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Abstract— A discrete time stochastic feedback control system
with a noisy communication channel between the sensor and
the controller is considered. The sensor has limited memory.
At each time, the sensor transmits encoded symbol over the
channel and updates its memory. The controller receives a noisy
version of the transmitted symbol, and generates a control
action based on all its past observations and actions. This
control action action is fed back into the system. At each stage
the system incurs an instantaneous cost depending on the state
of the plant and the control action. The objective is to choose
encoding, memory updating and control strategies to minimize
the expected total costs over a finite horizon, or the expected
discounted cost over an infinite horizon, or the expected average
cost per unit time over an infinite horizon. For each case we
obtain a sequential decomposition of the optimization problem.
The results are extended to the case when the sensor makes an
imperfect observation of the state of the system.

I. INTRODUCTION

Recent advances in network and communication technologies

have led to an increasing interest in networked control

systems (NCS) (see the papers in [1]), in particular, the

limitations imposed upon feedback control by the presence of

a communication channel in the loop. Most researchers have

concentrated on stability analysis of the system. The problem

of stabilization of a plant with finite data rate feedback was

investigated in [2–15]. LQG stability of deterministic and

stochastic systems under various communication constraints

(rate limited channels, noisy channels with input power

constraint, etc.) was considered in [16–22]. Performance

limitation in terms of lower bounds on the separation of

differential entropy rates was investigated in [23], [24]. How-

ever certain applications require performance metrics more

general than asymptotic metrics of stability and separation

of differential entropy. In this paper we consider the class

of additive performance metrics, where the total cost is the

sum of costs along the entire path.

In problems with asymptotic performance metrics, tran-

sient behavior need not be optimal, thus strong performance

bounds can be derived by using asymptotic results from

probability theory, information theory and classical control

theory. However, in problems with more general performance

metrics, transient behavior needs to be optimal. To the best of

our knowledge, performance analysis of such problems has

not been addressed in the literature. We identify algorithms

to obtain optimal strategies; but we have not been able to find

expressions for optimal performance or performance bounds.

The authors are with the Department of Electrical Engineering and
Computer Science at the University of Michigan, Ann Arbor, MI–48109-
2122, USA. (email:{adityam,teneket}@eecs.umich.edu)

We consider a discrete-time feedback control system with

a communication channel between the sensor and the con-

troller, shown in Figure 1. Such problems arise when the

plant and the controller are geographically separated. We

are interested in problems in which the sensor has limited

resources while the controller has no resource constraint;

we model the sensor as an encoder with finite memory,

the channel between the sensor and the controller as noisy,

and the channel between the controller and the system as

noiseless1. At each stage the system incurs an instantaneous

cost depending on the state of the plant and the control ac-

tion. The objective is to choose encoding, memory updating

and control strategies to minimize the expected total cost

over a finite horizon, or expected discounted cost over an

infinite horizon, or expected average cost per unit time over

an infinite horizon.

The key contribution of this paper is providing a method-

ology for determining jointly optimal real-time encoding,

memory updating and control strategies for feedback control

systems with limited communication over noisy channels.

The methodology applies to general non-linear stochastic

systems, with an arbitrary additive performance criteria.

The remainder of this paper is organized as follows.

We formulate the performance analysis of feedback control

systems with limited communication over noisy channels as

a decentralized stochastic optimization problem. To illustrate

the key concepts associated with our solution methodology

we first consider in Section II the finite horizon problem, for

which we establish structural results of optimal controller and

present a methodology for joint optimization of the encoding,

memory updating and control strategies. In Section III we

extend the methodology to infinite horizon problems. We

discuss computational issues for obtaining numerical solution

of the dynamic programming algorithms of finite and infi-

nite horizon problems in Section IV. The feedback control

problem when the encoder has imperfect observation of the

state of the plant is considered in Section V. We conclude

in Section VI.

Notation: We use uppercase letters (X, Y, Z) to

denote random variables and lowercase letters to de-

note their realizations (x, y, z). When we represent a

function of random variables as a random variable

(PXt,Mt
, PXt+1,Mt

, P+
Xt+1,Mt

), a tilde above the variable

denotes its realization (P̃Xt,Mt
, P̃Xt+1,Mt

, P̃+
Xt+1,Mt

). When

we use Greek letters to represent a random variable

1In the sequel we show that this assumption does not entail any loss of
generality.
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(πc, πl, πg), a tilde above the variable denotes its realization

(π̃c, π̃l, π̃g). We also use the short hand notation of xt to

present the sequence x1, . . . , xt and similar notation for

random variables and functions.

II. THE FINITE HORIZON PROBLEM

A. Problem Formulation

System Encoder

Memory ×

Controller

Xt

Mt−1

Zt

YtUt

Sensor

Nt

Fig. 1. Feedback control system with noisy communication

Consider a discrete time feedback control system as shown

in Figure 1 which operates for a horizon T . The state

evolution is given by

Xt+1 = f(Xt, Ut, Wt), (1)

where f is the system evolution function. The variables

Xt, Ut, Wt denote the state of the system, the control action

and the plant disturbance respectively, at time t. We assume

that all variables are discrete. For all t, Xt takes values in

X � {1, 2, . . . , |X |}, Ut takes values in U � {1, 2, . . . , |U|}
and Wt takes values in W � {1, 2, . . . , |W|}. The initial

state X1 is a random variable with PMF PX1
. The random

variables W1, . . . , WT are i.i.d. with PMF PW and are also

independent of X1.

The sensor, consisting of an encoder and a memory, makes

perfect observations of the state of the system. At each time

instant t, the encoder generates an encoded symbol Zt, taking

values in Z � {1, . . . , |Z|}, as follows

Zt = ct(Xt, Mt−1), (2)

where ct is the encoding function at time t and Mt−1 denotes

the content of the sensor’s memory at t−1. Mt takes values

in M � {1, . . . , |M|} and is updated according to

Mt = lt(Xt, Mt−1), (3)

where lt is the memory update function at time t. Observe

that the sensor has a finite size memory and though it makes

perfect observations of the state of the system, it can not

store all the past observations. Thus, it does not have perfect

recall and at each stage it must selectively shed information.

The encoded symbol Zt is transmitted over a noisy com-

munication channel and a channel output Yt is generated

according to

Yt = h(Zt, Nt), (4)

where h is the channel and Nt denotes the channel noise.

Yt takes values in Y � {1, . . . , |Y|} and Nt takes values

in N � {1, . . . , |N |}. The sequence of random variables

N1, . . . , NT is i.i.d. with given PMF PN . N1, . . . , NT are

also independent of X1, W1, . . . , WT .

The controller observes the channel outputs and generates

a control action Ut as follows

Ut = gt(Y
t, U t−1), (5)

where gt is the control law at time t. Ut takes values in U �

{1, . . . , |U|}. A uniformly bounded cost function ρ : X ×
U → [0, K], K < ∞ is given. At each t, an instantaneous

cost ρ(Xt, Ut) is incurred.

The collection (X ,W,M,Z,N ,Y,U , PX1
, PW , PN , f,

h, ρ, T ) is called a perfect observation system. The choice

of (c, l, g), c � (c1, . . . , cT ), l � (l1, . . . , lT ), g �

(g1, . . . , gT ), is called a design.

The performance of a design, quantified by the expected

total cost under that design, is given by

JT (c, l, g) � E

{
T∑

t=1

ρ(Xt, Ut)

∣∣∣∣∣ c, l, g

}
, (6)

where the expectation in (6) is with respect to a joint measure

on (X1, . . . , XT , U1, . . . , UT ) generated by PW , PN , f, h

and the choice of design (c, l, g). We are interested in the

following optimization problem:

Problem 1: Given a perfect observation system (X ,W,

M,Z,N ,Y,U , PX1
, PW , PN , f, h, ρ, T ), choose a design

(c∗, l∗, g∗) such that

JT (c∗, l∗, g∗) = J ∗
T � min

c,l,g∈C T ×L T ×G T

JT (c, l, g), (7)

where C T � C × · · · × C (T times), C is the space of

functions from X × M to Z , L T � L × · · · × L (T

times), L is the space of functions from X × M to M,

G T � G1 × · · · × GT , and Gt is the space of functions from

Yt × U t−1 to U .

a) Remark: There is no loss of generality in assuming

a noiseless feedback channel. Suppose there is noise in the

feedback channel, and the input to the system is Ût is a noisy

version of Ut given by

Ût = ĥ(Ut, N̂t) (8)

where ĥ is the feedback channel and N̂t denotes the noise in

the feedback channel. N̂1, . . . , N̂T is a sequence of indepen-

dent variables that is also independent of X1, W1 . . . , WT

and N1, . . . , NT . This model can be transformed into one

equivalent to (1)–(5) by setting

Ŵt = (Wt, N̂t), (9)

Xt+1 = f
(
Xt, h(Ut, N̂t), Wt

)
� f̂(Xt, Ut, Ŵt). (10)

Thus, without loss of generality we can assume a noiseless

feedback channel.

B. Salient Features of the Problem

Problem 1 is a decentralized multi-agent stochastic

optimization problem. The agents—the sensor and the

controller—share a common objective of minimizing the

expected total cost. They have access to different (and
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non-nested) information about underlying state of nature.

Furthermore, the actions taken by an agent at any instant

of time affects the observations of the other agent at future

time instants. Thus the problem is a sequential (in the sense

of [25]) dynamic team with strictly non-classical information

structure [26]. Dynamic teams are, in general, functional

optimization problems having a complex interdependence

among the decision rules [27]. This interdependence leads

to non-convex (in policy space) optimization problems that

are hard to solve (see [28] for an example). Identifying an

information state sufficient for performance evaluation [29],

[30] is a key step in obtaining a sequential decomposition

of such problems. To obtain a sequential decomposition

of Problem 1, we proceed as follows. First, we derive

structural properties of optimal controllers. Using these struc-

tural results we transform Problem 1 into an equivalent

optimization problem and identify information states for this

equivalent problem. This yields a sequential decomposition

for Problem 1 along with a dynamic programming algorithm

to obtain an optimal design.

C. Structural Results

In this section we present structural properties of optimal

controllers. For this purpose we define the following.

Definition 1: Let PXt,Mt
, PXt+1,Mt

and P+
Xt+1,Mt

be

random vectors defined as follows:

PXt,Mt
(x, m)

= Pr
(
Xt = x, Mt = m

∣∣ Y t, U t−1, ct, lt, gt−1
)
,(11)

PXt+1,Mt
(x, m)

= Pr
(
Xt+1 = x, Mt = m

∣∣ Y t, U t, ct, lt, gt
)
,(12)

P+
Xt+1,Mt

(x, m)

= Pr
(
Xt+1 = x, Mt = m

∣∣ Y t+1, U t, ct+1, lt, gt
)
.(13)

For any particular realization yt, ut−1 and arbitrary (but

fixed) choice of ct, lt and gt−1, the realization of PXt,Mt
,

denoted by P̃Xt,Mt
, is a PMF on (Xt, Mt). If (Y t, U t−1) is a

random vector and ct, lt, gt−1 are arbitrary (but fixed) func-

tions, then PXt,Mt
is a random vector belonging to PX×M,

the space of PMFs on X ×M. Similar interpretations hold

for PXt+1,Mt
and PXt+1,Mt

.

These beliefs given by Definition 1 are related as follows:

Lemma 1: For each stage t, there exists a deterministic

functions ψ, φ, and ν such that

PXt+1,Mt
= ψ(PXt,Mt

, Ut), (14)

P+
Xt+1,Mt

= φ(PXt+1,Mt
, ct+1), (15)

PXt+1,Mt+1
= ν(P+

Xt+1,Mt
, lt+1). (16)

Proof: Consider a component of P̃Xt+1,Mt
, given

by (14) at the top of the page.

Now consider

Pr
(
Xt+1 = x, Mt = m, Ut = ut

∣∣ yt, ut−1, ct, lt, gt
)

=
∑

xt∈X

Pr
(
Xt = xt, Mt = m

∣∣ yt, ut−1, ct, lt, gt
)

× Pr
(
Ut = ut

∣∣ yt, ut−1, ct, lt, gt, xt, Mt = m
)

× Pr
(
Xt+1 = x

∣∣ xt, Mt = m, yt, ut, ct, lt, gt
)

(a)
= Pr

(
ut

∣∣ yt, lt−1, gt

)

×
∑

xt∈X

[
Pr

(
Xt = xt, Mt = m

∣∣ yt, ut−1, ct, lt, gt−1
)

×Pr (Xt+1 = x |xt, ut)
]

= Pr
(
ut

∣∣ yt, lt−1, gt

)

×
∑

xt∈X

[
P̃Xt,Mt

(xt, m) Pr (Xt+1 = x |xt, ut)
]
,

(18)

where (a) follows from (1) and (5). Combine (14) and (18)

and cancel Pr
(
ut

∣∣ yt, lt−1, gt

)
from the numerator and the

denominator of (14), giving

P̃Xt+1,Mt
= ψ(P̃Xt,Mt

, ut), (19)

where ψ is given by (14) and (18).

Consider a component of P̃+
Xt+1,Mt

, given by (17) on the

top of the page.

Now consider,

Pr
(
Xt+1 = x, Mt = m, Yt+1 = yt+1

∣∣ yt, ut, ct+1, lt, gt
)

= Pr
(
Xt+1 = x, Mt = m

∣∣ yt, ut, ct+1, lt, gt
)

× Pr
(
Yt+1 = yt+1

∣∣ yt, ut, ct+1,

lt, gt, Xt+1 = x, Mt = m
)

(b)
= Pr

(
Xt+1 = x, Mt = m

∣∣ yt, ut, ct, lt, gt
)

× Pr (Yt+1 = yt+1 |Xt+1 = x, Mt = m, ct+1)

= P̃Xt+1,Mt
(x, m)

× Pr (Yt+1 = yt+1 |Xt+1 = x, Mt = m, ct+1),

(21)

where (b) follows from (2) and (4). Combining (17) and (21)

we have

P̃+
Xt+1,Mt

= φ(P̃Xt+1,Mt
, ct+1), (22)

where φ(·) is given by (17) and (21).
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P̃Xt+1,Mt
(x, m) =

Pr
(
Xt+1 = x, Mt = m, Ut = ut

∣∣ yt, ut−1, ct, lt, gt
)

∑
x′,m′∈X×M

Pr (Xt+1 = x′, Mt = m′, Ut = ut | yt, ut−1, ct, lt, gt)
. (14)

P̃+
Xt+1,Mt

(x, m) =
Pr

(
Xt+1 = x, Mt = m, Yt+1 = yt+1

∣∣ yt, ut, ct+1, lt, gt
)

∑
x′,m′∈X×M

Pr (Xt+1 = x′, Mt = m′, Yt+1 = yt+1 | yt, ut, ct+1, lt, gt)
. (17)

Consider a component of P̃Xt+1,Mt+1
,

P̃Xt+1,Mt+1
(x, m)

= Pr
(
Xt+1 = x, Mt+1 = m

∣∣ yt+1, ut, ct+1, lt+1, gt
)

=
∑

mt∈M

Pr
(
Xt+1 = x, Mt = mt

∣∣ yt+1, ut, ct+1, lt+1, gt
)

× Pr
(
Mt+1 = m

∣∣ Xt+1 = x, Mt = mt, y
t+1, ut,

ct+1, lt+1, gt
)

(c)
=

∑

mt∈M

Pr
(
Xt+1 = x, Mt = mt

∣∣ yt+1, ut, ct+1, lt, gt
)

× Pr (Mt+1 = m |Xt+1 = x, Mt = mt, lt+1)

×
∑

mt∈M

P̃Xt+1,Mt
(x, mt) 1 [ m = lt+1(x, mt) ]

� ν(P̃Xt+1,Mt
, lt+1),

(23)

where (c) follows from (3) and 1 [ · ] is the indicator

function.

The above relationships between the controller’s beliefs lead

to the structural results of the optimal controllers.

Theorem 1: Consider Problem 1 for any arbitrary (but

fixed) encoding and memory update strategies c and l,

respectively. Then, without loss of optimality, we can restrict

attention to control laws of the form

Ut = gt(PXt,Mt
). (24)

Proof: Equations (14)–(16) of Lemma 1 can be com-

bined to obtain

PXt+1,Mt+1
= ν

(
φ
(
ψ(PXt,Mt

, Ut), ct+1

)
, lt+1

)

� µ(PXt,Mt
, Ut, ct+1, lt+1).

(25)

Thus for any fixed c and l, PXt,Mt
is a controlled Markov

process with control action Ut. Further, the expected instan-

taneous cost can be written as

E
{

ρ(Xt, Ut)
∣∣ yt, ut, ct, lt, gt

}

=
∑

xt,mt∈X×M

ρ(xt, ut)PXt,Mt
(xt, mt)

� ρ̂(P̃Xt,Mt
, ut).

(26)

There is a subtle technicality in the first step of (26). See [31]

for details. Hence we have a perfectly observed stochastic

process {PXt,Mt
, t = 1, . . . , T} with control action Ut

and instantaneous cost ρ̂(PXt,Mt
, Ut). From Markov decision

theory [30] we know that there is no loss of optimality in

restricting attention to control laws of the form (24).

1) Implication of the structural results: Theorem 1 im-

plies that at each stage t, without loss of optimality, we

can restrict attention to controllers belonging to the family

Gs of functions from PX×M to U . Thus at each stage we

can optimize over a fixed (rather than time-varying) domain.

Thus Problem 1 is equivalent to the following problem:

Problem 2: Given a perfect observation system (X ,W,

M,Z,N ,Y,U , PX1
, PW , PN , f, h, ρ, T ), choose a design

(c∗, l∗, g∗) that is optimal with respect to the performance

criterion of (6), i.e.,

JT (c∗, l∗, g∗) = J ∗
T � min

c,l,g∈C T ×L T ×G T
s

JT (c, l, g), (27)

where G T
s � Gs × · · · × Gs (T times).

Thus we have an optimization problem in which the action

space is not changing with time. In the next section we

provide a sequential decomposition of Problem 2.

D. Joint Optimization

In this section, we identify information states sufficient

for performance evaluation of Problem 2, resulting in its

sequential decomposition. Problem 2 is equivalent to Prob-

lem 1, hence we also obtain a sequential decomposition

of Problem 1. The intuition behind our approach is as

follows. As mentioned in Section II-B, the agents act in a

sequential manner. Let πc
t , π

l
t, π

g
t be the information states

of the encoder, memory update and controller respectively.

For these to be valid states, they must satisfy the property

· · · → πc
t

ct−→ πl
t

lt−→ π
g
t

gt

−→ πc
t+1 → · · · ,

that is, at each time instant t, πl
t can be determined from πc

t

and ct, π
g
t can be determined from πl

t and lt, and πc
t+1 can be

determined from π
g
t and gt. This ensures that πc

t , π
l
t, π

g
t are

information states in the sense of [30]. However, a system

can have more than one information state, and not all of them

are sufficient for performance evaluation (see [29]). To be

sufficient for performance evaluation, the information states

must absorb/summarize the effect of past decision rules on
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the expected future cost, that is,

E

{
T∑

s=t

ρ(Xs, Us)

∣∣∣∣∣ c, l, g

}

= E

{
T∑

s=t

ρ(Xs, Us)

∣∣∣∣∣ πc
t , c

T
t , ltt, g

T
t

}

= E

{
T∑

s=1

ρ(Xs, Us)

∣∣∣∣∣ πl
t, c

T
t+1, l

t
t, g

T
t

}

= E

{
T∑

s=t

ρ(Xs, Us)

∣∣∣∣∣ π
g
t , cT

t+1, l
t
t+1, g

T
t

}

(28)

Furthermore, to extend the results of the finite horizon

problem to infinite horizon problems, we want the domain

of information states to be time-invariant.

The following information states satisfy the above require-

ments.

Definition 2: Let Π be the space of probability measure

on X × M × PX×M. Define πc
t , π

l
t, π

g
t , t = 1, . . . , T , as

follows:

1) πc
t = Pr(Xt, Mt−1, PXt,Mt−1

).
2) πl

t = Pr(Xt, Mt−1, P
+
Xt,Mt−1

).

3) π
g
t = Pr(Xt, Mt, PXt,Mt

).
The unconditional PMFs πc

t , π
l
t, π

g
t defined above are in-

formation states sufficient for performance evaluation of

Problem 2. Specifically, they satisfy the following properties:

Lemma 2: πc
t , π

l
t, π

g
t are information states for the en-

coder, the memory update and the controller respectively,

i.e.,

1) there exist linear transformations Qc(ct), Ql(lt), and

Qg(gt) such that

πl
t = Qc(ct)π

c
t , (29)

π
g
t = Ql(lt)π

l
t, (30)

πc
t+1 = Qg(gt)π

g
t . (31)

2) the conditional expected instantaneous cost can be

expressed as

E
{

ρ(Xt, Ut)
∣∣ ct, lt, gt

}
= ρ̃(πg

t , gt), (32)

where ρ̃ is a deterministic function.

Proof: This follows from Lemma 1 and Definition 2.

See [31] for details.

Using this result the performance criterion of (6) can be

rewritten as

E

{
T∑

t=1

ρ(Xt, Ut)

∣∣∣∣∣ c, l, g

}
=

T∑

t=1

E
{

ρ(Xt, Ut)
∣∣ ct, lt, gt

}

�

T∑

t=1

ρ̃(πg
t , gt), (33)

where the sequence {πg
1 , . . . , π

g
T } depends on the choice of

(c, l, g). Hence, Problem 2 is equivalent to the following

deterministic problem:

Problem 3: Consider a deterministic system with states

πc
t , π

l
t, π

g
t . The initial state πc

1 is known and the t ≥ 1, the

system evolves as follows,

πl
t = Qc(ct)π

c
t , (34)

π
g
t = Ql(lt)π

l
t, (35)

πc
t+1 = Qg(gt)π

g
t , (36)

where ct, lt, gt belong to C , L , Gs respectively and

Qc, Ql, Qg are known linear transformations. At time t, an

instantaneous cost ρ̃(πg
t , gt) is incurred.

The optimization problem is to determine design (c, l, g),
where c � (c1, . . . , cT ), l � (l1, . . . , lT ), and g �

(g1, . . . , gT ), to minimize the total cost over horizon T , i.e.,

min
(c,l,g)∈C T ×L T ×G T

s

T∑

t=1

ρ̃(πg
t , gt) (37)

This is a classical deterministic optimal control problem;

optimal functions (c∗, l∗, g∗) are determined as follows:

Theorem 2: An optimal design (c∗, l∗, g∗) for Problem 3

(and consequently for Problem 2 and thereby for Problem 1)

is given the following nested optimality equations:

V
g
T (πg) = inf

gT ∈Gs

ρ̃(πg, gT ) (38)

and for t = 1, . . . , T

V c
t (πc) = min

cl∈C

V l
t

(
Qc(ct)π

c
)
, (39)

V l
t (πl) = min

ll∈L

V
g
t

(
Ql(lt)π

l
)
, (40)

V
g
t (πg) = inf

gt∈Gs

ρ̃(πg, gt) + V c
t+1

(
Qg(gt)π

g
)
. (41)

The arg min (or arg inf) at each step determines the cor-

responding optimal design for that stage. Furthermore, the

optimal performance is given by

J ∗
T = V c

1 (πc
1). (42)

Proof: This is a standard result, see [30, Chapter 2].

III. INFINITE HORIZON PROBLEM

In this section we extend the model of Section II-A to an

infinite horizon (T → ∞) using two performance criteria:

1) Expected Discounted Cost where the performance of a

design is determined by

J β(c, l, g) = E

{
∞∑

t=1

βt−1ρ(Xt, Ut)

∣∣∣∣∣ c, l, g

}
,

(43)

where 0 < β < 1 is called the discount factor.

2) Average Cost per unit time where the performance of

a design is determined by

J (c, l, g) = lim sup
T→∞

1

T
E

{
T∑

t=1

ρ(Xt, Ut)

∣∣∣∣∣ c, l, g

}
.

(44)

We take the lim sup rather than lim as for some designs

(c, l, g) the limit may not exist.
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Ideally, while implementing a design for infinite horizon

problems, we would like to use time-invariant designs. This

motivates the following definition.

Definition 3: A design (c, l, g), c � (c1, c2, . . . ), l �

(l1, l2, . . . ), g � (g1, g2, . . . ) is called stationary (or time-

invariant) if c1 = c2 = · · · = c, l1 = l2 = · · · = l, g1 = g2 =
· · · = g.

Due to the dynamic team nature of the problem, it is

not immediately clear whether there exist stationary designs

that are optimal (or ε-optimal). In this section we show that

for the expected discounted cost problem, without loss of

optimality, there exist stationary design that are optimal;

for the average cost per unit time problem, under certain

conditions, there exist stationary designs that are ε-optimal.

A. Expected Discounted Cost Problem

Consider the infinite horizon problem with expected dis-

counted cost criterion given by (43). For this problem the

relations of Lemma 1 hold, hence the structural result of

Theorem 1 is valid, and we can restrict attention to en-

coders belonging to Gs. Define πc
t , π

l
t, π

g
t as in Definition 2.

Lemma 2 can be proved as before. The transformations

Qc, Ql, Qg and the expected instantaneous cost ρ̃ are the

same as in the finite horizon case. Hence, the infinite horizon

problem with the expected discounted cost criterion given

by (43) is equivalent to Problem 3 with the optimization

criterion given by

J β(c, l, g) � E

{
∞∑

t=1

βt−1ρ(πg
t , gt)

∣∣∣∣∣ c, l, g

}
. (45)

For this problem we have the following result:

Theorem 3: For the infinite horizon expected discounted

cost problem with the performance criterion given by (43),

without loss of optimality, one can restrict attention to sta-

tionary designs. Specifically, for any optimal design (c′, l′, g′)

there exists a stationary design (c∞0 , l∞0 , g∞0 ), c∞0 �

(c0, c0, . . . ), l∞0 � (l0, l0, . . . ), and g∞0 � (g0, g0, . . . ), such

that

V (πc
1) = J β(c∞0 , l∞0 , g∞0 ) = J β(c′, l′, g′), (46)

where V is the unique uniformly bounded fixed point of

V (π) = min
(c,l,g)∈C×L×Gs

ρ̃
(
Q̂(c, l)π, g

)
+βV

(
Q̃(c, l, g)(π)

)
,

(47)

with

Q̂(c, l) � Ql(l) ◦ Qc(c), (48)

Q̃(c, l, g) � Qg(g) ◦ Ql(l) ◦ Qc(c), (49)

and (c0, l0, g0) satisfy

V (π) = ρ̃
(
Q̂(c0, l0)π, g0

)
+ βV

(
Q̃(c0, l0, g0)(π)

)
. (50)

Proof: See [31].

B. Average Cost per unit time Problem

Consider the infinite horizon problem with average cost

per unit time criterion given by (44). For this problem the

relations of Lemma 1 hold, hence the structural result of

Theorem 1 is valid, and we can restrict attention to en-

coders belonging to Gs. Define πc
t , π

l
t, π

g
t as in Definition 2.

Lemma 2 can be proved as before. The transformations

Qc, Ql, Qg and the expected instantaneous cost ρ̃ are the

same as in the finite horizon case. Hence, the infinite horizon

expected discounted cost problem is equivalent to Problem 3

with the optimization criterion given by

J (c, l, g) � lim sup
T→∞

1

T
E

{
T∑

t=1

ρ(πg
t , gt)

∣∣∣∣∣ c, l, g

}
. (51)

For this problem we have the following result:

Theorem 4: For the infinite horizon average cost per unit

time problem with the performance criterion given by (51),

assume

(A1) for any ε > 0 there exist bounded measurable

functions v(·) and r(·) and design (c0, l0, g0) ∈ C ×L ×Gs

such that for all π,

v(π) = min
c,l,g∈C×L×Gs

v
(
Q̃(c, l, g)π

)

= v
(
Q̃(c0, l0, g0)π

)
,

(52)

and

min
c,l,g∈C×L×Gs

ρ̃
(
Q̂(c, l)π, g

)
+ r

(
Q̃(c, l, g)π

)
≤

≤ v(π) + r(π) ≤ ρ̃
(
Q̂(c0, l0)π, g0

)
+ r

(
Q̃(c0, l0, g0)π

)
+ ε.

(53)

Then for any horizon T and any design (c′, l′, g′) for

that horizon, the stationary design (c∞0 , l∞0 , g∞0 ), c∞0 =
(c0, c0, . . . ), l∞0 = (l0, l0, . . . ), g∞0 = (g0, g0, . . . ), satisfies

JT (cT
0 , lT0 , gT

0 ) = r(πc
1)+Tv(πc

1) ≤ JT (c′, l′, g′)+ε, (54)

where αT = (α, . . . , α) (T times) for α = c0, l0, g0. Further

under (A1), (54) is equivalent to

J (c∞0 , l∞0 , g∞0 ) = v(πc
1) ≤ J (c′′, l′′, g′′), (55)

where (c′′, l′′, g′′) is any infinite horizon policy and

J (c′′, l′′, g′′) = lim inf
T→∞

1

T

T∑

t=1

ρ̃
(
Q̃(c′′t , l′′t )πt, g

′′
t

)
. (56)

Proof: See [31].

C. Implication of the Result

We have shown that there exist optimal stationary designs

for the infinite horizon expected discounted cost problem

and, under certain conditions, ε-optimal stationary designs

for the infinite horizon average cost per unit time problem.

This simplifies the off-line optimization problem since we

have to choose the best amongst C × L × Gs stationary

strategies, rather than to choose the best amongst C∞ ×
L ∞ × G ∞

s time-varying strategies. Further, implementing

stationary strategies involves implementing one function at

each agent which is much simpler than implementing a time-

varying strategy.
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IV. COMPUTATIONAL ISSUES

The dynamic program of Theorem 2 for joint optimization

of encoding, memory updating and control strategies is

similar to a dynamic program for partially observed Markov

decision problems (POMDP) with uncountable state space and

uncountable action space. The information state πc
t belongs

to Π, the space of probability measures on X×M×PX×M,

which is a subset of probability measures on R
d, with

d = |X | × |M| + 1. The action spaces F and L are

finite while the action space GS is uncountable. Therefore,

in the dynamic program of Theorem 2, the information

state belongs to the space of probability measures on a

finite dimensional Euclidean space and an uncountable state

space. The standard computational techniques for solving

such POMDPs can be used to obtain numerical results.

It is the off-line computation of an optimal design that

has exponential complexity. The on-line implementation is

simple as we need to implement a stationary design.

V. SENSORS WITH IMPERFECT OBSERVATIONS

So far we have assumed that the sensor perfectly observes

the state of the system. However in many practical systems,

the sensor observations are noisy due to external disturbances

and the intrinsic noise in the measurement hardware. In

this section we model this scenario and show that noisy

observations by the sensor do not alter the nature of the

problem. We first consider the finite horizon case.

A. Problem Formulation

System Encoder

Memory

×

×

Controller

Xt St

Mt−1

Zt

YtUt

Sensor

Nt

N̂t

Fig. 2. Feedback control system with noisy communication and imperfect
observations.

Consider a discrete time imperfect observation system as

shown in Figure 2 which operates for T time steps. The state

of the system Xt evolves according to (1). The observations

St made by the observer at time t are noisy version of the

state of the system and are given by

St = ĥ(Xt, N̂t), (57)

where N̂t denotes the observation noise and ĥ is the obser-

vation channel. St takes values in S � {1, . . . , |S|} and N̂t

takes values in N̂ � {1, . . . , |N̂ |}. The sequence of random

variables N̂1, . . . , N̂T are i.i.d. with PMF P
N̂

. N̂1, . . . , N̂T

is also independent of X1, W1, . . . , WT , N1, . . . , NT .

The sensor is modeled as in Section II-A and operates as

follows

Zt = ct(St, Mt−1), (58)

Mt = lt(St, Mt−1). (59)

All other components of the system (the channel, the

controller and the performance measure) are modeled as

in Section II-A. The collection of (X ,W, N̂ ,S,M,Z,N ,

Y,U , PX1
, PW , P

N̂
, PN , f, µ, h, ρ, T ) is called an imperfect

observation system. The choice of (c, l, g), c � (c1, . . . , cT ),
l � (l1, . . . , lT ), g � (g1, . . . , gT ), is called a design. The

performance of a design, quantified by the expected total cost

under that design, is given by (6). We are interested in the

following optimization problem:

Problem 4: Given an imperfect observation system (X ,

W, N̂ ,S,M,Z,N ,Y,U , PX1
, PW , P

N̂
, PN , f, µ, h, ρ, T ),

choose a design (c∗, l∗, g∗) such that

JT (c∗, l∗, g∗) = J ∗
T � min

c,l,g∈C T ×L T ×G T

JT (c, l, g), (60)

where C T � C × · · · × C (T times), C is the space of

functions from S × M to Z , L T � L × · · · × L (T

times), L is the space of functions from S × M to M,

G T � G1 × · · · × GT , and Gt is the space of functions from

Yt × U t−1 to U .

Although in Problem 4 the encoder does not know the

state of the plant, the problem is conceptually same as

Problem 1 and the solution methodology of Problem 1 works

for Problem 4 with very minor changes.

B. Structural Results

In this section we present structural properties of optimal

controllers. For this purpose define the following:

Definition 4: Let PXt,Mt
and PXt+1,Mt

be defined as in

Definition 2. Define PXt+1,St,Mt
as follows:

PXt+1,St,Mt
(x, s, m)

= Pr
(
Xt+1 = x, St = s, Mt = m

∣∣ Y t, U t, ct+1, lt
)
.

These beliefs are related as follows:

Lemma 3: For each stage t, there exists a deterministic

functions ψ, φ̂, and ν̂ such that

PXt+1,Mt
= ψ(PXt,Mt

, Ut), (61)

PXt+1,St,Mt
= φ̂(PXt+1,Mt

, ct+1), (62)

PXt+1,Mt+1
= ν̂(PXt+1,St,Mt

, lt+1). (63)

Proof: This can be proved along the same lines as the

proof of Lemma 1.

Using the above relationship it can be shown that the

structural result of Theorem 1 also hold for Problem 4.

Thus, without loss of optimality, we can restrict attention to

controllers of the form (24). These structural results imply

that we can formulate a problem equivalent to Problem 4

with a time invariant action space.
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C. Joint Optimization

We follow the philosophy of Section II-D and use the

structural results of previous section to obtain a sequential

decomposition for Problem 4.

Definition 5: Let πc
t , π

l
t, π

g
t , t = 1, . . . , T be defined as

follows:

1) πc
t = Pr

(
Xt, Mt−1, PXt,Mt−1

)
.

2) πl
t = Pr

(
Xt, Mt−1, PXt,St−1,Mt−1

)
.

3) π
g
t = Pr (Xt, Mt, PXt,Mt

).
Lemma 2 holds for πc

t , π
l
t, π

g
t defined above. Thus, the

above unconditional PMFs are information states sufficient

for performance evaluation of Problem 4. This can be shown

along the same lines as the proof of Lemma 2. Hence,

Problem 4 is equivalent to a deterministic problem similar to

Problem 3 with the transformations Qc, Ql, Qg appropriately

defined. The solution of this deterministic problem is given

by nested optimality equations similar to Theorem 2. Hence,

we obtain a sequential decomposition of Problem 4. Similar

results extend to infinite horizon problems using the ideas of

Section III.

VI. CONCLUSION

We have presented a methodology for determining jointly

optimal encoding and control strategies for feedback control

systems with limited communication over noisy channel. The

methodology is applicable to finite horizon problems with

expected total cost criterion, to infinite horizon problem with

expected discounted cost criterion, and to infinite horizon

problem with average cost per unit time criterion. We ex-

tend this methodology to problem where the encoder/sensor

makes imperfect observations of the state of the system.

The resulting optimality equations can be viewed as POMDPs

where the state space is a real valued vector and the action

space is uncountable. Hence traditional method for solving

such POMDPs can be used to obtain a solution for feedback

control problems with communication constraints.

The methodology presented here can be used to obtain a

sequential decomposition of general dynamic team problems

with non-classical information structures.
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