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Sub-optimality bounds for certainty equivalent
policies in partially observed systems

Berk Bozkurt, Aditya Mahajan, Ashutosh Nayyar, and Yi Ouyang

Abstract—In this paper, we present a generalization of the
certainty equivalence principle of stochastic control. One inter-
pretation of the classical certainty equivalence principle for linear
systems with output feedback and quadratic costs is as follows:
the optimal action at each time is obtained by evaluating the
optimal state-feedback policy of the stochastic linear system at
the minimum mean square error (MMSE) estimate of the state.
Motivated by this interpretation, we consider certainty equivalent
policies for general (non-linear) partially observed stochastic
systems that allow for any state estimate rather than restricting to
MMSE estimates. In such settings, the certainty equivalent policy
is not optimal. For models where the cost and the dynamics are
smooth in an appropriate sense, we derive upper bounds on the
sub-optimality of certainty equivalent policies. We present several
examples to illustrate the results.

I. INTRODUCTION

In many applications in robotics, autonomous systems,
finance, healthcare, and other domains the decision maker does
not have access to the complete state of the system. Such
systems are often modeled as partially observable Markov
decision processes (POMDPs). The standard approach for
solving POMDPs is to translate them into fully observed
Markov decision processes (MDPs) by considering the pos-
terior belief of the decision maker on the current state as
a sufficient statistic [2], [3]. There is a rich literature on
algorithms which use the structure of the resulting belief-state
MDP to obtain optimal and approximately optimal policies.

However, finding the optimal policy is PSPACE-hard [4].
Most algorithms to find optimal policies have exponential
worst-case complexity in the size of the state and observation
spaces making them impractical for large-scale problems.
Meanwhile, many heuristic approaches such as point-based
value iteration methods [5] can be computationally efficient
but lack provable performance guarantees. In fact, finding
approximately optimal policies is also PSPACE-hard [6], [7],
indicating that general purpose algorithms may not be efficient
for all POMDP models.

These challenges have motivated significant interest in iden-
tifying structured classes of policies that are both computa-
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tionally tractable and have good performance guarantees. Ex-
amples include policies based on a finite window of previous
observations [8] (called frame stacking in reinforcement learn-
ing) and, more generally, policies based on agent state, which
is a recursively updatable function of the past observations
and actions [9], [10]. Several papers have identified sufficient
conditions for such policies to perform well, including approx-
imate information state [11], filter stability [12]–[14], weakly
revealing observations [15], low covering numbers [16], low-
rank structure [17], and revealing observation models [18].
These results highlight that structured policies can be approx-
imately optimal for a specific sub-class of POMDPs.

In linear systems with quadratic cost and Gaussian noise
(the so-called LQG problem), the optimal policy may be
viewed as a structured policy with the following structure:
the optimal action at each time is a linear function of the
MMSE (minimum mean square error) state estimate and the
corresponding feedback gain is the same as the feedback
gain of the optimal state-feedback control of the deterministic
system obtained by replacing all random variables by their
means. This result is typically called the certainty equivalence
principle of stochastic control [19]–[21] and has been gen-
eralized to other settings including systems with non-linear
dynamics [22]–[24] and risk-sensitive control [25].

In this paper, we present a generalization of the certainty
equivalence principle to general POMDPs. Our generalization
is based on a slightly different interpretation of the LQG
certainty equivalence principle: consider the optimal policy
of the stochastic system with perfectly observable states and
evaluate that policy at the MMSE state estimate. Similar views
on the certainty equivalence principle have been used in the
reinforcement learning and adaptive control literature [26]
and are sometimes called partially stochastic certainty equiva-
lence [27]. For clarity, we present a formal description of this
interpretation.

Let P denote the partially observable linear system with
state st ∈ S, action at ∈ A, and output yt ∈ Y , where S, A,
and Y are Euclidean spaces. Let M be the fully observable
stochastic linear system where the decision maker has access
to the state. Note that the fully observed system M is different
from one typically assumed in certainty equivalence. As is the
case in the standard certainty equivalence principle, we are
assuming that M is fully observed but we are not assuming
that the dynamics of M are deterministic. For simplicity,
suppose that the system runs for a finite horizon T . Let πM =
(πM

1 , . . . , πM
T ) denote the optimal policy for model M and

µP = (µP
1 , . . . , µ

P
T ) denote the optimal policy for model P .

Moreover, for any history ht = (y1, a1, y2, a2, . . . , yt) of
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observations and actions until time t, let Et(ht) denote the
MMSE estimate of the state given the history ht. Then, the
standard result for LQG optimal control is that

µP
t (ht) = πM

t (Et(ht)).

In this paper, we consider two generalizations of the above
result.

1) We allow Et to be any estimator of the state rather than
restricting attention to MMSE estimator.

2) We consider general POMDPs rather than restricting
attention to linear systems.

In this general setting, we define the certainty equivalent policy
µCE = (µCE

1 , . . . , µCE
T ) as

µCE
t (ht) = πM

t (Et(ht)). (1)

In general, µCE is not optimal. Our main result is to charac-
terize the degree of sub-optimality of the certainty equivalent
policy µCE.

Our results may be viewed as an instance of characterizing
the sub-optimality gap of structured policies for POMDPs.
There is a rich literature on deriving such sub-optimality gaps
using tools from predictive state representation [28], [29],
bisimulation metrics [30], approximation information states
(AIS) [11], and filter stability [12]–[14]. Our analysis is based
on AIS-based approximation bounds of [11].

The main contributions of this paper are as follows:
• We derive explicit bounds on the sub-optimality of

certainty equivalent policies under the assumption that
the cost and dynamics are smooth in an appropriate
sense. Our bounds depend on the worst-case value of the
conditional expected estimation error.

• We extend our results to settings with state abstraction,
where the estimator produces an estimate of an abstract
state rather than the full state, allowing our framework
to apply to large-scale systems where state aggrega-
tion/quantization or feature abstraction is necessary.

• We illustrate our results through several examples, includ-
ing: systems with bounded observation noise, intermit-
tently degraded observations, control with event-triggered
communication, learning and adaptive control settings,
and control of non-homogeneous multi-particle systems.
These examples demonstrate that certainty equivalent
policies can achieve near-optimal performance when the
estimation error is small, providing practical and com-
putationally tractable alternatives to exact POMDP solu-
tions.

A preliminary version of this result appeared in [1]. The
analysis there was restricted to certainty equivalent policies
which estimate the complete state of the system and the
results were obtained under stronger assumptions. The state
abstraction model considered in this paper is new and the
results are derived under weaker assumptions.

The rest of the paper is organized as follows. We present
the system model and define certainty equivalent policies in
Sec. II. We illustrate our results through several examples in
Sec. III. We present the proofs in Sec. IV and conclude in
Sec. V.

Notation: We use uppercase letters to denote random
variables (e.g., S, A, etc.), the corresponding lowercase letters
to denote their realizations (e.g., s, a, etc.), and the correspond-
ing calligraphic letters to denote their space of realizations
(e.g., S, A, etc.). Subscripts denote time, so St denotes a
variable at time t. The notation S1:t is a shorthand for the
sequence (S1, . . . , St).

We use R to denote the set of real numbers. For a topologi-
cal space X , ∆(X ) denotes the set of all probability measures
on X and B(X ) denotes the set of all bounded and measurable
real-valued functions on X .

We use P(·) to denote the probability of an event and E[·]
to denote the expectation of a random variable. We use the
notation P(St+1 ∈ MS |st, at) as a shorthand for P(St+1 ∈
MS |St = st, At = at).

Given a metric space (S, dS), the Wasserstein-1 distance
between two probability distributions ν1, ν2 ∈ ∆(S) is given
by

dWas(ν1, ν2) = inf
(S1,S2)∼Γ(ν1,ν2)

E[dS(S1, S2)],

where Γ(ν1, ν2) denotes all joint probability distributions on
S×S with marginals ν1 and ν2. For two random variables S1

and S2 taking values in S, we sometimes use dWas(S1, S2)
to denote the Wasserstein-1 distance between the marginal
distributions of S1 and S2. For a function f from one metric
space to another, Lip(f) denotes the Lipschitz constant of f .

II. SYSTEM MODEL AND THE MAIN RESULTS

Consider a discrete-time partially observable Markov deci-
sion process (POMDP), denoted by P , with state space S,
observation space Y , and action space A that runs for a finite
horizon T . Let St ∈ S denote the state of the system, Yt ∈ Y
denote the observation of the controller, and At ∈ A denote
the control action taken by the controller at time t. We assume
that S,Y and A are metric spaces and use dS to denote the
metric on S.

The initial state and observation (S1, Y1) are distributed
according to a probability distribution ξ ∈ ∆(S × Y). The
dynamics and observation are assumed to be Markovian.
In particular, we assume that there exist stochastic kernels
Pt : S × A → ∆(S × Y), t ∈ {1, . . . , T − 1}, such that for
any t ∈ {1, . . . , T − 1}, any Borel subsets MS ,MY of S and
Y respectively, and any realizations s1:t, y1:t and a1:t of S1:t,
Y1:t, A1:t, respectively, we have

P(St+1 ∈MS , Yt+1 ∈MY |s1:t, y1:t, a1:t)
= P(St+1 ∈MS , Yt+1 ∈MY |st, at)
=: Pt(MS ,MY |st, at). (2)

We will use the notation PS,t(·|st, at) and PY,t(·|st, at) to
denote the state and observation marginals of Pt(·, ·|st, at).

At each time t, the system incurs a per-step cost ct(St, At),
which is uniformly bounded i.e., there exists a cmax ∈ R such
that sups∈S,a∈A |ct(s, a)| ≤ cmax.

The controller has access to observation and action history
ht = {y1:t, a1:t−1} at time t. Let Ht denote the space of
realizations of ht. Let µ = (µ1, . . . , µT ) denote any history
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dependent deterministic policy. The value function of policy
µ is defined as

WP,µ
t (ht) = E

µ

[ T∑
τ=t

cτ (sτ , aτ )

∣∣∣∣ ht]
where Eµ denotes expectation with respect to a joint probabil-
ity measure on the system variables induced by the policy µ.
The optimal value function is defined as

WP
t (ht) = inf

µ
WP,µ
t (ht),

where the infimum is over all history dependent policies.
The standard approach to find an optimal policy in POMDPs

is to use belief-state based dynamic programs [2], [3], which
are computationally challenging. As discussed in the intro-
duction, certainty equivalent policies provide an attractive
alternative approach. In the rest of this section, we characterize
the sub-optimality of such policies.

A. Certainty equivalent policies

Consider a state feedback controller for the stochastic
system defined above, where the controller has access to the
state St at time t. This system is a finite horizon Markov
decision process (MDP) M with state space S, action space
A, dynamics PS,t, and per-step cost ct.

We need a technical assumption to ensure that the MDP M
has an optimal policy.

Definition 1 (Measurable selection) An MDP ⟨S, A,
{PS,t}T−1

t=1 , {ct}Tt=1, T ⟩ is said to satisfy measurable
selection if for every measurable function V : S → R and
each time t ∈ {1, . . . , T − 1}, there exists a measurable
selector π : S → A such that

inf
a∈A

{
ct(s, a) +

∫
S
V (s′)PS,t(ds

′|s, a)
}

= ct(s, π(s)) +

∫
S
V (s′)PS,t(ds

′|s, π(s)) =: V+(s),

and V+ : S → R defined above is a measurable function.

Assumption 1 The model M satisfies measurable selection.

An implication of M satisfying measurable selection is
that there exists an optimal policy πM = (πM

1 , . . . , πM
T ),

where πM
t : S → A, with associated optimal value functions

(VM
1 , . . . , VM

T ), VM
t : S → R, for this MDP [31].

We now use the optimal policy πM for the MDP M to
define a feasible policy for the POMDP P . Suppose we are
given a sequence of state estimation functions {Et}Tt=1, where
Et : Ht → S . For instance, Et may be the conditional mean
or the MAP (maximum a posteriori probability) estimator
which depend on the conditional distribution of the state
given the history of observations and actions. Alternatively,
the estimator could be a simple function (e.g. linear) of the
last few observations and actions.

We say that a history-dependent policy µE = (µE
1 , . . . , µ

E
T )

is certainty equivalent with respect to MDP M =

⟨S,A, {PS,t}T−1
t=1 , {ct}Tt=1, T ⟩ and estimators {Et : Ht →

S}t≥1 if

µE
t (ht) = πM

t (Et(ht)). (3)

In other words, a certainty equivalent policy treats Et(ht) as
an error-free estimate of the state of the MDP M and then acts
according to the optimal policy of M. As mentioned earlier,
such policies are optimal in the LQG setting when the condi-
tional mean is used as the estimate but they are, in general, not
optimal. We are interested in providing a bound on the sub-
optimality of the certainty equivalent policies. Specifically, we
are interested in an upper bound on the gap between the value
functions of policy µE and the optimal value functions of the
POMDP, i.e. a bound on WP,µE

t (ht) −WP
t (ht). Our results

provide such a bound under the following technical assumption
on the “smoothness” of per-step cost and system dynamics.

Assumption 2 There exist a sequence of concave and non-
decreasing functions FPt , F

c
t : R≥0 → R≥0, t ∈ {1, . . . , T},

such that for any s, s′ ∈ S and a ∈ A, we have

dWas(PS,t(·|s, a), PS,t(·|s′, a)) ≤ FPt (dS(s, s
′)) (4)

and ∣∣ct(s, a)− ct(s
′, a)

∣∣ ≤ F ct (dS(s, s
′)). (5)

Remark 1 When FPt , F ct are linear, i.e., FPt (x) = LPt x and
F ct (x) = Lctx for some positive constants LPt and Lct , then
Assumption 2 reduces to assuming that the dynamics and
per-step cost are Lipschitz continuous, which is a standard
assumption for smoothness of the dynamics and per-step
cost, and implies smoothness (Lipschitz continuity) of the
value function of MDP M [32]. In particular, following the
argument of [32], we have

Lip(VM
t ) ≤ Lct + LPt+1 Lip(V

M
t+1),

which can be unrolled to obtain an upper bound on the Lips-
chitz constant of VM

t in terms of {LPτ }T−1
τ=t+1 and {Lcτ}Tτ=t.

Our bounds for the sub-optimality gap of certainty equiv-
alent policy µE

t (ht) defined in (3) depend on the quality of
the estimates produced by the state estimation functions Et,
which we assess using the metric dS on the state space. For
each time t, we define

ηt := sup
ht∈Ht

E[dS(St, Et(ht))|ht]. (6)

Remark 2 Note that in Eq. (6) the right hand side does
not depend on the policy because the conditional probability
distribution of current state St given history ht is policy
independent [2], [3].

Assumption 3 For t = 1, 2, . . . , T we have ηt <∞ where ηt
is given by (6).

We can now state our first result.

Theorem 1 Define

εt = F ct (ηt) and δt = FPt (ηt) + ηt+1
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where ηt is given by (6). Then, under Assumptions 1, 2 and
3, we have that the certainty equivalent policy µE (defined
in (3)) satisfies

WP,µE

t (ht)−WP
t (ht) ≤ 2αt (7)

where

αt = εt +

T−1∑
τ=t

[
δτ Lip(V

M
τ+1) + ετ+1

]
(8)

and {VM
t }Tt=1 are the optimal value functions for MDP M.

We will state and prove a more general version of this result
in the next subsection.

Remark 3 Certainty equivalent policies are not appropriate
for all models. For instance, in some POMDPs, before taking
a control action, the agent has the option to pay a cost to take
a sensing action that reveals the true state of the MDP. In
such models, the certainty equivalent policy will never choose
the sensing action. Therefore, if the sensing action is not too
costly, a policy that occasionally pays the sensing cost to learn
the true state may outperform certainty equivalent policy.

B. Certainty equivalent policies using State Abstraction

In problems with large or continuous state spaces, it can
be difficult to find an optimal policy πM of MDP M due to
the curse of dimensionality. For such large-scale MDPs, one
typically obtains an approximately optimal policy for MDP M
by considering an abstract MDP obtained by state aggregation
or state quantization. In such situations, it is natural to consider
a certainty equivalent policy based on an optimal policy of
the abstract MDP and estimates of the abstract state. In
this section, we formally define such a policy and present a
generalization of Theorem 1 to such settings.

Suppose there is an abstract state space S̃ which is equipped
with a metric dS̃ , a (measurable) state abstraction function
ϕ : S → S̃, and two stochastic kernels λP , λc : S̃ → ∆(S)
such that for each s̃t ∈ S̃, λP (ϕ−1(s̃t)|s̃t) = 1 and
λc(ϕ−1(s̃t)|s̃t) = 1.

We construct an abstract MDP M̃ := ⟨S̃,A, {P̃t}T−1
t=1 ,

{c̃t}Tt=1, T ⟩ where the dynamics P̃t : S̃ × A → S̃ and the
per-step cost c̃t : S̃ × A → R are defined as follows: for any
measurable MS̃ ⊂ S̃,

P̃t(S̃t+1 ∈MS̃ |s̃t, at)

=

∫
ϕ−1(s̃t)

PS,t
(
ϕ(St+1) ∈MS̃ |st, at)

)
λP (dst|s̃t)

(9)

and
c̃t(s̃t, at) =

∫
ϕ−1(s̃t)

ct(st, at)λ
c(dst|s̃t). (10)

The cost function of the abstract MDP can be viewed as a
weighted averaging of the original MDP cost over all states
in ϕ−1(s̃t); a similar interpretation applies for the dynamics
in the abstract model as well.

Note that when S̃ = S and ϕ(s) = s, the abstract MDP M̃
is equal to the MDP M = ⟨S,A, {PS,t}T−1

t=1 , {ct}Tt=1, T ⟩.

We impose the measurable selection assumption on
MDP M̃.

Assumption 4 The model M̃ satisfies measurable selection.

As in Section II-A, an implication of measurable selection
is that there exists an optimal policy πM̃ = (πM̃

1 , . . . , πM̃
T ),

where πM̃
t : S̃ → A, with associated optimal value functions

(V M̃
1 , . . . , V M̃

T ), V M̃
t : S̃ → R, for MDP M̃ [31].

We now use the optimal policy πM̃ for the MDP M̃ to
define a feasible policy for the POMDP P . This policy is
similar to the certainty equivalent policies of Section II-A
except that (i) we estimate the abstract state S̃t, and (ii) use
an optimal policy of M̃. For convenience, we reuse some of
the notation of Section II-A.

Suppose we are given a sequence of abstract state
estimation functions {Et}Tt=1, where Et : Ht → S̃. We
say that a history-dependent policy µE = (µE

1 , . . . , µ
E
T )

is certainty equivalent with respect to the abstract MDP
M̃ = ⟨S̃,A, {P̃t}T−1

t=1 , {c̃t}Tt=1, T ⟩ and estimators {Et : Ht →
S̃}t≥1 if

µE
t (ht) = πM̃

t (Et(ht)). (11)

In other words, a certainty equivalent policy treats Et(ht) as
an error-free estimate of the state of the abstract MDP and
uses the optimal policy of M̃ to take its action. As before,
we are interested in an upper bound on the gap between the
value functions of policy µE and the optimal value functions
of the POMDP, i.e. a bound on WP,µE

t (ht)−WP
t (ht).

We impose the following technical assumption on the model
and the state abstraction.

Assumption 5 There exist a sequence of concave and non-
decreasing functions FPt , F

c
t : R≥0 → R≥0, t ∈ {1, . . . , T},

such that for any s, s′ ∈ S and a ∈ A, we have

dWas(P
ϕ
S,t(·|s, a), P

ϕ
S,t(·|s

′, a)) ≤ FPt (dS̃(ϕ(s), ϕ(s
′))),

(12)
and ∣∣ct(s, a)− ct(s

′, a)
∣∣ ≤ F ct (dS̃(ϕ(s), ϕ(s

′))) (13)

where PϕS,t is a stochastic kernel from S ×A to ∆(S̃) defined
as

PϕS,t(MS̃ |st, at) = PS,t
(
ϕ(St+1) ∈MS̃ |st, at

)
for all Borel subsets MS̃ of S̃.

Assumption 5 implies that ϕ : S → S̃ is a good state
abstraction in the following sense: If ϕ(s) is close to ϕ(s′),
then for any action a, the per-step costs at s and s′ are close
and the probability distributions of the next abstracted state
given s and s′ are close.

Our results depend on the quality of the estimates produced
by Et. For that purpose, for each time t we define the worst-
case value of the conditional expected estimation error

ηt := sup
ht∈Ht

E[dS̃(ϕ(St), Et(ht))|ht]. (14)

As we stated in Remark 2, the right hand side in Eq. (14)
does not depend on the policy because conditional probability
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distribution of the state St given history ht is policy indepen-
dent [2], [3].

Assumption 6 For t = 1, 2, . . . , T, we have ηt < ∞ where
ηt is given by (14).

We can now state the main result.

Theorem 2 Define

εt = F ct (ηt) and δt = FPt (ηt) + ηt+1

where ηt is given by (14). Then, under Assumptions 4, 5 and
6, we have that the certainty equivalent policy µE (defined
in (11)) satisfies

WP,µE

t (ht)−WP
t (ht) ≤ 2αt (15)

where

αt = εt +

T−1∑
τ=t

[
δτ Lip(V

M̃
τ+1) + ετ+1

]
(16)

and {V M̃
t }Tt=1 are the optimal value functions for MDP M̃.

We will prove this result in Section IV. Note that when S̃ = S
and ϕ(s) = s, Theorem 2 reduces to Theorem 1. As illustrated
in the corollary below, Theorem 2 also provide sub-optimality
bounds for using a policy of an abstract MDP in the original
MDP, which may be viewed as a finite horizon version of [33].

Corollary 1 For any Markovian policy π of MDP M, let
VM,π
t : S → R denote the value function of policy π. Given

the optimal policy πM̃ = (πM̃
1 , . . . , πM̃

T ) of the abstract
MDP M̃, define a feasible policy π̄ of MDP M as follows:
π̄ = (πM̃

1 ◦ϕ, . . . , πM̃
T ◦ ϕ). Then, under Assumptions 4 and 5,

for any time t and any realization st of St, we have

VM,π̄
t (st)− VM(st) ≤ 2αt

where αt is given by (16) with εt = F ct (0) and δt = FPt (0).

PROOF This is an immediate consequence of Theorem 2 by
considering the trivial setting where Yt = St (and thus, ht =
(s1:t, a1:t−1)) and take E(ht) = ϕ(st), which implies ηt =
0 for all t. In this case, WP

t (ht) = VM
t (st), µ

E = π̄ and
WP,µE

t (ht) = VM,π̄
t (st). ■

III. ILLUSTRATIVE EXAMPLES

In this section we present several examples to illustrate
observation models (and corresponding estimators) where cer-
tainty equivalent policies may be useful. We apply our results
to derive explicit bounds on the sub-optimality of certainty
equivalent policies for specific observation models.

A. Bounded observation noise
1) System model: Consider a POMDP where Y = S and

the system dynamics Pt are such that

dS(Yt, St) ≤ r,

where r ∈ [0,∞). Moreover, we assume that the MDP model
M satisfies measurable selection (Assumption 1) and that the
dynamics and per-step cost are Lipschitz, i.e., there exist non-
negative finite constants LPt and Lct such that Assumption 2
is satisfied with FPt (x) = LPt x and F ct (x) = Lctx (see
Remark 1).

2) Certainty equivalent policy: For this example, we con-
sider certainty equivalent policies with respect to the original
MDP M, i.e., take the state abstraction function ϕ(s) = s.
Furthermore, we take the state estimate to be the last obser-
vation, i.e., Et(ht) = yt. Then, the certainty equivalent policy
is given by

µE
t (ht) = πM

t (yt).

3) Sub-optimality bound: We have assumed that Assump-
tions 1 and 2 are satisfied. Moreover,

E[dS(St, Et(Ht))|ht] = E
[
dS(St, Yt)|ht

]
≤ r.

Therefore, ηt ≤ r and Assumption 3 is also satisfied. Fur-
thermore, the εt and δt in Theorem 1 can be upper bounded
by

εt ≤ rLct and δt ≤ r(1 + LPt ).

Hence, the bound in Theorem 1 can be explicitly written as

WP,µE

t (ht)−WP
t (ht) ≤ 2rLM

t (17)

where

LM
t =

[
Lct +

T−1∑
τ=t

[
(1 + LPτ ) Lip(V

M
τ+1) + Lcτ+1

]]
(18)

is a constant that depends on the Lipschitz constants of the
dynamics, per-step cost, and the optimal MDP value function.

This bound scales linearly with r, which means that as
the observation becomes closer to the underlying state (i.e.,
“observation noise” becomes small), the performance of the
certainty equivalent policy approaches that of the optimal
POMDP policy.

B. Intermittently degraded observation

1) System model: Consider a POMDP where Y = S and
the system dynamics Pt is such that the controller either gets a
good observation (indicated by event Et) or a bad observation
(indicated by Ect ). Under Et, dS(Yt, St) ≤ r while under Ect ,
dS(Yt, St) ≤ R where 0 ≤ r ≤ R < ∞. We assume that for
any history ht, P(Ect |ht) ≤ p.

Moreover, we assume that the MDP model M satisfies
measurable selection (Assumption 1) and that the dynamics
and per-step cost are Lipschitz, i.e., there exist non-negative
finite constants LPt and Lct such that Assumption 2 is satisfied
with FPt (x) = LPt x and F ct (x) = Lctx (see Remark 1).

2) Certainty equivalent policy: As for the example in
Sec. III-A, we take ϕ(s) = s and Et(ht) = yt. Then, the
certainty equivalent policy is given by

µE
t (ht) = πM

t (yt).

3) Sub-optimality bound: We have assumed that Assump-
tion 1 and 2 are satisfied. Moreover,

E[dS(St, Et(Ht))|ht] = E
[
dS(St, Yt)|ht

]
≤ (1− p)r + pR (19)

Hence, we have ηt ≤ (1 − p)r + pR and Assumption 3 is
also satisfied. Furthermore, the εt and δt in Theorem 1 can be
upper bounded by

εt ≤ [(1−p)r+pR]Lct and δt ≤ [(1−p)r+pR](1+LPt ).
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Therefore, the bound in Theorem 1 can be explicitly written
as

WP,µE

t (ht)−WP
t (ht) ≤ 2[(1− p)r + pR]LM

t (20)

where LM
t is as defined in (18).

These results demonstrate that when the state estimation
error [(1 − p)r + pR] is small, either due to observations
with small noise or observations that are frequently accurate,
certainty equivalent policies can perform near-optimally. The
bounds provide a quantitative measure of the sub-optimality
in terms of the estimation error and the Lipschitz constants of
the model.

C. Bounded observation noise with state quantization

1) System model: Consider the bounded observation noise
model of Sec. III-A where Y = S and the observation model
is such that dS(Yt, St) ≤ r. In addition, an abstract model M̂
is given, which is constructed by partitioning the state space
S into a finite collection {Ψk}Kk=1 of quantization cells, each
with a representative element s̃k ∈ Ψk. The abstract state
space is S̃ = {s̃1, . . . , s̃K} and the state abstraction function
is ϕ : S → S̃ given by ϕ(s) = s̃k for all s ∈ Ψk, k ∈
{1, . . . ,K}. Moreover, the stochastic kernels λP (· | s̃k) and
λc(· | s̃k) are Dirac delta measures on s̃k, k ∈ {1, . . . ,K}.
The abstract dynamics P̃ and abstract cost c̃ are constructed
as in (9) and (10). We also define a metric dS̃ on S̃ by

dS̃(s̃1, s̃2) := dS(s̃1, s̃2), ∀s̃1, s̃2 ∈ S̃ ⊂ S,

We assume Assumptions 4 and 5 are satisfied.
2) Certainty equivalent policy: For this example, we con-

sider certainty equivalent policies with respect to the abstract
MDP M̃. Furthermore, we take the abstract state estimate to
be the quantized value of the last observation, i.e., Et(ht) =
ϕ(yt). Then, the certainty equivalent policy is

µE
t (ht) = πM̃

(
ϕ(yt)

)
.

3) Sub-optimality bound: We have assumed that Assump-
tion 4 and 5 are satisfied. Let R denote the maximum radius
of a quantization cell, i.e.,

R := max
k∈{1,...,K}

sup
s∈Ψk

dS(s, ϕ(s)).

Then, by triangle inequality, we have

E[dS̃(ϕ(St), Et(ht))|ht] = E[dS(ϕ(St), ϕ(Yt)|ht]
≤ E

[
dS

(
ϕ(St), St) + dS(St, Yt) + dS

(
Yt, ϕ(Yt)

)
|ht

]
≤ R+ r +R = r + 2R. (21)

Hence, we have ηt ≤ r+2R and Assumption 6 is also satisfied.
Furthermore, the εt and δt in Theorem 2 can be upper bounded
by

εt ≤ F ct (r + 2R) and δt ≤ FPt (r + 2R) + r + 2R.

Therefore, we can upper bound the sub-optimality of using the
certainty equivalent policy by the bound (15) in Theorem 2.

D. Certainty equivalence in learning/adaptive control

1) System model: Consider a parameterized MDP MX(θ)
with state space X , action space A, time-invariant dynamics
PX,θ and time-invariant per-step cost ℓθ, where the parameters
θ ∈ Θ and are distributed according to some probability
distribution PΘ independent of noise in the dynamics. We
assume that X and Θ are metric spaces with metrics dX and
dΘ, respectively.

The controller doesn’t know the parameters θ but knows
the history of state and actions ht = (x1:t, a1:t−1). The
above model can be viewed as an POMDP with state space
S = X×Θ, observation space X×R, where St = (Xt, θ) and
Yt = (Xt, ℓ(Xt−1, At−1)). We take dS((x1, θ1), (x2, θ2)) =
dX (x1, x2) + dΘ(θ1, θ2). Observe that the MDP M corre-
sponding to this POMDP is equivalent to MX(θ). We denote
the optimal policy of this MDP by πM(x, θ) = πMX(θ)(x).

We assume that for all θ ∈ Θ, the model MX(θ) satisfies
measurable selection (Assumption 1). Moreover, there exist
non-negative finite constants LP and Lc such that for any
x, x′ ∈ X and θ, θ′ ∈ Θ, we have

dWas(PX,θ(·|x, a),PX,θ′(·|x′, a))
≤ LP (dX (x, x′) + dΘ(θ, θ

′)), (22)

and∣∣ℓθ(x, a)− ℓθ′(x
′, a)

∣∣ ≤ Lc(dX (x, x′) + dΘ(θ, θ
′)). (23)

2) Certainty equivalent policy: As in the previous exam-
ples, we consider ϕ(s) = s but consider a general estimator
Et(ht) = (xt, θ̂t) where θ̂t is some estimate of θ based on ht,
e.g., the MMSE estimator θ̂t = E[θ|ht]. Then, the certainty
equivalent policy is

µE
t (ht) = πM

t (xt, θ̂t).

3) Sub-optimality bound: We have assumed that Assump-
tion 1 and 2 are satisfied. Moreover,

ηt = sup
ht∈Ht

E[dS(St, Et(Ht))|ht] = sup
ht∈Ht

E[dΘ(θt, θ̂t)|ht].

(24)

Thus, if Assumption 3 holds, the εt and δt in Theorem 1 can
be upper bounded by

εt ≤ Lcηt and δt ≤ LP ηt + ηt+1.

Therefore, we can bound the sub-optimality in using the cer-
tainty equivalent policy by the bound (7) given in Theorem 1.

These results show that the performance of certainty equiv-
alent policies depends on the performance ηt of the parameter
estimation. If ηt decays sufficiently fast, e.g., exponentially
fast, then we can obtain uniform upper bounds on the perfor-
mance error 2αt in (7) even when T → ∞.

E. Control with event-triggered communication

1) System model: Consider a system consisting of a plant,
a sensor co-located with the plant, and a remote controller. Let
Xt ∈ X and At ∈ A denote the state and control input of the
plant. The state of the plant evolves according to a controlled
transition kernel PX,t : X ×A → ∆(X ).
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The sensor observes the current state Xt and decides
whether or not to transmit the state. Let Yt ∈ X ∪{E} denote
the observation of remote controller, i.e.,

Yt =

{
E if sensor does not communicate
Xt if sensor communicates

where E denotes a null observation.
The remote controller generates the action At according to a

general history dependent policy µ = (µ1, . . . , µT ) and incurs
a per-step cost ct(xt, at).

The above problem is a decentralized control problem where
both the communication policy at the sensor and the control
policy at the remote controller have to be determined. We
consider the setting when the communication policy is fixed to
be an event-triggered communication policy [34]–[36], which
operates as follows. It is assumed that the remote controller
keeps track of a state estimate X̂t|t ∈ X as follows:

X̂t|t =

{
Yt if Yt ̸= E

X̂t|t−1, if Yt = E
(25)

where X̂1|0 = E[X1] and

X̂t|t−1 = g(X̂t−1|t−1, At−1), t > 1, (26)

where g : X ×A → X is a pre-specified update function.
In an event-triggered policy, the sensor transmits when the

following inequality is satisfied

dX (Xt, X̂t|t−1) > r.

where r is a pre-specified constant. This policy ensure that
dX (Xt, X̂t|t) ≤ r. The objective then is to find the best control
strategy at the remote controller.

Once the event triggered policy is fixed, the above model
corresponds to a POMDP P with state St = (Xt, X̂t|t−1), ob-
servation Yt, and action At. Let M denote the corresponding
MDP, in which the controller has access to St.

We consider an abstract MDP M̃ with state space X which
is constructed using a state abstraction function ϕ(x, x̂) = x
and stochastic kernels λP (·|x) and λc(·|x) as Dirac delta mea-
sures on (x, x). Then, the dynamics P̃t of the abstract MDP
is equal to PX,t and the per-step cost c̃t is equal to ct. Thus,
MDP M̃ = ⟨X ,A, {PX,t}T−1

t=1 , {ct}Tt=1⟩. We assume that
M̃ satisfies Assumption 4 and there exist concave and non-
decreasing functions FPt , F

c
t : R≥0 → R≥0, t ∈ {1, . . . , T},

such that for any x, x′ ∈ X and a ∈ A, we have

dWas(PX,t(·|x, a), PX,t(·|x′, a)) ≤ FPt (dX (x, x′)) (27)

and ∣∣ct(x, a)− ct(x
′, a)

∣∣ ≤ F ct (dX (x, x′)). (28)

Assumption 4 implies that there exists an optimal policy for
MDP M̃, which we denote by πM̃. Moreover, it can be
verified that (27) and (28) implies Assumption 5.

2) Certainty equivalent policy: For this example, we con-
sider certainty equivalent policies with respect to the abstract
MDP M̃. Furthermore, we take the state estimate to be
Et(ht) = x̂t|t, which is recursively computed from the history
using (25). Then, the certainty equivalent policy is given by

µE
t (ht) = πM̃

t (x̂t|t).

3) Sub-optimality bound: We have assumed Assumption 4
and assumed sufficient conditions that imply Assumption 5.
Recall that the event-triggered sensor transmission policy
ensures that dX (Xt, X̂t|t) ≤ r. Therefore,

E[dX (ϕ(St), E(Ht))|ht] = E[dX (Xt, X̂t|t)|ht] ≤ r.

Hence, ηt ≤ r and Assumption 6 is satisfied. Furthermore, the
εt and δt in Theorem 2 can be upper bounded by

εt ≤ F ct (r) and δt ≤ FPt (r) + r.

Therefore, we can upper bound the sub-optimality of using the
certainty equivalent policy by the bound (15) in Theorem 2.
These bounds quantify the sub-optimality gap of certainty
equivalent control with event-triggered sensing.

F. Control of non-homogeneous multi-particle systems

1) System model: Consider a system consisting of n parti-
cles, where each particle i, i ∈ {1, . . . , n}, has a state Xi

t ∈ R.
The global state of the system is Xt = (X1

t , X
2
t , . . . , X

n
t )

⊺ ∈
Rn. The observation is given by

Yt = Xt +Nt

where Nt = (N1
t , N

2
t , . . . , N

n
t )

⊺ is the observation noise with
N i
t ∈ [−ri, ri] for some ri ≥ 0.
Let Mt =

∑n
i=1 α

iXi
t denote the weighted mean of the

global state, where αi, i ∈ {1, . . . , n}, are non-negative
weights that add to 1. We assume that the dynamics of each
particle is given by

Xi
t+1 = f̄(Mt, At,Wt) + f i(Xt, At,Wt) (29)

where At ∈ A is the control action at time t and {Wt}t≥1,
Wt ∈ W , is an independent and identically distributed process
with distribution PW .

Assumption 7 We assume the following.

1) There exists a Lf̄ ∈ [0,∞) such that for all m,m′ ∈ R
and a ∈ A,

dWas(Z,Z
′) ≤ Lf̄ |m−m′|. (30)

where Z := f(m, a,Wt) and Z ′ := f(m′, a,Wt).
2) There exists constants γi such that ∥f i∥∞ ≤ γi for i ∈

{1, . . . , n}.

The per-step cost is given by

c(Xt, At) = ℓ̄(Mt, At) + ℓ(Xt, At). (31)

Assumption 8 We assume the following.

1) The function ℓ̄ is Lℓ̄-Lipschitz, i.e. for all m,m′ ∈ R and
a ∈ A,

|ℓ̄(m, a)− ℓ̄(m′, a)| ≤ Lℓ̄|m−m′|. (32)

2) There exists a constant β such that ∥ℓ∥∞ ≤ β.

The above model is a POMDP P with state St = Xt,
observation Yt, action At, and per-step cost c(Xt, At).
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2) Certainty equivalent policy: We consider an abstract
MDP that focuses on the weighted mean of the global state.
The abstract state space is S̃ = R and the state abstraction
function ϕ : Rn → R is given by

ϕ((x1, x2, . . . , xn)⊺) =

n∑
i=1

αixi

with

ϕ−1(m) =
{
(x1, x2, . . . , xn)⊺ :

n∑
i=1

αixi = m
}
.

We assume that the metric on the abstract state space is
dS̃(m,m

′) = |m − m′| and take λP (·|m) and λc(·|m) to
be delta distributions at m1n, where 1n is the n-dimensional
vector of ones.

Therefore, the abstract per-step cost is given by

c̃(s̃, a) = c(s̃1n, a) = ℓ̄(s̃, a) + ℓ(s̃1n),

and the abstract state dynamics are given by

S̃t+1 = f̄(S̃t, At,Wt) +

n∑
i=1

αif i(S̃t1n, At,Wt).

The above model corresponds to an abstract MDP M̃. We
assume that M̃ satisfies Assumption 4.

We consider the weighted mean of the last observation as
an estimate of the abstract state, i.e.,

Et(ht) =
n∑
i=1

αiyit.

Then, the certainty equivalent policy is

µE
t (ht) = πM

t (E(ht)).

3) Sub-optimality bound: We have assumed that the ab-
stract model M̃ satisfies Assumption 4. We now show that
Assumption 5 is satisfied.

Lemma 1 Assumptions 7 and 8 imply Assumption 5 is satis-
fied with F ct and FPt defined as

F ct (r) = Lℓ̄r+2β and FPt (r) = Lf̄r+2

n∑
i=1

αiγi, r ∈ R.

See Appendix A for proof.
Furthermore, we have ηt ≤

∑n
i=1 α

iri and, therefore,
Assumption 6 is satisfied. Therefore, we can bound εt and
δt in Theorem 2 as

εt ≤ Lℓ̄r̄ + 2β and δt ≤ Lf̄ r̄ + 2γ̄

where r̄ =
∑n
i=1 α

iri and γ̄ =
∑n
i=1 α

iγi.
Therefore, we can upper bound the sub-optimality of using

the certainty equivalent policy by the bound (15) in Theorem 2,
which simplifies as follows:

WP,µE

t (ht)−WP
t (ht)

≤ 2
[
(T − t+ 1)(Lc̄r̄ + 2β) + (Lf̄ r̄ + 2γ̄)

T−1∑
τ=t

Lip(V M̃
τ+1)

]
.

(33)

Remark 4 Such models can arise in situations where there is
a local controller associated with each particle, and the local
controller ensures that the ∥f i∥∞ ≤ γi. Further, note that the
bound in (33) depends on r̄, which may be small even if some
of the {ri}ni=1 are large.

IV. ANALYSIS

In this section we provide the analysis for our main result.
As stated earlier, Theorem 1 is a special case of Theorem 2
obtained by taking S̃ = S and ϕ(s) = s. Therefore, we only
provide a proof of Theorem 2.

We start with some background on policy independent
beliefs, and the AIS theory, followed by the key lemmas and
proofs.

A. Policy independent beliefs

Consider an arbitrary history dependent policy µ for the
model P defined in Sec. II. We define the following two beliefs
which are commonly used in POMDPs:

• bt|t(·|ht) denotes the controller’s posterior distribution on
the current state St given the history ht under the policy
µ, i.e., for any Borel subset MS of S, bt|t(MS |ht) =
Pµ(St ∈ MS |ht). The belief bt|t(·|ht) is referred to as
the belief state. It is well known that it does not depend
on the choice of the history dependent policy µ [2], [3].

• bt+1|t(·, ·|ht, at) denotes the controller’s posterior distri-
bution on the next state St+1 and next observation Yt+1

given the history ht and action at under policy µ. Note
that for any Borel subsets MS and MY of S and Y , we
have

bt+1|t(MS ,MY |ht, at) =
∫
S
Pt(MS ,MY |st, at)bt|t(dst|ht).

Since the belief state bt|t(·|ht) does not depend on
the choice of the policy µ, it follows from the above
relationship that the same holds for bt+1|t(·, ·|ht, at) as
well. With a slight abuse of notation, we will continue to
use bt+1|t to denote its marginals on S or Y .

B. Approximate information states

The AIS theory [11] provides a framework to derive sub-
optimality bounds for a class of approximate solutions to
POMDPs. The key idea in this framework is the notion of
an approximate information state, which we formally define
below. Our definition is similar to that of [11] with two
differences. First, the analysis in [11] was done under the
assumption that the state and observation spaces are finite,
while we are working with Borel spaces. So, we include a mea-
surable selection assumption to ensure that the approximate
dynamic program obtained from the AIS has a well-defined
solution. Second, the analysis in [11] used general integral
probability metrics (IPMs) [37]. We restrict our discussion to
a specific choice of IPM (Wasserstein-1 distance), since that
is the form that is used in our results.

The discussion below is for the general POMDP model P
defined in Sec. II.



9

Definition 2 Given sequences ε = (ε1, . . . , εT ) and δ =
(δ1, . . . , δT−1) ∈ RT≥0, a process {Zt}t≥1, Zt ∈ Z , is called
an (ε, δ)-approximate information state (AIS) if there exist

• a sequence of history compression functions {σAIS
t }Tt=1,

where σAIS
t : Ht → Z with Zt = σAIS

t (Ht)
• a sequence of cost approximators {cAISt }Tt=1, where
cAISt : Z ×A → R

• a sequence of dynamics approximators {PAIS
t }T−1

t=1 ,
where PAIS

t : Z ×A → ∆(Z)

such that following three properties are satisfied:
(AP1) Approximately sufficient for performance evaluation:

for any time t ∈ {1, . . . , T} and any ht ∈ Ht and
at ∈ A, we have∣∣E[ct(St, at)|ht]− cAISt (σAIS

t (ht), at)
∣∣ ≤ εt

(AP2) Approximately sufficient for predicting itself: for any
time t ∈ {1, . . . , T − 1} and any ht ∈ Ht and at ∈ A,
define the stochastic kernel νt on Ht × At → ∆(Z)
as follows: for any Borel measurable subset MZ of Z ,

νt(MZ |ht, at) = P(Zt+1 ∈MZ |ht, at)

=

∫
Y
1{σAIS

t+1(ht, at, yt+1) ∈MZ}bt+1|t(dyt+1|ht, at).

Then, for any time t ∈ {1, . . . , T − 1}, we have

dWas

(
νt(·|ht, at), PAIS

t (·|σAIS
t (ht), at)

)
≤ δt.

(M) Measurable selection: The MDP MAIS := ⟨Z , A,
{PAIS

t }T−1
t=1 , {cAISt }Tt=1, T ⟩ satisfies measurable selec-

tion.
The tuple (σAIS, cAIS, PAIS), where each component is a se-
quence, is called an AIS-generator.

We can write a dynamic program for MAIS where the value
functions {V AIS

t }T+1
t=1 , V AIS

t : Z → R, are defined as follows.
We initialize V AIS

T+1(z) = 0 for all z ∈ Z and then recursively
define for t ∈ {T, T − 1, . . . , 1}

V AIS
t (zt) = min

a∈A

{
cAISt (zt, a) +

∫
Z
V AIS
t+1(z

′)PAIS
t (dz′|zt, a)

}
.

(34)
The measurable selection condition (M) implies that there ex-
ists a measurable selector πAIS

t : Z → A, t ∈ {1, . . . , T}, such
that πAIS

t (zt) is an arg min of the right hand side of (34) and the
functions V AIS

t are measurable. From standard results in MDP
theory [31], we know that the policy πAIS = (πAIS

1 , . . . , πAIS
T )

is an optimal policy for MAIS.
The main result of the AIS theory is the following:

Theorem 3 Define a history-dependent policy µAIS =
(µAIS

1 , . . . , µAIS
T ) for the POMDP P as follows: for any t ∈

{1, . . . , T} and any ht ∈ Ht, define

µAIS
t (ht) = πAIS(σAIS

t (ht)).

Then, for any t ∈ {1, . . . , T} and ht ∈ Ht, we have

WP,µAIS

t (ht)−WP
t (ht) ≤ 2αt (35)

where

αt = εt +

T−1∑
τ=t

[
δτ Lip(V

AIS
τ+1) + ετ+1

]
.

PROOF The result is the same as [11, Theorem 9], which
was stated under the assumption that S and A are finite sets
while we are working with Borel spaces. As argued earlier,
the measurable selection condition ensures that V AIS

t and πAIS
t

are well-defined and measurable. Under this assumption, the
approximation bound follows from exactly the same analysis
as in [11, Theorem 9]. ■

C. Key lemmas

The main idea of our sub-optimality bounds is to show that
the abstract state estimation functions Et, along with the per-
step cost c̃t (defined in (10)) and dynamics P̃t (defined in
(9)) of the abstract MDP M̃ form an AIS generator for an
appropriate choice of ε and δ. (E , c̃, P̃ ).

We first show that E , c̃ satisfy condition (AP1) of AIS.

Lemma 2 Under Assumptions 5 and 6, for any ht ∈ Ht and
at ∈ A, we have∣∣E[ct(St, at)|ht]− c̃t(Et(ht), at)

∣∣ ≤ F ct (ηt).

PROOF ∣∣E[ct(St, at)|ht]− c̃t(Et(ht), at)
∣∣

≤ E
[∣∣ct(St, at)− c̃t(Et(ht), at)

∣∣ | ht] (36)

We now consider the inner term for a fixed realization st,

|ct(st, at)− c̃t(Et(ht), at)|
(a)
=

∣∣∣∣∫
ϕ−1(Et(ht))

[
ct(st, at)− ct(s

′, at)
]
λct
(
ds′|Et(ht)

)∣∣∣∣
(b)

≤
∫
ϕ−1(Et(ht))

∣∣ct(st, at)− ct(s
′, at)

∣∣λct(ds′|Et(ht))
(c)

≤
∫
ϕ−1(Et(ht))

F ct (dS̃(ϕ(st), ϕ(s
′)))λct

(
ds′|Et(ht)

)
(d)
= F ct (dS̃(ϕ(st), Et(ht))). (37)

where (a) follows from definition of c̃t, (b) follows from
Jensen’s inequality, (c) follows from Assumption 5 and (d)
follows from the fact that for any s′ ∈ ϕ−1(Et(ht)), ϕ(s′) =
Et(ht) and that λct(ϕ

−1(Et(ht))|Et(ht)) = 1. Substituting (37)
in (36), we get∣∣E[ct(St, at)|ht]− c̃t(Et(ht), at)

∣∣
≤ E[F ct (dS̃(ϕ(St), Et(ht)))|ht]
(e)

≤ F ct
(
E[dS̃(ϕ(St), Et(ht)) | ht]

)
(f)

≤ F ct (ηt) (38)

where (e) follows from Jensen’s inequality and the concavity
of F ct and (f) follows from the definition of ηt. ■

In order to show that E , P̃ satisfy condition (AP2) of AIS,
we will use the following intermediate lemma.

Lemma 3 Under Assumption 5, for any st ∈ S, ŝt ∈ S̃ and
at ∈ A, we have that

dWas

(
PϕS,t(·|st, at), P̃t(·|ŝt, at)

)
≤ FPt

(
dS̃

(
ϕ(st), ŝt

))
.
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PROOF

dWas

(
PϕS,t(·|st, at), P̃t(·|ŝt, at)

)
= dWas

(
PϕS,t(·|st, at),

∫
ϕ−1(ŝt)

PϕS,t(·|s
′, at)λ

P (ds′|ŝt)
)

(a)

≤
∫
ϕ−1(ŝt)

dWas

(
PϕS,t(·|st, at), P

ϕ
S,t(·|s

′, at)
)
λP (ds′|ŝt)

(b)

≤
∫
ϕ−1(ŝt)

FPt

(
dS̃

(
ϕ(st), ϕ(s

′)
))
λP (ds′|ŝt)

= FPt

(
dS̃

(
ϕ(st), ŝt

))
, (39)

where (a) follows from the convexity of Wasserstein dis-
tance [38, Thm. 4.8] and (b) follows from Assumption 5. ■

Next we define a stochastic kernel ψ̂t : Ht × At → ∆(S̃),
which is analogous to νt defined in (AP2). For any ht ∈ Ht

and at ∈ A and Borel measurable subset MS̃ of S̃,

ψ̂t(MS̃ |ht, at) = P(Et+1(Ht+1) ∈MS̃ |ht, at)

=

∫
Y
1{Et+1(ht, at, yt+1) ∈MS̃}bt+1|t(dyt+1|ht, at) (40)

which is the conditional probability distribution of Ŝt+1 =
Et+1(Ht+1) given ht, at.

We also define the stochastic kernel ψ̃t : Ht×At → ∆(S̃),
which is used in the proof of the next lemma. For any ht ∈ Ht

and at ∈ A and Borel measurable subset MS̃ of S̃ ,

ψ̃t(MS̃ |ht, at) = P(S̃t+1 ∈MS̃ |ht, at)

=

∫
S
1{ϕ(st+1) ∈MS̃}bt+1|t(dst+1|ht, at)

=

∫
S
PϕS,t(MS̃ |st, at)bt|t(dst|ht, at), (41)

which is the conditional probability distribution of ϕ(St+1)
given ht, at.

The following lemma shows that Et, P̃t satisfy (AP2).

Lemma 4 Under Assumptions 5 and 6, for any ht ∈ Ht and
at ∈ A, we have

dWas(ψ̂t(·|ht, at), P̃t(·|Et(ht), at)) ≤ FPt (ηt) + ηt+1,

where ψ̂t(·|ht, at) is the probability distribution on S̃ defined
in (40).

PROOF Let ŝt = Et(ht). By triangle inequality, we have

dWas(ψ̂t(·|ht, at), P̃t(·|ŝt, at))
≤ dWas(ψ̂t(·|ht, at), ψ̃t(·|ht, at))
+ dWas(ψ̃t(·|ht, at), P̃t(·|ŝt, at)). (42)

Now we consider the two terms separately. The first term
of (42) can be bounded as follows.

dWas(ψ̂t(·|ht, at), ψ̃t(·|ht, at))
(a)
= inf

(Ŝ,S̃)∼Γ(ψ̂t,ψ̃t)
E
[
dS̃(Ŝ, S̃)

]
(b)

≤ E[dS̃
(
Et+1(Ht+1), ϕ(St+1)

)
|ht, at]

= E[E[dS̃
(
Et+1(Ht+1), ϕ(St+1)

)
|Ht+1]|ht, at]

≤ E[ηt+1|ht, at] = ηt+1 (43)

where, in (a), Γ(ψ̂t, ψ̃t) denotes the set of all joint mea-
sures with marginals ψ̂t(·|ht, at) and ψ̃t(·|ht, at), and in (b),
we use the fact that conditioned on ht, at, the marginal
distributions of Et+1(Ht+1) and ϕ(St+1) are ψ̂t(·|ht, at)
and ψ̃t(·|ht, at) respectively; therefore, the joint distribution
on (Et+1(Ht+1), ϕ(St+1)) conditioned on (ht, at) lies in
Γ(ψ̂t, ψ̃t).

The second term of (42) can be bounded as follows.

dWas(ψ̃t(·|ht, at), P̃t(·|ŝt, at))

= dWas

(∫
S
PϕS,t(·|st, at)bt|t(dst|ht), P̃t(·|ŝt, at)

)
(a)

≤
∫
S
dWas

(
PϕS,t(·|st, at), P̃t(·|ŝt, at)

)
bt|t(dst|ht)

(b)

≤
∫
S
FPt

(
dS̃(ϕ(st), ŝt)

)
bt|t(dst|ht)

= E[FPt
(
dS̃(ϕ(St), Et(ht))|ht]

)
(c)

≤ FPt
(
E
[
dS̃(ϕ(St), Et(ht))|ht

])
≤ FPt (ηt). (44)

where (a) follows from the convexity of Wasserstein dis-
tance [38, Thm. 4.8], and (b) follows from Lemma 3, and (c)
follows from Jensen’s inequality and the concavity of FPt . ■

D. Proof of Theorem 2

Under Assumptions 5 and 6, Lemmas 2 and 4 ensure
that conditions (AP1) and (AP2) of AIS are satisfied with
εt = F ct (ηt), δt = FPt (ηt) + ηt+1. Assumption 4 ensures that
condition (M) of AIS is satisfied. Thus, the result follows from
Theorem 3.

V. CONCLUSION

In this paper, we introduced a generalization of the cer-
tainty equivalence principle for control policies in partially
observable Markov decision processes (POMDPs). Our ap-
proach applies optimal state-feedback policies from the fully
observable MDP to state estimates, without restricting to
specific types of estimators such as MMSE. We established
theoretical performance bounds that characterize their degree
of sub-optimality. Specifically, we leveraged the approximate
information state (AIS) framework [11] to quantify the impact
of estimation errors on control performance, deriving bounds
in terms of the smoothness of the system dynamics and the
per-step cost function.

To illustrate the practical relevance of our results, we
examined several examples that demonstrate that certainty
equivalent policies can perform near-optimally when state
estimation errors are small. This suggests that in scenarios
where exact optimal policies are computationally intractable,
certainty equivalent policies offer a practical and efficient
alternative, making effective use of available state estimates to
achieve reliable decision-making while maintaining tractabil-
ity.
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APPENDIX A
PROOF OF LEMMA 1

We prove the two parts separately.
1) Proof of (13): Arbitrarily pick s, s′ ∈ S. Let m =

ϕ(s),m′ = ϕ(s′) ∈ S̃ = R. Then, by triangle inequality we
have

|c(s, a)− c(s′, a)| ≤ |ℓ̄(m, a)− ℓ̄(m′, a)|+ |ℓ(s, a)− ℓ(s′, a)|
≤ Lℓ̄|m−m′|+ 2β := F ct (|m−m′|).

2) Proof of (12): Arbitrarily pick (m, a) ∈ S × A. Let
M(w) = f̄(m, a,w) +

∑n
i=1 α

if i(m1n, a, w) and M ′(w′) =
f̄(m′, a, w′) +

∑n
=1 α

if i(m′1n, a, w′). The left hand side
of (12) is the Wasserstein distance between random variables
M(W ) and M ′(W ′), where W and W ′ are identically dis-
tributed random variables with marginal distribution PW . Let
Γ denote all joint couplings between W and W ′ such that the
marginals are PW . Then,

dWas(M(W ),M ′(W ′)) = inf
(W,W ′)∼Γ

E[|M(W )−M(W ′)|]

≤ E[|M(W )−M ′(W )|]

where in the last equation we have chosen a specific coupling
W =W ′.
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Now observe that

E[|M(W )−M ′(W )|]

= E

[∣∣∣∣f̄(m, a,W )− f̄(m′, a,W )

+

n∑
i=1

αi
(
f i(m1n, a,W )− f i(m′1n, a,W )

)∣∣∣∣]
≤ E

[
|f̄(m, a,W )− f̄(m′, a,W )|

]
+

n∑
i=1

αiE

[∣∣∣∣(f i(m1n, a,W )− f i(m′1n, a,W )

∣∣∣∣]
≤ Lf̄ |m−m′|+ 2

n∑
i=1

αiγi := FPt (|m−m′|)

where the last inequality holds from Assumption 7.
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