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Alpha Go
Arcade gamesRobotics

Many successes of RL in recent years
Algorithms based on comprehensive theory
restricted almost exclusively to systems
with perfect state observations.

Applications with partially observed state
Healthcare
Autonomous driving
Finance (portfolio management)
Retail and marketing

Develop a comprehensive theory of approximate DP
and RL for partially observed systems



Notion of information state
for partially observed systems
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Controlled input: Ut

Stochastic input: Wt

Output: Yt

Yt = ft(U1:t,W1:t).

STOCHASTIC INPUT IS NOT OBSERVED

Let Ht = (Y1:t−1, U1:t−1) denote the history
of inputs and OUTPUTS until time t.

TRADITIONAL SOLUTION: BELIEF STATES

Step 1 Identify a state {St}t≥0 for predicting output assuming that
the stochastic inputs are observed.

Step 2 Define a BELIEF STATE Bt ∈ Δ(𝒮):
Bt(s) = ℙ(St = s | Ht = ht), s ∈ 𝒮.

Notion of state in partially observed stochastic dynamical systems

Astrom, “Optimal control of Markov decision processes with incomplete state information,” 1965. Striebel, “Sufficient statistics in the optimal control of

stochastic systems,” 1965. Baum and Petrie, “Statistical inference for probabilistic functions of finite state Markov chains,” 1966.
Stratonovich, “Conditional Markov processes,” 1960.
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Value function is piecewise linear and convex.

Is exploited by various efficient algorithms.

Partially observed Markov decision processes (POMDPs):
Pros and Cons of belief state representation

Smallwood and Sondik, “The optimal control of partially observable Markov process over a finite horizon,” 1973.
Chen, “Algorithms for partially observable Markov decision processes,” 1988.
Kaelbling, Littmam, Cassandra, “Planning and acting in partially observable stochastic domains,” 1998.
Pineau, Gordon, Thrun, “Point-based value iteration: an anytime algorithm for POMDPs,” 2003.
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Value function is piecewise linear and convex.

Is exploited by various efficient algorithms.

When the state space model is not known
analytically (as is the case for black-box
models and simulators as well as some
real world application such as healthcare),
belief states are difficult to construct and
difficult to approximate from data.

Partially observed Markov decision processes (POMDPs):
Pros and Cons of belief state representation

Smallwood and Sondik, “The optimal control of partially observable Markov process over a finite horizon,” 1973.
Chen, “Algorithms for partially observable Markov decision processes,” 1988.
Kaelbling, Littmam, Cassandra, “Planning and acting in partially observable stochastic domains,” 1998.
Pineau, Gordon, Thrun, “Point-based value iteration: an anytime algorithm for POMDPs,” 2003.



Is there another ways to model
partially observed systems which is
more amenable to approximations?

Let’s go back to first principles.



Approx. info. state–(Subramanian and Mahajan)
4

Stochastic
System

Controlled input: Ut

Stochastic input: Wt

Output: Yt

Yt = ft(U1:t,W1:t).

WHEN THE STOCHASTIC INPUT IS NOT OBSERVED

Let Ht = (Y1:t−1, U1:t−1) denote the history
of inputs and OUTPUTS until time t.

Notion of state in partially observed stochastic dynamical systems



Approx. info. state–(Subramanian and Mahajan)
4

Stochastic
System

Controlled input: Ut

Stochastic input: Wt

Output: Yt

Yt = ft(U1:t,W1:t).

WHEN THE STOCHASTIC INPUT IS NOT OBSERVED

Let Ht = (Y1:t−1, U1:t−1) denote the history
of inputs and OUTPUTS until time t.

PREDICTING OUTPUTS ALMOST SURELY

H(1)
t ∼ H(2)

t if for all future inputs (Ut:T,Wt:T),
Y(1)t:T = Y

(2)
t:T , a.s.

Notion of state in partially observed stochastic dynamical systems



Approx. info. state–(Subramanian and Mahajan)
4

Stochastic
System

Controlled input: Ut

Stochastic input: Wt

Output: Yt

Yt = ft(U1:t,W1:t).

WHEN THE STOCHASTIC INPUT IS NOT OBSERVED

Let Ht = (Y1:t−1, U1:t−1) denote the history
of inputs and OUTPUTS until time t.

PREDICTING OUTPUTS ALMOST SURELY

H(1)
t ∼ H(2)

t if for all future inputs (Ut:T,Wt:T),
Y(1)t:T = Y

(2)
t:T , a.s.

FORECASTING OUTPUTS IN DISTRIBUTION

H(1)
t ∼ H(2)

t if for all future CONTROL inputs Ut:T,

ℙ(Y(1)t:T | H
(1)
t , Ut:T) = ℙ(Y(2)t:T | H

(2)
t , Ut:T)

Notion of state in partially observed stochastic dynamical systems

Grassberger, “Complexity and forecasting in dynamical systems,” 1988.
Cruthfield and Young, “Inferring statistical complexity,” 1989.



Approx. info. state–(Subramanian and Mahajan)
4

Stochastic
System

Controlled input: Ut

Stochastic input: Wt

Output: Yt

Yt = ft(U1:t,W1:t).

WHEN THE STOCHASTIC INPUT IS NOT OBSERVED

Let Ht = (Y1:t−1, U1:t−1) denote the history
of inputs and OUTPUTS until time t.

PREDICTING OUTPUTS ALMOST SURELY

H(1)
t ∼ H(2)

t if for all future inputs (Ut:T,Wt:T),
Y(1)t:T = Y

(2)
t:T , a.s.

FORECASTING OUTPUTS IN DISTRIBUTION

H(1)
t ∼ H(2)

t if for all future CONTROL inputs Ut:T,

ℙ(Y(1)t:T | H
(1)
t , Ut:T) = ℙ(Y(2)t:T | H

(2)
t , Ut:T)

Too restrictive . . .

Notion of state in partially observed stochastic dynamical systems

Grassberger, “Complexity and forecasting in dynamical systems,” 1988.
Cruthfield and Young, “Inferring statistical complexity,” 1989.
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PROPERTIES OF INFORMATION STATE

The info state Zt at time t is a “compression”
of past inputs that satisfies the following:

SUFFICIENTTO PREDICT ITSELF:

ℙ(Zt+1 | Ht, Ut) = ℙ(Zt+1 | Zt, Ut).

SUFFICIENTTO PREDICT OUTPUT:

ℙ(Yt | Ht, Ut) = ℙ(Yt | Zt, Ut).

Same complexity as identifying the state
sufficient for forecasting outputs for the
case of perfect observations (which was
Step 1 for belief state formulations)

KEY QUESTIONS

Can this be used for dynamic
programming?

What is the right notion of approx-
imations in this framework?

Now let’s consturct the state space



An information state for dynamic programming
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Stochastic
System

Controlled input: Ut

Stochastic input: Wt

Output: Yt

Reward: 𝐑𝐭

Yt = ft(U1:t,W1:t),

Rt = rt(U1:t,W1:t).

Choose Ut = gt(Y1:t−1, U1:t−1) to

max𝔼
[

T

∑
t=1

Rt]

Predicting output vs optimizing expected rewards over time
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PROPERTIES OF INFORMATION STATE

(SUFFICIENT FOR DYNAMIC PROGRAMMING)

The info state Zt at time t is a “compression”
of past inputs that satisfies the following:

SUFFICIENTTO PREDICT ITSELF:

ℙ(Zt+1 | Ht, Ut) = ℙ(Zt+1 | Zt, Ut).

SUFFICIENTTO ESTIMATE EXPECTED REWARD:

𝔼[Rt | Ht, Ut] = 𝔼[Rt | Zt, Ut].

PRELIMINARY THEOREM

If {Zt}t≥1 is any information state process. Then:
There is no loss of optimality in restricting attention
to policies of the form

Ut = g̃t(Zt).

Let {Vt}T+1
t=1 denote the solution to the following

dynamic program: VT+1(zT+1) = 0
and for t ∈ {T , . . . , 1},

Qt(zt, ut) = 𝔼[Rt + Vt+1(Zt+1) | Zt = zt, Ut = ut],

Vt(zt) = max
ut∈𝒰

Qt(zt, ut).

A policy {g̃t}Tt=1, g̃t∶ 𝒵t → 𝒰, is optimal if it satisfies
g̃t(zt) ∈ arg max

ut∈𝒰
Qt(zt, ut).

Dynamic programming using information state

Bohlin (1970) David and Varaiya (1972) Kumar and Varaiya (1984).



What about approximations?



Approx. info. state–(Subramanian and Mahajan)
8

INTEGRAL PROBABILITY METRIC (IPM)

Let 𝒫 denote the set of probability measures
on a measurable space (𝒳,𝔊).

Given a class 𝔉 of real-valued bounded
measureable functions on (𝒳,𝔊), the integral
probability metric (IPM) between two
probability distributions μ, ν ∈ 𝒫 is given by:

d𝔉(μ, ν) = sup
f∈𝔉 |∫𝒳

fdμ − ∫𝒳
fdν

|
.

Preliminary: A family of pseudometrics on probability distributions

Müller, “Integral probability metrics and their generating classes of functions,” 1997.
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INTEGRAL PROBABILITY METRIC (IPM)

Let 𝒫 denote the set of probability measures
on a measurable space (𝒳,𝔊).

Given a class 𝔉 of real-valued bounded
measureable functions on (𝒳,𝔊), the integral
probability metric (IPM) between two
probability distributions μ, ν ∈ 𝒫 is given by:

d𝔉(μ, ν) = sup
f∈𝔉 |∫𝒳

fdμ − ∫𝒳
fdν

|
.

EXAMPLES

If 𝔉 = {f : ‖f‖∞ ≤ 1},
d𝔉 = Total variation distance.

If 𝔉 = {f : |f|L ≤ 1},
d𝔉 =Wasserstein distance.

If 𝔉 = {f : ‖f‖∞ + |f|L ≤ 1},
d𝔉 = Dudley metric.

. . .
We say a function f has a 𝔉-constant K
if f/K ∈ 𝔉.

Preliminary: A family of pseudometrics on probability distributions

Müller, “Integral probability metrics and their generating classes of functions,” 1997.
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(ε, δ)-APPROXIMATE INFORMATION STATE (AIS)

Given a function class 𝔉, a compression {Zt}t≥1 of history (i.e., Zt = φt(Ht))
is called an {(εt, δt)}t≥1 AIS if there exist:

a function R̃t(Zt, Ut), and a stochastic kernel νt(Zt+1|Zt, Ut)

such that

|𝔼[Rt|Ht = ht, Ut = ut] − R̃t(φt(ht), ut)| ≤ εt

For any Borel set A of 𝒵t, define
μt(A) = ℙ(Zt+1 ∈ A | Ht = ht, Ut = ut)

Then,
d𝔉(μt, νt(⋅ |φt(ht), ut)) ≤ δt.

Approximate information state
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MAIN THEOREM

Given a function class 𝔉, let {Zt}t≥1, where
Zt = φt(Ht), be an {(εt, δt)}t≥1 AIS.

Recursively define the following functions:

V̂T+1(zT+1) = 0
and for t ∈ {T , . . . , 1}:
V̂t(zt) = max

ut∈𝒰{R̃t(zt, ut)

+ ∫Vt+1(zt+1)νt(dzt+1 | zt, ut)}.

Let π = (π1, . . . , πT) denote the corresponding
policy.

Approximate dynamic programming using AIS
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Given a function class 𝔉, let {Zt}t≥1, where
Zt = φt(Ht), be an {(εt, δt)}t≥1 AIS.

Recursively define the following functions:

V̂T+1(zT+1) = 0
and for t ∈ {T , . . . , 1}:
V̂t(zt) = max

ut∈𝒰{R̃t(zt, ut)

+ ∫Vt+1(zt+1)νt(dzt+1 | zt, ut)}.

Let π = (π1, . . . , πT) denote the corresponding
policy.

Then, if the value function V̂t has 𝔉-constant
Kt, then

for any history ht,

|Vt(ht) − V̂t(φt(ht))|

≤ εT +
T

∑
s=t
(εs + Ksδs).

for any history ht,

|Vt(ht) − Vπ
t (ht)|

≤ 2[εT +
T

∑
s=t
(εs + Ksδs)].

Approximate dynamic programming using AIS
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In the definition of AIS, we can replace
d𝔉(ℙ(μt, νt(⋅|Zt = φt(ht),Ut = ut)) ≤ δt

by
Zt+1 = function(Zt, Yt+1, Ut)
d𝔉(ℙ(Yt|Ht = ht, Ut = ut),ℙ(Yt|Zt = φt(ht),Ut = ut)) ≤ δt.

AIS: Some remarks
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In the definition of AIS, we can replace
d𝔉(ℙ(μt, νt(⋅|Zt = φt(ht),Ut = ut)) ≤ δt

by
Zt+1 = function(Zt, Yt+1, Ut)
d𝔉(ℙ(Yt|Ht = ht, Ut = ut),ℙ(Yt|Zt = φt(ht),Ut = ut)) ≤ δt.

The AIS process {Zt}t≥1 need not be Markov !!

Two ways to interpret the results:
Given the information state space 𝒵, find the best compression φt∶ ℋt → 𝒵
Given any compression function φt∶ ℋt → 𝒵t, find the approximation error.

Results naturally extend to infinite horizon

AIS: Some remarks



Some examples
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Consider an MDP with state space 𝒳 and per-step reward Rt = r(Xt, Ut).

Suppose 𝒳 is quantized to a discrete set 𝒵 using φ∶𝒳 → 𝒵.

Let z = φ(x) denote the label for x.
Then φ−1(z) denote all states which have label z.

Example 1: Error bounds on state aggregation
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Consider an MDP with state space 𝒳 and per-step reward Rt = r(Xt, Ut).

Suppose 𝒳 is quantized to a discrete set 𝒵 using φ∶𝒳 → 𝒵.

Let z = φ(x) denote the label for x.
Then φ−1(z) denote all states which have label z.

{Zt}t≥1 IS AN (ε, δ) AIS

ε = sup
(x,u)∈𝒳×𝒰

|r(x, u) − r(φ(x), u)| or, equivalently, r(⋅, u) has a 𝔉-cosntant Kr

δ = sup
(x,u)∈𝒳×𝒰

d𝔉(ℙ(X+ | X = x,U = u),ℙ(X+ | X ∈ φ−1(φ(x)),U = u)).

or, equivalently, ℙ(X+|X = ⋅,U = u) has a 𝔉-constant of Kd.

Example 1: Error bounds on state aggregation

Bertsekas, “Convergence of discretization procedures in dynamic programming,” 1975.
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Example 2: Approximation bounds for using quantized obs.

Ha, Schmidhuber, “World Models”, 2018.

Video observation

VisionVision

Memory
RL agent

Yt

Ŷt

Zt
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{Zt}t≥1 IS AN (ε, δ) AIS

ε = sup
ht,ut

|𝔼[Rt|ht, ut] − R̃t(φt(ht), ut)|

δ = sup
ht,ut

d𝔉(ℙ(Ŷt+1|ht, ut),ℙ(Ŷt+1|φt(ht), ut))

Example 2: Approximation bounds for using quantized obs.

Ha, Schmidhuber, “World Models”, 2018.
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n agents: state Xi
t, control Ui

t. Empirical mean-field:

Mt(x) =
1
n

n

∑
i=1

δXi
t
(x).

Statistical mean-field:

m̄t(x) = ℙ(Xi
t = x).

Example 3: Approximation bounds for mean-field teams
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1
n

n

∑
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r(Xi
t, Ui

t,Mt)

Empirical mean-field:

Mt(x) =
1
n

n

∑
i=1

δXi
t
(x).

Statistical mean-field:

m̄t(x) = ℙ(Xi
t = x).

Info structure: Iit = {Xi
t}.

Example 3: Approximation bounds for mean-field teams
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t,Mt}.

𝒥∗ ≤ 𝒥̃∗, 𝒥̃∗ − 𝒥̄∗ ≤ K/√n

𝒥̄∗ ≤ 𝒥∗ ≤ 𝒥̄∗ + K/√n.

(A) r(x, u,m) and P(y|x, u,m) are
Lipschitz in m.

{m̄t}t≥1 is an (ε, δ) AIS for expanded
info structure, where ε, δ ∈ 𝒪(1/√n).

Example 3: Approximation bounds for mean-field teams



Now to reinforcement learning
for partially observed systems.
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State aggregator:
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ξ: Parameters of the aggregator
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CONVERGENCE RESULT

If the learning rates satisfy conditions for
three time-scale stochastic approximation,
the compatibility condition

∂Q(z, u)
∂φ = 1

π(u|z)
∂π(u|z)
∂θ

and additional mild technical conditions hold. Then,
State aggregator converges (with some
approximation error)
The critic converges to the best
approximator within the specified family.
The actor converges to a local maximizer
within the family of policy approximators.
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Numerical Results: 𝟒 × 𝟒 Grid Environment
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Numerical Results: Tiger Environment
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Numerical Results: Cheese Maze Environment
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FORECASTING OUTPUTS IN DISTRIBUTION

H(1)
t ∼ H(2)

t if for all future CONTROL inputs Ut:T,

ℙ(Y(1)t:T | H
(1)
t , Ut:T) = ℙ(Y(2)t:T | H

(2)
t , Ut:T)

PROPERTIES OF INFORMATION STATE

The info state Zt at time t is a “compression”
of past inputs that satisfies the following:

SUFFICIENTTO PREDICT ITSELF:

ℙ(Zt+1 | Ht, Ut) = ℙ(Zt+1 | Zt, Ut).

SUFFICIENTTO PREDICT OUTPUT:

ℙ(Yt | Ht, Ut) = ℙ(Yt | Zt, Ut).

Same complexity as identifying the state
sufficient for forecasting outputs for the
case of perfect observations (which was
Step 1 for belief state formulations)

KEY QUESTIONS

Can this be used for dynamic
programming?

What is the right notion of approx-
imations in this framework?

Now let’s consturct the state space
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(ε, δ)-APPROXIMATE INFORMATION STATE (AIS)

Given a function class 𝔉, a compression {Zt}t≥1 of history (i.e., Zt = φt(Ht))
is called an {(εt, δt)}t≥1 AIS if there exist:

a function R̃t(Zt, Ut), and a stochastic kernel νt(Zt+1|Zt, Ut)

such that

|𝔼[Rt|Ht = ht, Ut = ut] − R̃t(φt(ht), ut)| ≤ εt

For any Borel set A of 𝒵t, define
μt(A) = ℙ(Zt+1 ∈ A | Ht = ht, Ut = ut)

Then,
d𝔉(μt, νt(⋅ |φt(ht), ut)) ≤ δt.

Approximate information state
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MAIN THEOREM

Given a function class 𝔉, let {Zt}t≥1, where
Zt = φt(Ht), be an {(εt, δt)}t≥1 AIS.

Recursively define the following functions:

V̂T+1(zT+1) = 0
and for t ∈ {T , . . . , 1}:
V̂t(zt) = max

ut∈𝒰{R̃t(zt, ut)

+ ∫Vt+1(zt+1)νt(dzt+1 | zt, ut)}.

Let π = (π1, . . . , πT) denote the corresponding
policy.

Then, if the value function V̂t has 𝔉-constant
Kt, then

for any history ht,

|Vt(ht) − V̂t(φt(ht))|

≤ εT +
T

∑
s=t
(εs + Ksδs).

for any history ht,

|Vt(ht) − Vπ
t (ht)|

≤ 2[εT +
T

∑
s=t
(εs + Ksδs)].

Approximate dynamic programming using AIS



Approx. info. state–(Subramanian and Mahajan)
23

Summary

Approx. info. state–(Subramanian and Mahajan)
5

FORECASTING OUTPUTS IN DISTRIBUTION

H(1)
t ∼ H(2)

t if for all future CONTROL inputs Ut:T,

ℙ(Y(1)t:T | H
(1)
t , Ut:T) = ℙ(Y(2)t:T | H

(2)
t , Ut:T)

PROPERTIES OF INFORMATION STATE

The info state Zt at time t is a “compression”
of past inputs that satisfies the following:

SUFFICIENTTO PREDICT ITSELF:

ℙ(Zt+1 | Ht, Ut) = ℙ(Zt+1 | Zt, Ut).

SUFFICIENTTO PREDICT OUTPUT:

ℙ(Yt | Ht, Ut) = ℙ(Yt | Zt, Ut).

Same complexity as identifying the state
sufficient for forecasting outputs for the
case of perfect observations (which was
Step 1 for belief state formulations)

KEY QUESTIONS

Can this be used for dynamic
programming?

What is the right notion of approx-
imations in this framework?

Now let’s consturct the state space

Approx. info. state–(Subramanian and Mahajan)
9

(ε, δ)-APPROXIMATE INFORMATION STATE (AIS)

Given a function class 𝔉, a compression {Zt}t≥1 of history (i.e., Zt = φt(Ht))
is called an {(εt, δt)}t≥1 AIS if there exist:

a function R̃t(Zt, Ut), and a stochastic kernel νt(Zt+1|Zt, Ut)

such that

|𝔼[Rt|Ht = ht, Ut = ut] − R̃t(φt(ht), ut)| ≤ εt

For any Borel set A of 𝒵t, define
μt(A) = ℙ(Zt+1 ∈ A | Ht = ht, Ut = ut)

Then,
d𝔉(μt, νt(⋅ |φt(ht), ut)) ≤ δt.

Approximate information state

Approx. info. state–(Subramanian and Mahajan)
10

MAIN THEOREM

Given a function class 𝔉, let {Zt}t≥1, where
Zt = φt(Ht), be an {(εt, δt)}t≥1 AIS.

Recursively define the following functions:

V̂T+1(zT+1) = 0
and for t ∈ {T , . . . , 1}:
V̂t(zt) = max

ut∈𝒰{R̃t(zt, ut)

+ ∫Vt+1(zt+1)νt(dzt+1 | zt, ut)}.

Let π = (π1, . . . , πT) denote the corresponding
policy.

Then, if the value function V̂t has 𝔉-constant
Kt, then

for any history ht,

|Vt(ht) − V̂t(φt(ht))|

≤ εT +
T

∑
s=t
(εs + Ksδs).

for any history ht,

|Vt(ht) − Vπ
t (ht)|

≤ 2[εT +
T

∑
s=t
(εs + Ksδs)].

Approximate dynamic programming using AIS

Approx. info. state–(Subramanian and Mahajan)
12

Consider an MDP with state space 𝒳 and per-step reward Rt = r(Xt, Ut).

Suppose 𝒳 is quantized to a discrete set 𝒵 using φ∶𝒳 → 𝒵.

Let z = φ(x) denote the label for x.
Then φ−1(z) denote all states which have label z.

{Zt}t≥1 IS AN (ε, δ) AIS

ε = sup
(x,u)∈𝒳×𝒰

|r(x, u) − r(φ(x), u)| or, equivalently, r(⋅, u) has a 𝔉-cosntant Kr

δ = sup
(x,u)∈𝒳×𝒰

d𝔉(ℙ(X+ | X = x,U = u),ℙ(X+ | X ∈ φ−1(φ(x)),U = u)).

or, equivalently, ℙ(X+|X = ⋅,U = u) has a 𝔉-constant of Kd.

Example 1: Error bounds on state aggregation

Bertsekas, “Convergence of discretization procedures in dynamic programming,” 1975.
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Proposed as a heuristic
algorithms
No performance bounds

{Zt}t≥1 IS AN (ε, δ) AIS

ε = sup
ht,ut

|𝔼[Rt|ht, ut] − R̃t(φt(ht), ut)|

δ = sup
ht,ut

d𝔉(ℙ(Ŷt+1|ht, ut),ℙ(Ŷt+1|φt(ht), ut))

Example 2: Approximation bounds for using quantized obs.

Ha, Schmidhuber, “World Models”, 2018.
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Bertsekas, “Convergence of discretization procedures in dynamic programming,” 1975.

Approx. info. state–(Subramanian and Mahajan)
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Proposed as a heuristic
algorithms
No performance bounds

{Zt}t≥1 IS AN (ε, δ) AIS

ε = sup
ht,ut

|𝔼[Rt|ht, ut] − R̃t(φt(ht), ut)|

δ = sup
ht,ut

d𝔉(ℙ(Ŷt+1|ht, ut),ℙ(Ŷt+1|φt(ht), ut))

Example 2: Approximation bounds for using quantized obs.

Ha, Schmidhuber, “World Models”, 2018.

Video observation

VisionVision

Memory
RL agent

Yt

Ŷt

Zt
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n agents: state Xi
t, control Ui

t.
Dynamics

ℙ(𝐗t+1|𝐗t,𝐔t) =
n

∏
i=1

P(Xi
t+1|Xi

t, Ui
t,Mt)

Per-step reward

R(𝐗t,𝐔t) =
1
n

n

∑
i=1

r(Xi
t, Ui

t,Mt)

Empirical mean-field:

Mt(x) =
1
n

n

∑
i=1

δXi
t
(x).

Statistical mean-field:

m̄t(x) = ℙ(Xi
t = x).

Info structure: Iit = {Xi
t}.

Expanded info structure: Ĩit = {Xi
t,Mt}.

𝒥∗ ≤ 𝒥̃∗, 𝒥̃∗ − 𝒥̄∗ ≤ K/√n

𝒥̄∗ ≤ 𝒥∗ ≤ 𝒥̄∗ + K/√n.

(A) r(x, u,m) and P(y|x, u,m) are
Lipschitz in m.

{m̄t}t≥1 is an (ε, δ) AIS for expanded
info structure, where ε, δ ∈ 𝒪(1/√n).

Example 3: Approximation bounds for mean-field teams

Approx. info. state–(Subramanian and Mahajan)
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Tiger Environment
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Cheese Maze Environment
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AIS provides a conceptually clean
framework for approximate DP and

online RL in partially observed systems


