Consider the following extension of the model of Section II-A

to an infinite horizon (N → ∞). The performance of any design

is evaluated by the expected discounted distortion under that

design given by

J β(f, g, h, l) � E

{
∞∑

n=1

βn−1ρ(Xn, X̂n)

∣∣∣∣∣ f, g, h, l

}
, (30)

where 0 < β < 1 is called the discount factor. Lemma 1 implies

that this problem is equivalent to the following deterministic

problem.

Problem 4: Consider a discrete time, infinite horizon, system

that evolves as follows for all n:

π1
n = T 0(fn)π0

n−1, (31)

π2
n = T 1(ln)π1

n, (32)

π0
n = T 2(hn)π2

n, (33)

where fn, ln, hn are functions belonging to F ,L ,H respec-

tively and T i(·), i = 0, 1, 2 are known transforms. The initial

state π0
0 is known. When the system is in state π1

n, for any choice

of function gn belonging to G an instantaneous cost ρ̃(π1
n, gn)

is incurred.

The objective is to choose functions f � (f1, f2, . . . ), g �

(g1, g2, . . . , ), h � (h1, h2, . . . , ), l � (l1, l2, . . . , ) so as to

minimize the discounted cost over infinite horizon given by

J β(f, g, h, l) =
∞∑

n=1

βn−1ρ̃(π1
n, gn). (34)

Let γn = (fn, gn, hn, ln) Define a transformation T̂ (γ) �

T 0(fn) ◦ T 1(ln) ◦ T 2(hn). Then (31)–(33) can be written as

π0
n = T̂ (γn)π0

n−1, (35)

and we can define ρ̂(π0
n−1, γn) by

ρ̂(π0
n−1, γn) � ρ̃

(
T 0(fn)π0

n−1, gn

)
= ρ̃(π1

n, gn). (36)

Then (34) can be rewritten as

J β(γ) =
∞∑

n=1

βn−1ρ̂(π0
n−1, γn), (37)

where π0
0 is known.

The system of gathers (35), (36), (37) is the classical expected

discounted cost problem whose solution is given by the following.

Theorem 2: Consider the optimization problem described

by (35), (36), (37). An optimal solution is given by a stationary

policy γ∞ � (γ, γ, . . . , ), i.e.

V (π0
0) = J β(γ∞) = min

γ′∈Γ∞

J β(γ′), (38)

where V is the unique uniformly bounded fixed point of

V (π) = min
γ∈Γ

{
ρ̂(π, γ) + βV

(
T̂ (γ)π

)}
, ∀π ∈ Π. (39)

Proof: This is a standard result. See [12].
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IV. THE AVERAGE COST PER UNIT TIME PROBLEM

Consider the following extension of the model of Section II-A

to an infinite horizon (N → ∞). The performance of any design

is evaluated by the expected average distortion per unit time

under that design which is given by

J (f, g, h, l) � lim sup
N→∞

1

N
E

{
N∑

n=1

ρ(Xn, X̂n)

∣∣∣∣∣ f, g, h, l

}
.

(40)

Lemma 1 implies that this problem is equivalent to a deter-

ministic problem described in Problem 4 with an optimization

criterion given by

J (f, g, h, l) = lim sup
N→∞

1

N
E

{
N∑

n=1

ρ(Xn, X̂n)

}
. (41)

Using the transformations T̂ (γn) and ρ̂(π0
n−1, γn) defined

by (35) and (36), we can rewrite (41) as

J (γ) = lim sup
N→∞

1

N

N∑

n=1

ρ̂(π0
n−1, γn). (42)

The system of gathers (35), (36), (42) is the classical average

cost per unit time problem, whose solution is given by the

following:

Theorem 3: For the optimization problem described by (35),

(36), (42), and assume

(A1) for some ε > 0 there exist bounded measurable

functions v(·) and r(·) and design γ0 ∈ Γ such that for

all π ∈ Π,

v(π) = min
γ∈Γ

{
v
(
T̂ (γ)π

)}
= v

(
T̂ (γ0)π

)
, (43)

min
γ∈Γ

{
ρ̂(π, γ) + r

(
T̂ (γ)π

)}
≤ v(π) + r(π)

≤ ρ̂(π, γ0) + r
(
T̂ (γ0)π

)
+ ε. (44)

Then there exists an optimal stationary design γ∞
0 = (γ0, γ0, . . . )

such that: for any horizon N and any design γ′ for that horizon

JN (γN
0 ) ≤ r(π0

0) + Nv(π0
0) ≤ JN (γ′) + Nε, (45)

where γN
0 � (γ0, . . . , γ0) (N terms). Furthermore, under (A1),

(45) is equivalent to

J (γ∞
0 ) = v(π0

0) ≤ J (γ′) + ε, (46)

where γ′ is any policy for the infinite horizon and

J (γ′) = lim inf
N→∞

1

N

N∑

n=1

ρ̂(π0
n−1, γ

′
n). (47)

Proof: (43) and (44) are the canonical form of the

system (35), (36), (42) [13, Chapter 7]. For this canonical system,

if a measurable bounded solution exists, it is optimal in the sense

of (45) and (46) [13, Chapter 7].

V. THE FIXED FINITE DELAY PROBLEM

In this section we consider the case when the acceptable delay

D is not zero. We first consider finite horizon systems and later

extend the methodology for infinite horizon systems.

A. Fixed Finite Delay Finite Horizon Problem

The basic model of Section II can be modified as follows when

a delay D > 0 in included in the definition of distortion. The first

change is that the variables X̂1, . . . , X̂D are simply not generated,

the receiver spends its first D periods just accumulating the

observations Y1, . . . , YD and updating its memory accordingly.

The second change is that for n > D, distortion is mea-

sured by a function ρ(Xn−D, X̂n). The objective is to choose

f � (f1, . . . , fN ), g � (g1, . . . , gN ), h � (h1, . . . , hN ), l �

(l1 . . . , lN ) to minimize expected distortion given by

J D
N (f, g, h, l) � E

{
N∑

n=D+1

ρ(Xn−D, X̂n)

∣∣∣∣∣ f, g, h, l

}
. (48)

We will follow the sliding window repackaging of the source as

in [5], [6], [7]. Define the process {X1, . . . ,XN} where

Xn �

{(
X1, . . . , Xn

)
, n ≤ D,(

Xn−D, Xn−D+1, . . . , Xn

)
, n > D.

(49)

Definition 2: Define for all n

π0
n−1 = Pr

(
Xn−1, Sn−1,Mn−1

)
, (50)

π1
n = Pr

(
Xn, Yn, Sn−1,Mn−1

)
, (51)

π2
n = Pr

(
Xn, , Sn−1,Mn

)
. (52)

It can be shown that the information states of Definition 2

satisfy the properties of Lemma 11. Thus, we can formulate

a deterministic problem in the same way as in Problem 3 which

can be solved as follows.

Theorem 4: An optimal design with respect to the optimization

criterion given by (48) is obtained by the solution of the nested

optimality gathers (24)–(28) with (27) replaced by

V n(π1
n) =

⎧
⎨
⎩

min
gn∈G

{
ρ̃(π1

n, gn)
}

, n = D + 1, . . . , N,

0, n = 1, . . . , D.
(53)

B. Fixed Finite Delay Infinite Horizon Problem

In the infinite horizon problems, we again use the sliding

window repackaging of the source. The probability measures πi
n,

i = 0, 1, 2 given by Definition 2 are still information states for the

problem and satisfy Lemma 1. However, the system is no longer

time-homogeneous as the instantaneous cost is zero for the first D
time steps and given by ρ̃(·) after that. We can break the problem

into two phases (i) initialization phase for n = 1, 2, . . . , D, and

(ii) sliding window phase for n = D + 1, D + 2, . . . . For the

sliding window phase, we have a time-homogeneous infinite

horizon problem that can be solved using the optimality gathers

of Theorem 2 for the expected discounted cost problem and

of Theorem 3 for the average cost per unit time problem. The

solution will give the cost to go from time D + 1 onward for

all πD ∈ Π and an optimal stationary policy from time D + 1
onward. To find an optimal policy in the initialization phase, we

can view the problem as a finite horizon system with horizon D
with zero instantaneous cost and stopping cost given by cost to

go functions obtained from the solution of the sliding window

phase.

1The instantaneous cost for first D time instances is 0.
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A special case: In the average cost per unit time problem, if

the differential cost function v(π) is constant equal to v for all

π ∈ Π, then we can use any policy (in particular, the stationary

policy that is also optimal for the sliding window phase) in the

initialization phase. There is no instantaneous cost and the cost to

go from any stopping state is the same. However, if v(π) is not

a constant, then we have to choose a policy for the initialization

phase so as to drive the system to the “best” πD. Similar argument

holds for the expected discounted cost problem.

VI. RELATION BETWEEN THE TWO INFINITE HORIZON

PROBLEMS

The average cost per unit time problem is related to the

expected discounted cost problem via a Tauberian theorem [14,

Theorem A.4.2].

Theorem 5: Let un be a sequence of non-negative terms. Let

U(β) �
∑∞

n=1 βn−1un, for 0 < β < 1, and Sn �
∑n

k=1 uk for

n ≥ 1. Then

lim inf
n→∞

Sn

n
≤ lim inf

β→1−

(1 − β)U(β) ≤

≤ lim sup
β→1−

(1 − β)U(β) ≤ lim sup
n→∞

Sn

n
. (54)

Further, the following statements are equivalent

(i) All terms in (54) are equal and finite.

(ii) limn→∞ Sn/n exists and is finite.

(iii) limβ→1(1 − β)U(β) exists and is finite.

This theorem implies that if condition (∗) given by

(∗) limβ→1(1 − β)Jβ,∗ exists and is finite.

holds, an optimal solution of expected discounted cost problem

with discount factor β close to 1 is also an optimal solution for

the average cost per unit time problem. Conditions sufficient for

(∗) to hold have been studied in the literature [15]. Consider the

expected discounted cost problem with discount factor β close

to 1. A unique uniformly bounded solution for this problem is

given by the unique fixed point of the contraction map given

by (39). There exist polynomial complexity algorithms to come

arbitrarily close (within an ε) to this fixed point (see [16]) and

obtain the corresponding ε-optimal stationary policy. If (∗) holds,

this ε-optimal policy for the expected discounted cost problem

is also ε-optimal for the average cost per unit time problem.

This provides an algorithm to obtain a solution of Problem 1

under conditions when (∗) holds. The conditions on ρ(·) that will

guarantee that (∗) holds need further investigation.

VII. SOME SPECIAL CASES

A. A fixed delay channel coding problem

Consider the channel coding problem of choosing an optimal

finite memory receiver for a given convolution encoder for i.i.d.

source outputs and given fixed delay D. There are various

techniques for decoding convolutional codes with fixed delay.

Typically, a sliding window of observations at the receiver

are assumed and most researchers have focused on obtaining

computationally efficient algorithms to determine the MAP bit

decoding rule. However, as far as the authors are aware, the

problem of optimally storing the observations has not been

considered. If the receiver has a memory |M| = k|Y|, is

it optimal to store the previous k channel observations? Can

the receiver somehow “compress” all the past observations in

k|Y| and get better performance? If so, how can such optimal

“compression” functions be found. This problem fits naturally

into the framework provided in this paper.

B. A finite delay source coding problem

Consider the source coding problem of choosing optimal finite-

delay limited memory encoding-decoding schemes for noiseless

channels for Markov sources. This problem fits naturally in

the framework provided in this paper and is a generalization

of the results in [5], [10]. Source coding theorists are also

interested in techniques for finite-delay limited memory encoding-

decoding schemes for individual sequences. The decision theoretic

methodology provided herein can be easily extended to non-

stochastic min-max problems and thus used to study source

coding of individual sequences.

VIII. CONCLUSION

We have presented a methodology for fixed delay optimal joint

source-channel coding or finite memory systems. We have also

identified an algorithm to obtain optimal designs.
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