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Model approximation in MDPs with unbounded
per-step cost

Berk Bozkurt, Aditya Mahajan, Ashutosh Nayyar, and Yi Ouyang

Abstract—We consider the problem of designing a control
policy for an infinite-horizon discounted cost Markov decision
process M when we only have access to an approximate model
M̂. How well does an optimal policy π̂⋆ of the approximate
model perform when used in the original model M? We answer
this question by bounding a weighted norm of the difference
between the value function of π̂⋆ when used in M and the
optimal value function of M. We then extend our results and
obtain potentially tighter upper bounds by considering affine
transformations of the per-step cost. We further provide upper
bounds that explicitly depend on the weighted distance between
cost functions and weighted distance between transition kernels
of the original and approximate models. We present examples to
illustrate our results.

Index Terms—Markov decision processes, model approxima-
tion, Bellman operators, integral probability metrics.

I. INTRODUCTION

We consider the problem of model approximation in Markov
decision processes (MDPs), i.e., the problem of designing an
optimal controller for an MDP using an approximate model
(e.g. designing gait controller of a robot using a simulation
model). Let M denote the true model of the system and
let M̂ denote the approximate model. Suppose we solve the
approximate model M̂ to identify a policy π̂⋆ which is optimal
for M̂. How well does π̂⋆ perform in the original model M?

Several variations of this question have been studied in the
MDP literature. Perhaps the earliest work investigating this
is that of Fox [2], who investigated approximating MDPs
by a finite state approximation. In a series of papers, Whitt
generalized these results to approximating general MDPs via
state aggregation [3]–[5]. Similar results for state discretization
were obtained in [6], [7], state and action discretization in [8]
and for models with state dependent discounting in [9]. A
general framework to view model approximation using the lens
of integral probability metrics was presented by Müller [10].
There have been considerable advances on these ideas in recent
years [11]–[13], including generalizations to partially observed
models [14], [15]. However, these approximation results are
restricted to models with bounded per-step cost.
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A related question is that of continuity of optimal policy
in model approximation. In particular, if {M̂n}n≥1 is a
sequence of models that converge to M in some sense, do
the corresponding optimal policies {π̂⋆

n}n≥1, where π̂⋆
n is

optimal for M̂n, converge to an optimal policy for M? One
of the earliest work in this direction is that of Fox [16],
who studied the continuity of state discretization procedures.
Sufficient conditions for continuity of value functions on
model parameters were presented in [17]. There is a series
of recent papers which significantly generalize these results,
including characterizing conditions under which the optimal
policy is continuous in model parameters [11]–[13], [18]–[22].

The question of model approximation is also relevant for
learning optimal policies when the system model is unknown.
Therefore, several notions related to model approximation
have been studied in the reinforcement learning literature
including approximate homeomorphisms [23], [24], bisimula-
tion metrics [25]–[27], state abstraction [28], and approximate
latent state models [29], [30].

The basic results of model approximation may be character-
ized as follows. Let M and M̂ be two MDP models with the
same state space S and action space A. Let π̂⋆ : S → A be
an optimal policy for model M̂. Let V π̂⋆

: S → R denote the
performance of policy π̂⋆ in model M and let V ⋆ : S → R

denote the optimal value function of model M. Most of the
existing literature on model approximation provides bounds
on ∥V π̂⋆ −V ⋆∥∞ := sups∈S

∣∣V π̂⋆

(s)−V ⋆(s)
∣∣ in terms of the

parameters of the models M and M̂.
However, such bounds are not appropriate for models with

non-compact state spaces and unbounded per-step cost. To
illustrate this limitation, consider the linear quadratic regu-
lation (LQR) problem in which the objective is to minimize
the infinite-horizon expected discounted total cost. Let M and
M̂ be two such LQR models and π̂⋆ be the optimal policy of
M̂. It is well known that

V ⋆(s) = s⊺Ps+ q and V π̂⋆

(s) = s⊺P π̂⋆

s+ qπ̂
⋆

,

where s ∈ Rns is the state, P is the solution of an appropriate
Riccati equation, P π̂⋆

is a solution of an appropriate Lyapunov
equation (which depends on the gain of policy π̂⋆) and q and
qπ̂

⋆

are constants (where qπ̂
⋆

depends on P π̂⋆

). See Sec. IV-D
for exact details. For this model, and for many models with
unbounded per-step cost, ∥V ⋆ − V π̂⋆∥∞ = ∞. Therefore,
the approximation bounds on ∥V ⋆ − V π̂⋆∥∞ provided by the
existing literature will also evaluate to ∞ and, as a result, do
not provide any insights into the quality of the approximation.

The standard approach to deal with unbounded per-step
cost is to use a weighted norm rather than a sup norm [10],
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[12], [13], [31], [32]. However, in most of the existing lit-
erature a weighted norm is used to establish existence and
uniqueness of a dynamic programming solution. As far as
we are aware, the only works which use the weighted norm
for model approximation in models with unbounded per-step
cost are [12] and [13, Chapter 4], where the authors establish
sufficient conditions under which V̂ ⋆

n → V ⋆ and V π̂⋆
n → V ⋆,

where V̂ ⋆
n and π̂⋆

n are value function and optimal policy of
a discretized model with grid cells of size less than 1/n.
However, they do not establish the approximation error when
a specific approximate model is used.

Our main contributions in this paper are as follows:
• We provide upper bounds on the approximation error in

terms of the weighted-norm:

∥V π̂⋆

− V ⋆∥w := sup
s∈S

∣∣V π̂⋆

(s)− V ⋆(s)
∣∣

w(s)
,

where w : S → [1,∞) is a weight function. Our bounds
are derived using a new functional, which we call the
Bellman mismatch functional.

• In the literature on the existence of dynamic programming
solution for models with unbounded per-step cost, it
is assumed that the weight function is such that the
dynamics under all policies satisfies a Lyaponov stability-
type condition [10], [12], [13], [31], [32]. In contrast,
we assume that such a stability condition is satisfied for
only a few policies, including the optimal policies of the
original and the approximate model, and policies obtained
by using optimal and approximate value functions as one-
step look ahead value function. (See Assumptions 2–4 for
the precise definition).

• We then extend our results and obtain potentially tighter
upper bounds by considering affine transformations of
the per-step cost. These transformations allow us to trade
off between the mismatches in the dynamics with the
mismatches in the per-step cost.

• We present examples to illustrate that for suitable choices
of the weight functions and affine transformations our
bounds are tighter than existing sup-norm bounds, even
for models with bounded per-step cost. In addition,
we revisit the LQR example mentioned previously and
show that the weighted-norm approximation bounds
provide meaningful approximation guarantees for such
unbounded-cost models.

• We provide further upper bounds that explicitly depend
on the weighted distance between cost functions and
weighted distance between transition kernels of the orig-
inal and approximate models. In the special case when
w(s) ≡ 1, our bounds recover the existing sup-norm
bounds [10], [28], [30]

Notation: We use calligraphic letters to denote sets (e.g.
S), uppercase letters to denote random variables (e.g. S) and
lowercase letters to denote their realizations (e.g. s). The space
of probability measures on a set S is expressed by ∆(S).
Subscripts indicate time, so St denotes a random variable at
time t. S1:t is a short hand notation for (S1, . . . , St).

We use R to denote the set of real numbers, Z≥0 to
denote the set of non-negative integers, P(·) to denote the

probability of an event, E[·] to denote expectation of a
random variable, and 1{·} to denote indicator of an event.
For functions v1, v2 : S → R, the notation v1 ≤ v2 denotes
that v1(s) ≤ v2(s) for all s ∈ S.

II. PRELIMINARIES

A. Markov decision processes

A discrete-time infinite-horizon discounted cost Markov
decision process (MDP) is a tuple M = ⟨S,A, P, c, γ⟩ where

• S is the state space, which is assumed to be a Borel space.
The state at time t is denoted by St ∈ S.

• A is the action space, which is assumed to be a Borel
space. The action at time t is denoted by At ∈ A.

• P : S × A → ∆(S) is a controlled stochastic kernel,
which specifies the system dynamics. In particular, for
any time t and any s1:t ∈ St, a1:t ∈ At and any Borel
set B ⊂ S, we have

P(St+1 ∈ B | S1:t = s1:t, A1:t = a1:t)

= P(St+1 ∈ B | St = st, At = at) =: P (B | st, at).

• c : S × A → R is the per-step cost function which is
assumed to be measurable. We further assume that the
per-step cost is bounded from below, i.e., there exists
a finite constant cmin such that c(s, a) ≥ cmin for all
(s, a) ∈ S ×A.

• γ ∈ (0, 1) is the discount factor.
A stochastic kernel π : S → ∆(A) is called a (time-

homogeneous) policy. Let Π denote the space of all time-
homogeneous (and possibly randomized) policies. The per-
formance of any policy π ∈ Π starting from an initial state
s ∈ S is given by

V π(s) = Eπ

[ ∞∑
t=1

γt−1c(St, At)

∣∣∣∣ S1 = s

]
(1)

where Eπ denotes the expectation with respect to the proba-
bility measure on all system variables induced by the choice
of policy π. The function V π is called the value function of
policy π.

A policy π⋆ ∈ Π is called an optimal policy if

V π⋆

(s) ≤ V π(s), ∀s ∈ S,∀π ∈ Π. (2)

Since we consider Borel state and action spaces with possibly
unbounded (from above) per-step cost function, an optimal
policy is not guaranteed to exist. If an optimal policy exists, its
value function is called the optimal value function. We focus
on MDPs for which optimal value function exists and can be
obtained via dynamic programming. We formally define this
as dynamic programming solvability in the next section.

B. Dynamic programming solvability

Let V denote the space of measurable functions from S →
[ cmin

1−γ ,∞) ∪ {+∞}.

Definition 1 (Weighted norm) Given a measurable weight
function w : S → [1,∞), we define the weighted norm ∥ · ∥w
on V as follows: for any v ∈ V ,
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∥v∥w = sup
s∈S

|v(s)|
w(s)

.

Vw =
{
v ∈ V : ∥v∥w < ∞

}
and Pw =

{
p ∈ ∆(S) :∫

wdp < ∞
}

.

It can be easily verified that ∥ · ∥w is a norm and that Vw is
a Banach space.

Remark 1 When the weight function w(s) ≡ 1, then the
weighted norm ∥v∥w is equal to the sup-norm ∥v∥∞ :=
sups∈S |v(s)|. In this case, Vw is the set of all bounded
functions in V and Pw is the set of all probability measures
on S.

Definition 2 (Bellman operators) Define the following two
operators:

• For any π ∈ Π, define the Bellman operator Bπ : V → V
as follows: for any v ∈ V ,

[Bπv](s) = cπ(s) + γ

∫
S
v(s′)Pπ(ds

′ | s),

where cπ(s) =
∫
A c(s, a)π(da|s), and Pπ(ds

′|s) =∫
A π(da|s)P (ds′|s, a).

• Define the Bellman optimality operator B⋆ as follows:
for any v ∈ V ,

[B⋆v](s) = inf
a∈A

{
c(s, a) + γ

∫
S
v(s′)P (ds′ | s, a)

}
.

Definition 3 (One-step greedy policy) We say that a policy
π ∈ Π is one-step greedy with respect to a value function
v ∈ V if Bπv = B⋆v. We denote the set of all one-step
greedy policies with respect to v by G(v).

Definition 4 (Dynamic programming solvability) An MDP
M is said to be dynamic programming solvable (DP-solvable,
for short) with respect to a weight function w : S → [1,∞) if
the following conditions are satisfied:

1) For any v ∈ Vw, B⋆v ∈ Vw.
2) There exists a V ⋆ ∈ Vw such that for all π ∈ Π,

V ⋆(s) ≤ V π(s), ∀s ∈ S

with equality at all states for at least one π ∈ Π.
3) V ⋆ is a fixed point of B⋆, i.e., it satisfies the dynamic

programming equation

V ⋆ = B⋆V ⋆.

MDPs with finite state and action spaces are always DP-
solvable. For MDPs with general state and action spaces,
there are several conditions in the literature which imply DP-
solvability. See [31] for an overview.

C. Weighted-norm stability

Definition 5 ((κ,w) stability of a policy) Given an MDP
M and a tuple (κ,w), where κ is a positive constant with
γκ < 1 and w is a function from S to [1,∞), we say a policy
π ∈ Π is (κ,w) stable if

∥cπ∥w < ∞, (3)

where cπ(s) =
∫
A c(s, a)π(da|s), and∫

S
w(s′)Pπ(ds

′ | s) ≤ κw(s), ∀s ∈ S, (4)

where Pπ(ds
′|s) =

∫
A π(da|s)P (ds′|s, a).

Let ΠS(κ,w) denote the set of all (κ,w)-stable policies for
MDP M. Note that depending on the choice of (κ,w), the set
ΠS(κ,w) might be empty.

Remark 2 As stated in Remark 1, when w(s) ≡ 1, the
weighted norm is the same as the sup-norm. Furthermore, with
w(s) ≡ 1, inequality (4) of Definition 5 holds with κ = 1 for
any policy π. Thus, for the case of w(s) ≡ 1, ΠS(1, w ≡ 1)
is the set of all policies π for which ∥cπ∥∞ < ∞.

For the model approximation results that are developed
later, we will assume that certain policies are (κ,w) stable.
It is worthwhile to contrast (κ,w)-stability of a policy with
a stronger assumption that is typically imposed in the litera-
ture [10], [12], [31], [32]. To make that comparison, we define
the following (which is the same as [32, Assumption 8.3.2]):

Definition 6 ((κ̄, w̄) stability of the model) Given an
MDP M and a tuple (κ̄, w̄), where κ̄ is a positive constant
with γκ̄ < 1 and w̄ is a measurable function from S to
[1,∞), we say that M is (κ̄, w̄) stable if there exists a
cmax < ∞ such that

∥c(·, a)∥w̄ ≤ cmax, ∀a ∈ A (5)

and ∫
S
w̄(s′)P (ds′ | s, a) ≤ κ̄w̄(s), ∀s ∈ S,∀a ∈ A. (6)

Remark 3 It is shown in [32] that (κ̄, w̄) stability of the
model is sufficient for DP-solvability. The notion of (κ,w)
stability of a policy is weaker. In particular, (κ̄, w̄) stability
of the model implies that any (time-homogeneous) policy is
also (κ̄, w̄) stable. However, (κ,w) stability of a particular
policy does not imply (κ,w) stability of the model. For a
given weight function, the smallest value of κ that satisfies (4)
is given by

κw = sup
s∈S

∫
S w(s′)Pπ(ds

′|s)
w(s)

(7)

while the smallest value of κ̄ that satisfies equation (6) is given
by

κ̄w = sup
s∈S,a∈A

∫
S w(s′)P (ds′|s, a)

w(s)
. (8)

It is clear from the definitions that κw ≤ κ̄w. We show via
an example in Sec. IV-E that using the weaker notion of
(κ,w) stability of a policy drastically increases the range of
possible choices of the weight function and leads to tighter
approximation bounds.

Lemma 1 Given an MDP M and a tuple (κ,w), for any
policy π ∈ ΠS(κ,w), we have the following:

1) If v ∈ Vw, then Bπv ∈ Vw.
2) Bπ is a ∥ · ∥w-norm contraction with contraction factor

γκ, i.e., for any v1, v2 ∈ Vw, we have

∥Bπv1 −Bπv2∥w ≤ γκ∥v1 − v2∥w.
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TABLE I: Notation for the variables used for the two models

Variable Model M Model M̂

Dynamics P P̂
per-step cost c ĉ

Value function of policy π V π V̂ π

Optimal value function V ⋆ V̂ ⋆

Optimal policy π⋆ π̂⋆

Bellman operator of policy π Bπ B̂π

Bellman optimality operator B⋆ B̂⋆

Set of one-step greedy policies w.r.t. v G(v) Ĝ(v)
Set of (κ,w)-stable policies ΠS(κ,w) Π̂S(κ,w)

3) The fixed point equation

V = BπV

has a unique solution in Vw and that solution is V π .

See Appendix A for proof.

III. PROBLEM FORMULATION AND APPROXIMATION
BOUNDS

A. Model approximation in MDPs

We are interested in the problem of model approximation
in MDPs. In particular, suppose there is an MDP M =
⟨S,A, P, c, γ⟩ of interest, but the system designer has access
to only an approximate model M̂ = ⟨S,A, P̂ , ĉ, γ⟩. Note
that both models M and M̂ have the same state and action
spaces, but have different transition dynamics and per-step
cost. As before, we assume that both c and ĉ are bounded
from below. Thus, there exists a finite constant cmin such that
c(s, a) ≥ cmin and ĉ(s, a) ≥ cmin for all (s, a) ∈ S ×A.

We further assume that both models M and M̂ are well-
behaved in the following sense, which we assume to hold in
the rest of the paper.

Assumption 1 Models M and M̂ are DP-solvable.

We will use the superscript ˆ (hat) to denote vari-
ables/operators corresponding to the approximate model, as
summarized in Table I. We are interested in the following
approximation problem.

Problem 1 Let π̂⋆ be an optimal policy for the approximate
model M̂. For each start state s, provide a bound for the loss
in performance when using π̂⋆ in the original model M, i.e.,
bound V π̂⋆

(s)− V ⋆(s).

B. Modeling Assumptions

In the rest of the paper, we will work with a fixed (κ,w)
where κ is a non-negative constant such that γκ < 1 and
w : S → [1,∞). Note that ΠS(κ,w) and Π̂S(κ,w) denote
the sets of (κ,w)-stable policies for models M and M̂,
respectively. Also, G(v) and Ĝ(v) denote the sets of one-
step greedy polices with respect to v for models M and M̂,
respectively. We impose the following additional assumption
on the models.

Assumption 2 We assume that
1) The set G(V ⋆) ∩ΠS(κ,w) is nonempty.

2) The set Ĝ(V̂ ⋆) ∩ΠS(κ,w) ∩ Π̂S(κ,w) is nonempty.

When G(V ⋆) ∩ ΠS(κ,w) ̸= ∅, we can show that any policy
π ∈ G(V ⋆) ∩ ΠS(κ,w) is optimal, i.e., V π = V ⋆. From
now on, we assume that the optimal policy π⋆ for model M
belongs to G(V ⋆) ∩ ΠS(κ,w). Similarly, we assume that the
optimal policy π̂⋆ for model M̂ belongs to Ĝ(V̂ ⋆)∩ΠS(κ,w)∩
Π̂S(κ,w). Since π⋆ ∈ ΠS(κ,w) and π̂⋆ ∈ Π̂S(κ,w), we have
by Lemma 1 that V ⋆, V̂ ⋆ ∈ Vw. The extra intersection in the
second part of Assumption 2 ensures that π̂⋆ ∈ ΠS(κ,w) and,
therefore, V π̂⋆ ∈ Vw.

For some of the results, we impose one of the following
assumptions:

Assumption 3 The set G(V̂ ⋆) ∩ΠS(κ,w) is nonempty.

Assumption 4 The set Ĝ(V ⋆) ∩ Π̂S(κ,w) is nonempty.

Assumption 3 implies that using V̂ ⋆ as the one-step look
ahead value function in the original model produces a stable
policy. Similarly, Assumption 4 implies that using V ⋆ as the
one-step look ahead value function in the approximate model
produces a stable policy.

Recall that (κ,w)-model stability implies that every time-
homogeneous policy is (κ,w) stable. Therefore, if models
M and M̂ are (κ,w)-model stable, then (i) Assumption 2
is equivalent to the non-emptiness of G(V ⋆) and Ĝ(V̂ ⋆); and
(ii) Assumption 3 (resp. Assumption 4) is equivalent to non-
emptiness of G(V̂ ⋆) (resp. Ĝ(V ⋆)).

As the following example illustrates, for specific models it
is possible to use the structural properties of value functions
and optimal policies to guarantee that Assumptions 2–4 are
satisfied without explicitly computing the greedy policies used
in these assumptions.

Example 1 (Inventory management) Consider an inventory
management problem with state space S = R and action space
A = R≥0. The dynamics are given by

St+1 = St +At −Nt,

where the demand Nt is assumed to be an i.i.d. stochastic
process with support [0, Nmax]. The per-step cost is given as

c(s, a) = pa+ c̄(s),

where c̄(s) = chs1{s≥0}−css1{s<0} and p, ch, cs are positive
constants.

The optimal policy for Example 1 is a base-stock pol-
icy [33], [34], i.e, there exists an optimal base-stock level σ
such that the optimal policy is π⋆(s) = max{0, σ − s}.

Proposition 1 In the inventory management model, consider
a weight function w(s) = 1 + ℓc̄(s) such that

1 + ℓmax{ch, cs}Nmax <
1

γ
. (9)

Pick any κ ∈ [1 + ℓmax{ch, cs}Nmax, 1/γ). Then, all base-
stock policies with base-stock level σ ∈ (0, Nmax] are (κ,w)
stable.

See Appendix B for proof.
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Now consider two inventory management models M and
M̂ that differ in the demand distribution (with the same
support). If the parameters of both models satisfy (9), then,
Proposition 1 implies that the set Λbase of all base stock
policies with base-stock level in (0, Nmax] is a subset of
ΠS(κ,w) and Π̂S(κ,w). This fact can be used to obtain
simpler sufficient conditions for Assumptions 2–4 by simply
replacing the stable policy sets with Λbase. These simpler
sufficient conditions can be verified by standard dynamic
programming arguments for inventory models [34].

C. Approximation Bounds

Definition 7 (Bellman mismatch functionals) Suppose As-
sumptions 1 and 2 hold. Define the following functionals:

• For any π ∈ ΠS(κ,w) and π̂ ∈ Π̂S(κ,w), define
the Bellman mismatch functional Dπ,π̂

w : Vw → R≥0 as
follows: for any v ∈ Vw,

Dπ,π̂
w v = ∥Bπv − B̂π̂v∥w.

• For any π ∈ ΠS(κ,w) ∩ Π̂S(κ,w), define the Bellman
mismatch functional Dπ

w : Vw → R≥0 as follows: for any
v ∈ Vw,

Dπ
wv = Dπ,π

w v = ∥Bπv − B̂πv∥w.

• Define the Bellman optimality mismatch functional
D⋆

w : Vw → R≥0 as follows: for any v ∈ Vw,

D⋆
wv = ∥B⋆v − B̂⋆v∥w.

In the rest of the paper, we assume that w is fixed. Therefore,
we omit the subscript w in the mismatch functionals in the
rest of the discussion.

Lemma 2 (Policy error bounds) For any two policies π ∈
ΠS(κ,w) and π̂ ∈ Π̂S(κ,w), we have

∥V π − V̂ π̂∥w ≤ 1

1− γκ
min

{
Dπ,π̂V π,Dπ,π̂V̂ π̂

}
. (10)

See Appendix C for proof.

Lemma 3 (Value error bounds) The following hold:
1) If Assumptions 1 and 2 hold, we have

∥V ⋆ − V̂ ⋆∥w ≤ 1

1− γκ
min{Dπ⋆,π̂⋆

V ⋆,Dπ⋆,π̂⋆

V̂ ⋆}.
(11)

2) If Assumptions 1, 2 and 3 hold, we have

∥V ⋆ − V̂ ⋆∥w ≤ 1

1− γκ
D⋆V̂ ⋆. (12)

3) If Assumptions 1, 2 and 4 hold, we have

∥V ⋆ − V̂ ⋆∥w ≤ 1

1− γκ
D⋆V ⋆. (13)

See Appendix D for proof.
We can establish the following theorem by combining policy

and value error bounds.

Theorem 1 We have the following bounds on V π̂⋆ − V ⋆:

1) Under Assumptions 1 and 2, we have∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 1

1− γκ

[
Dπ̂⋆

V̂ ⋆ +Dπ⋆,π̂⋆

V̂ ⋆
]

and∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 1

1− γκ
Dπ̂⋆

V ⋆ +
(1 + γκ)

(1− γκ)2
Dπ⋆,π̂⋆

V ⋆.

2) Under Assumptions 1, 2, and 3, we have∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 1

1− γκ

[
Dπ̂⋆

V̂ ⋆ +D⋆V̂ ⋆
]
.

3) Under Assumptions 1, 2, and 4, we have∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 1

1− γκ
Dπ̂⋆

V ⋆ +
(1 + γκ)

(1− γκ)2
D⋆V ⋆.

See Appendix E for proof.

Remark 4 Since V π̂⋆

(s) ≥ V ⋆(s), we have

V π̂⋆

(s)− V ⋆(s) ≤
∥∥V π̂⋆

− V ⋆
∥∥
w
w(s). (14)

Thus, the bounds on
∥∥V π̂⋆ − V ⋆

∥∥
w

stated in Theorem 1
provide a bound on the performance loss when π̂⋆ is used
in the original model M with a start state s.

D. Discussion

Obtaining a solution of Problem 1 requires some knowledge
of the model. If we were to obtain an exact expression for
∥V ⋆−V π̂⋆∥w, we would need to compute V ⋆ and V π̂⋆

, which
are the fixed points of B⋆ and Bπ̂⋆

, respectively. Computing
V ⋆ and V π̂⋆

requires starting with an initial choice V0 and then
iteratively computing {(B⋆)nV0}n≥1 and {(Bπ̂⋆

)nV0}n≥1 un-
til convergence. In contrast, the upper bounds of Theorem 1,
part 2, are in terms of the mismatch Bellman operators, which
require one update of the Bellman operators B⋆ and Bπ̂⋆

. It
is worth highlighting that we do not need to compute V ⋆ or
π⋆ in order to use the bounds of Theorem 1, part 2. Thus,
our upper bounds provide significant computational savings,
especially when computing a Bellman update in the original
model is computationally expensive.

Another feature of our results is that they characterize the
sensitivity of the optimal performance to model approxima-
tion. To make this notion precise, we need to define a notion
of distance between the original and approximate model. We
elaborate on this direction in Sec. V. We first present a few
generalizations of the bounds.

E. Bounds under stability of deterministic open loop policies

Let πa denote the deterministic open loop policy that selects
action a with probability 1 in all states, i.e., πa(s) = a for all
s. In this section, we assume that all such policies are (κ,w)
stable in M and M̂, and simplify the bounds of Theorem 1.

Assumption 5 For each a ∈ A, πa ∈ ΠS(κ,w) ∩ Π̂S(κ,w).
Moreover G(V̂ ⋆) and Ĝ(V ⋆) are nonempty.

Assumption 5 is weaker than (κ,w) stability of the model
because Assumption 5 does not imply a uniform upper bound
on ∥c(·, a)∥w over all a ∈ A.
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Lemma 4 Assumptions 1 and 5 imply Assumptions 3 and 4.

See Appendix F for proof.

Definition 8 Suppose Assumption 5 holds. Define the Bell-
man maximum mismatch functional Dmax

w : Vw → R≥0 as
follows: for any v ∈ Vw,

Dmax
w v = sup

a∈A
Dπa

w v = sup
a∈A

∥Bπav − B̂πav∥w.

In the sequel, we omit the subscript w from the functional
defined above for simplicity.

Lemma 5 Under Assumptions 1, 2 and 5, the Bellman mis-
match functionals satisfy the following for any v ∈ Vw:

sup
π∈ΠS(κ,w)∩Π̂S(κ,w)

Dπv = Dmaxv and D⋆v ≤ Dmaxv.

(15)

See Appendix G for proof.

Theorem 2 Under Assumptions 1, 2 and 5, we have the
following two bounds on V π̂⋆ − V ⋆:

1) Bound in terms of properties of V̂ ⋆:∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 2

1− γκ
Dmax(V̂ ⋆).

2) Bound in terms of properties of V ⋆:∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 2

(1− γκ)2
Dmax(V ⋆).

PROOF The result follows from Theorem 1 (parts 2 and 3),
Lemma 4, and Lemma 5. ■

F. Generalized bounds based on affine transformations of the
cost

Given an MDP M and a tuple α = (α1, α2) of real
numbers where α1 > 0, define a new MDP Mα with the
same dynamics as M but with the cost function modified to
α1c(s, a) + α2. For any policy π, let V π

α denote the value
function of π in Mα. Similarly, let V ⋆

α denote the optimal
value function for Mα.

Lemma 6 The following properties hold for any s ∈ S:
1) For any policy π, V π

α (s) = α1V
π(s) + α2/(1− γ).

2) If π⋆ is optimal for M, then it is also optimal for Mα

and V ⋆
α(s) = α1V

⋆(s) + α2/(1− γ).
3) For any policy π and weight function w : S → [1,∞),

∥V π
α − V ⋆

α∥w = α1∥V π − V ⋆∥w.

PROOF Properties 1 and 2 are immediate consequences of the
definitions. Property 3 follows from properties 1 and 2. ■

Lemma 6 provides an alternative way of bounding the perfor-
mance loss when the optimal policy π̂⋆ for the approximate
model M̂ is used in the true model M. We can first view M̂
as an approximation for Mα and bound the approximation
error ∥V π̂⋆

α − V ⋆
α∥w in Mα. Part 3 of Lemma 6 implies

that the approximation error in M is simply 1/α1 times the
approximation error in Mα.

To bound the approximation error in Mα, let Bπ
α and B⋆

α

denote the Bellman operator and Bellman optimality operator

for Mα. Let Gα(v) denote the set of one-step greedy policies
with respect to v in model Mα.

Note that for any (α1, α2) with α1 > 0, we have that: (i) If
M is DP-solvable, then so is Mα; (ii) the set of (κ,w)-stable
policies is the same for M and Mα. Consequently, if any of
Assumptions 1, 2 or 5 holds for M and M̂, then it also holds
for Mα and M̂. Instead of Assumptions 3 and 4, we need
the following alternative assumptions.

Assumption 6 The set Gα(V̂
⋆) ∩ΠS(κ,w) is nonempty.

Assumption 7 The set Ĝ(V ⋆
α) ∩ Π̂S(κ,w) is nonempty.

We can now define mismatch functionals (analogous to
those defined in Definitions 7 and 8) using Mα and M̂.

Definition 9 Suppose Assumptions 1 and 2 hold. Define the
following functionals:

• For any π ∈ ΠS(κ,w) and π̂ ∈ Π̂S(κ,w), define
the Bellman mismatch functional Dπ,π̂

α : Vw → R≥0 as
follows: for any v ∈ Vw,

Dπ,π̂
α v = ∥Bπ

αv − B̂π̂v∥w.

• For any π ∈ ΠS(κ,w) ∩ Π̂S(κ,w), define the Bellman
mismatch functional Dπ

α : Vw → R≥0 as follows: for any
v ∈ Vw

Dπ
αv = Dπ,π

α v = ∥Bπ
αv − B̂πv∥w.

• Define the Bellman optimality mismatch functional
D⋆

α : Vw → R≥0 as follows: for any v ∈ Vw,

D⋆
αv = ∥B⋆

αv − B̂⋆v∥w.

Definition 10 Suppose Assumption 5 holds. Define the Bell-
man maximum mismatch functional Dmax

α : Vw → R≥0 as
follows: for any v ∈ Vw,

Dmax
α v = sup

a∈A
Dπa

α v = sup
a∈A

∥Bπa
α v − B̂πav∥w.

We can now use Lemma 6 to present variants of Theorem 1
and Theorem 2.

Theorem 3 For any α = (α1, α2) with α1 > 0, we have the
following bounds on V π̂⋆ − V ⋆:

1) Under Assumptions 1 and 2, we have∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 1

α1(1− γκ)

[
Dπ̂⋆

α V̂ ⋆ +Dπ⋆,π̂⋆

α V̂ ⋆
]

and∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 1

α1(1− γκ)
Dπ̂⋆

α (α1V
⋆)

+
(1 + γκ)

α1(1− γκ)2
Dπ⋆,π̂⋆

α (α1V
⋆).

2) Under Assumptions 1, 2 and 6, we have∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 1

α1(1− γκ)

[
Dπ̂⋆

α V̂ ⋆ +D⋆
αV̂

⋆
]
.

3) Under Assumptions 1, 2 and 7, we have∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 1

α1(1− γκ)
Dπ̂⋆

α (α1V
⋆)

+
(1 + γκ)

α1(1− γκ)2
D⋆

α(α1V
⋆).
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See Appendix H for the proof.

Theorem 4 Under Assumptions 1, 2 and 5, we have the
following two bounds on V π̂⋆ − V ⋆:

1) Bound in terms of properties of V̂ ⋆:∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 2

α1(1− γκ)
Dmax

α V̂ ⋆.

2) Bound in terms of properties of V ⋆:∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 2

α1(1− γκ)2
Dmax

α (α1V
⋆).

PROOF The result follows from Theorem 3 (parts 2 and 3),
Lemma 5 and the fact that Assumption 5 implies Assump-
tions 6 and 7 (using the same argument as Lemma 4). ■

Some remarks:
• It is possible to optimize the bounds in Theorems 3 and 4

by optimizing over the choice of α. For Theorem 3,
parts 2 and 3, we need to ensure that the choice of α
satisfies Assumption 6 or 7, as appropriate.

• For (α1, α2) = (1, 0), Mα = M and hence, the bounds
in Theorems 3 and 4 are identical to those in Theorems
1 and 2, respectively.

• Thus, if we optimize over appropriate (α1, α2), then the
bounds of Theorems 3 and 4 are tighter than those of
Theorems 1 and 2. For instance, if M̂ = M(2,1), then
the bounds of Theorems 3 and 4 are zero for α = (2, 1),
while the bounds of Theorems 1 and 2 may be positive.

IV. SOME INSTANCES OF THE MAIN RESULTS

A. Inventory management

In this section, we illustrate the results of Theorem 1 for
the inventory management problem described in Example 1
in Sec. III-B, with state space S = {−Smax,−Smax +
1, . . . Smax}, action space A = {0, 1, . . . , Smax}, and dynam-
ics

St+1 =
[
St +At −Nt

]Smax

−Smax

where [·]Smax

−Smax
denotes a function which clips its value be-

tween −Smax and Smax. For this example, we assume the
demand Nt is an i.i.d. Binomial(n, q) process. We denote such
a model by M = (Smax, γ, n, q, ch, cs, p).

We consider two models:
• True model M = (500, 0.75, 10, 0.4, 4.0, 2, 5).
• Approx. model M̂ = (500, 0.75, 10, 0.5, 3.8, 2, 5).

Since both models have finite state and action spaces, As-
sumption 1 is satisfied (with any choice of weight function).
We choose the weight function to have a similar shape as
the per-step cost. In particular, we take w(s) = 1 + (1.5 ·
10−2)

[
ĉhs1{s≥0} − ĉss1{s<0}

]
, where ĉh and ĉs denote the

per-unit holding and shortage costs of the approximate model,
respectively. We verify that Assumptions 2 and 3 are satisfied
with κ = 1.07.

The weighted-norm bound of Theorem 1, part 2 implies that

V π̂⋆

(s)− 1

1− γκ

[
Dπ̂⋆

V̂ ⋆+D⋆V̂ ⋆
]
w(s) ≤ V ⋆(s) ≤ V π̂⋆

(s).

(16)
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Fig. 1: Comparison of the bounds on V ⋆(s) based on
weighted-norm and sup-norm.

−10 −5 0 5 10
state

−900
−700
−500
−300
−100

100
300
500

va
lu

e

V π̂ ⋆

weighted norm lower bound
weighted norm error band

(a) weighted-norm bound

−10 −5 0 5 10
state

−900
−700
−500
−300
−100

100
300
500

va
lu

e

V π̂ ⋆

sup norm lower bound
sup norm error band

(b) sup-norm bound

Fig. 2: Zoomed-in versions of the bounds of Fig. 1

We compare these bounds with the sup-norm bounds obtained
by taking w ≡ 1.

For the models M and M̂ described above, we compute
the policy π̂⋆ using value iteration, compute V π̂⋆

using policy
evaluation, and then plot the upper bound V π̂⋆

, and the
weighted- and sup-norm lower bounds on V ⋆(s) given by the
left hand side of (16) in Fig. 1.

Fig. 1 shows that the weighted-norm bound is slightly
tighter than the sup-norm bound for most states. To better
compare the error bounds, we zoom into the region of S̄ :=
{−10,−9, . . . , 10} in Fig. 2, where the weighted-norm bound
is significantly better than the sup-norm bound.

The optimal policy for the inventory management model
described above is a base-stock policy [33]: π⋆(s) = max(0,
σ − s), where there is an optimal base-stock level σ and
whenever the inventory is less than σ, the optimal action
is to order goods so that the inventory becomes σ. For the
model M̂, the base-stock level σ = 2. Since the demand has
finite support of {0, 1, . . . , 10}, after an initial transient period,
the inventory level always remains between {−8,−7, . . . , 2}.
Thus, we care about the performance of an approximate
policy in this region and, here, the weighted-norm bounds are
substantially tighter than the sup-norm bounds. These results
show that even for finite state and action spaces, weighted-
norm bounds can be better than sup-norm bounds.

B. Initial State dependent weight function

Suppose there is a family W of weight functions such that
for every w ∈ W , there exists a κw < 1/γ such that (κw, w)
satisfies Assumption 2. Then, we can strengthen the result
of (14) as follows:

V π̂⋆

(s)− inf
w∈W

{∥∥V π̂⋆

− V ⋆
∥∥
w
w(s)

}
≤ V ⋆(s) ≤ V π̂⋆

(s).

(17)
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Fig. 3: Lower bounds obtained by different weight functions.
Note that the curve corresponding to ℓ = 0 is not visible in
the zoomed in plot (b).

Note that the choice of weight function that gives the tightest
bound can vary with the start state s. We illustrate the benefit
of such a state dependent choice of weight function for the
inventory management model of the previous section.

We consider the following family of weight functions for
the inventory management model:

W =
{
1 + ℓc̄(s) : ℓ ∈ {0, 0.5 · 10−2, 10−2, . . . , 2.5 · 10−2}

}
,

(18)
where c̄(s) = ĉhs1{s≥0} − ĉss1{s<0}. Note that for ℓ = 0,
w(s) = 1 which corresponds to the sup-norm. For each
w ∈ W , we compute the smallest κw such that Assumption 2
is satisfied as per (7) and further verify that this value
satisfies Assumption 3. We plot the lower bounds on V ⋆(s)
corresponding to each w ∈ W in Fig. 3. As can be seen from
the figure, the best choice of weight function depends on the
state. Minimizing over all w ∈ W as per (17) gives a tighter
bound. This tighter lower bound is highlighted in Fig. 3 using
the shaded area shown in red.

C. Generalized bounds based on cost transformation

The generalized bounds of Theorem 3, part 2, imply that

V π̂⋆

(s)− 1

α1(1− γκ)

[
Dπ̂⋆

α V̂ ⋆ +D⋆
αV̂

⋆
]
w(s) ≤ V ⋆(s)

≤ V π̂⋆

(s) (19)

To show that this bound can be better than that of (16) obtained
from Theorem 1, part 2, we consider the setup of Sec. IV-B
with ℓ = 1.5× 10−2 and compare α = (0.98, 0.8) with α =
(1, 0). We verify that the appropriate assumptions are satisfied
and plot the two bounds in Fig. 4. As can be seen from the
plots, the bound corresponding to Theorem 3 is tighter.
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Fig. 4: Lower bounds obtained by different choices of α.

D. Linear quadratic regulator

In this section, we use the linear quadratic regulator (LQR)
to show that weighted norm bounds of Theorem 1 provide
meaningful results for models with unbounded per-step cost.
Consider a LQR problem with state space S = Rns and action
space A = Rna . The dynamics are given by

st+1 = Ast +Bat + wt,

where A and B are system matrices of appropriate dimensions
and {wt}t≥1 is an i.i.d. zero-mean noise process with finite
covariance matrix ΣW . The per-step cost is given by

c(st, at) = s⊺tQst + a⊺tRat,

where Q and R are, respectively, positive semidefinite and
positive definite matrices of appropriate dimensions. We will
denote this model by M = (A,B,Q,R,ΣW , γ) where γ is
the discount factor.

Under standard assumptions of stabilizability and detectabil-
ity, it is known that the optimal value function is

V ⋆(s) = s⊺Ps+ q,

where P is the unique positive semidefinite solution of the
discounted Riccati equation

P = Q+γA⊺PA−γ2A⊺PB(R+γB⊺PB)−1B⊺PA, (20)

and q = γ Tr(ΣWP )/(1 − γ). Furthermore, the optimal
policy is given as π⋆(s) = −K⋆s where K⋆ = γ(R +
γB⊺PB)−1B⊺PA is the optimal gain matrix [34].

We consider two models, a true model M =
(A,B,Q,R,ΣW , γ) and an approximate model M̂ =
(Â, B̂, Q̂, R̂, Σ̂W , γ). We take the weight function to be
w(s) = 1+ ℓs⊺s, where ℓ > 0 is a parameter. Under standard
conditions of stabilizability and detectability (see [34]), both
models M and M̂ satisfy Assumption 1. Let P and P̂ denote
the solutions of the Riccati equations corresponding to models
M and M̂, and let π⋆(s) = −K⋆s and π̂⋆(s) = −K̂⋆s denote
the optimal policies of models M and M̂.

For any linear policy π(s) = −Ks, we use the notation
AK = A − BK and ÂK = Â − B̂K. We further use Kµ⋆

to denote the gain matrix of the (unique) policy µ⋆ ∈ G(V̂ ⋆).
We impose the following assumption.

Assumption 8 The models M and M̂ are such that

bΣ := max
{
1 + ℓTr(ΣW ), 1 + ℓTr(Σ̂W )

}
≤ 1

γ

and

bσ := max
{
σ2
1(AK⋆), σ2

1(AK̂⋆), σ
2
1(ÂK̂⋆), σ

2
1(AKµ⋆ )

}
≤ 1

γ

where σ1(A) is the operator norm of A (i.e., the largest
singular value of A).

Lemma 7 Assumption 8 implies Assumptions 2 and 3.

PROOF Fix a policy π(s) = Ks. Eq. (3) is always satisfied
because

∥cπ∥w = sup
s∈S

s⊺(Q+K⊺RK)s

1 + ℓs⊺s
≤ 1

ℓ
ρ(Q+K⊺RK) < ∞
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where ρ(·) denotes the spectral radius of a matrix.
Moreover largest value of κ for which (4) is satisfied is

given by (7), which simplifies to

κw = sup
s∈S

E[w(st+1)|st = s]

w(s)

= sup
s∈S

1 + ℓTr(ΣW ) + ℓs⊺A⊺
KAKs

1 + ℓs⊺s

≤ max(1 + ℓTr(ΣW ), σ2
1(AK)).

Thus, if Assumption 8 holds, then Assumptions 2 and 3 hold
with κ := max{bΣ, bσ}. ■

Then, the result of Theorem 3, part 2 simplifies as follows:

Proposition 2 Under Assumptions 1 and 8, we have for α1 =
1 and any α2,∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 1

1− γκ

[
max{ρ(D⋆)/ℓ, |dΣ + α2|}

+max{ρ(Dπ̂⋆

)/ℓ, |dΣ + α2|}
]
, (21)

where ρ(·) denotes the spectral radius of a matrix and

D⋆ =
(
Q+ γA⊺P̂A− γ2A⊺P̂B(R+ γB⊺P̂B)−1B⊺P̂A

)
− P̂ (22)

Dπ̂⋆

=
(
Q+ (K̂⋆)⊺RK̂⋆ + γA⊺

K̂⋆
P̂AK̂⋆

)
− P̂ (23)

K̂⋆ = γ(R̂+ γB̂⊺P̂ B̂)−1B̂⊺P̂ Â, (24)

and

dΣ = γ Tr((ΣW − Σ̂W )P̂ ). (25)

By taking α2 = −dΣ we obtain∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 1

ℓ(1− γκ)

[
ρ(D⋆) + ρ(Dπ̂⋆

)
]
. (26)

See Appendix I for proof.

Remark 5 Under Assumptions 1 and 8, the bound obtained
in (26) does not depend on the Riccati solution (P,K) of the
true model M.

Remark 6 Consider the case when M̂ is the same model as
M except Σ̂W = 0. In this case, D⋆ = 0 and Dπ̂⋆

= 0.
Therefore, from (26), we get that ∥V π̂⋆ − V ⋆∥w = 0, which
corresponds to the classical certainty equivalence principle of
LQR control.

E. Advantage of using (κ,w) stability of policy over (κ,w)
stability of model

As mentioned in Remark 3, it is typically assumed in the
literature that the model is (κ̄, w̄) stable, while we impose
a weaker assumption that certain policies are (κ,w) stable.
In this section, we illustrate two advantages of imposing the
weaker assumption.

First, when the per-step cost is unbounded in the actions,
as is the case for the LQR problem considered in Sec. IV-D,
the model M is not (κ̄, w̄) stable for any choice of weight
function w̄. However, as illustrated in Sec. IV-D, specific
policies may be (κ,w) stable for w(s) = 1 + s⊺s. Thus,
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Fig. 5: Lower bounds obtained using stability of the model.
Note that the curves corresponding to ℓ = 1.50 · 10−4 and
ℓ = 1.75 · 10−4 are not visible in both plots.

imposing a weaker assumption of stability allows us to derive
approximation bounds for a larger class of models.

Second, imposing a weak assumption of stability allows us
to derive tighter approximation bounds. To illustrate this, we
reconsider the inventory management problem in the setting of
Sec. IV-B. In Sec. IV-B, we had computed the lower bounds
of (16) when using (κ,w) that satisfy Definition 5. Now, we
consider (κ̄, w̄) that satisfy Definition 6 instead. In particular,
consider a family of weight functions W as defined in (18).
For each w̄ ∈ W , we compute the smallest κ̄w̄ such that (6) is
satisfied as per (8). The largest value of ℓ for which κ̄w̄ < 1/γ
is ℓ = 1.75 · 10−4.

We plot the corresponding lower bound given in (16) in
Fig. 5. As can be seen from the plot, in this case the weight
function w̄(s) ≡ 1 (equivalent to the sup-norm) gives the
tightest lower bound. But, as was seen by the bounds of
Fig. 3, the bounds obtained by weighted functions in class W
were significantly tighter. This highlights the importance of
imposing the weaker assumption of (κ,w)-stability of policy
rather than the (κ̄, w̄)-stability of the model.

V. INTEGRAL PROBABILITY METRICS (IPM) AND BOUNDS
BASED ON DISTANCE BETWEEN MODELS

In this section, we provide upper bounds for the results of
Sec. III that can be computed in terms of the distance between
models M and M̂. To define such a distance, we first start
with the definition of integral probability metrics (IPM) [10].

A. Integral probability metrics (IPM)

Definition 11 Let F be a convex and balanced subset of Vw.
Then, the IPM distance (w.r.t. F) between two probability laws
ν1, ν2 ∈ Pw is given by1

dF(ν1, ν2) = sup
f∈F

∣∣∣∣ ∫ fdν1 −
∫

fdν2

∣∣∣∣.
Definition 12 In the setting of Definition 11, the Minkowski
functional of any measurable function f ∈ Vw is defined as

ρF(f) = inf
{
ρ ∈ R>0 :

f

ρ
∈ F

}
.

Note that if for every positive ρ, f/ρ ̸∈ F, then ρF(f) = ∞.

1Since νi ∈ Pw , i ∈ {1, 2}, we have
∫
fdνi < ∞ for any f ∈ Vw .
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An immediate consequence of the above two definitions is
that for any measurable function f ∈ Vw,∣∣∣∣∫ fdν1 −

∫
fdν2

∣∣∣∣ ≤ ρF(f)dF(ν1, ν2). (27)

Many of the commonly used metrics on probability spaces are
IPMs. For example

• Weighted total variation distance, denoted by dTV,w,
corresponds to F = FTV,w := {f ∈ Vw : oscw(f) ≤ 1},
where oscw(f) = sups,s′∈S×S |f(s) − f(s′)|/(w(s) +
w(s′)) [35]–[37]. For this case, ρF(f) = oscw(f). In
the special case when w(s) = 1 for all s ∈ S, the
weighted total variation distance reduces to total variation
distance [10], [38], which we denote by dTV. In this
case, F = FTV := {f ∈ Vw≡1 : 1

2 span(f) ≤ 1} and
ρF(f) =

1
2 span(f), where span(f) = sup(f)− inf(f).

• Wasserstein-1 distance. Suppose (S, dS) is a metric
space Define FWas,w := {f ∈ Vw : Lip(f) ≤ 1} where
Lip(f) denotes the Lipschitz constant of a function f .
Then, for F = FWas,w, Eq (27) holds for ρF(f) =
Lip(f). Moreover dF(ν1, ν2) ≤ dWas(ν1, ν2), where
dWas is the Wasserstein-1 distance [38], [39].

B. Weighted distance between two MDP models

Note that if a policy π is (κ,w) stable, then Eq. (4) implies
that Pπ(·|s) ∈ Pw for every s ∈ S. Therefore, Assumption 2
implies that for all s ∈ S, Pπ⋆(·|s), Pπ̂⋆(·|s), P̂π̂⋆(·|s) ∈ Pw

and Assumption 5 implies that for all (s, a) ∈ S×A, we have
P (·|s, a), P̂ (·|s, a) ∈ Pw.

We now define two notions of weighted distance between
two MDP models.

Definition 13 (Distance between MDP models) Given two
MDP models M = ⟨S,A, P, c, γ⟩ and M̂ = ⟨S,A, P̂ , ĉ, γ⟩,
a weight function w : S → [1,∞) and an IPM dF as defined
in Definition 11, we define the following

1) Distance between models for given policies: Given
deterministic policies π for model M and π̂ for model
M̂ such that Pπ(·|s), P̂π̂(·|s) ∈ Pw for all s ∈ S, define

εα(π, π̂) := sup
s∈S

∣∣α1cπ(s) + α2 − ĉπ̂(s)
∣∣

w(s)
,

δF(π, π̂) := sup
s∈S

dF
(
Pπ(·|s

)
, P̂π̂

(
·|s)

)
w(s)

.

2) Maximal distance between models: Under Assump-
tion 5, define

εmax
α := sup

(s,a)∈S×A

|α1c(s, a) + α2 − ĉ(s, a)|
w(s)

,

δmax
F := sup

(s,a)∈S×A

dF
(
P (·|s, a), P̂ (·|s, a)

)
w(s)

.

Note that the distances defined above depend on the weight
function w, but we don’t explicitly capture that dependence in
the notation.

C. IPM based approximation bounds

Lemma 8 We have the following bounds for different mis-
match functionals:

1) If policies π and π̂ are such that for all s ∈ S, Pπ(·|s),
P̂π̂(·|s) ∈ Pw, then for all v ∈ Vw,

Dπ,π̂
α v ≤ εα(π, π̂) + γρF(v)δF(π, π̂).

2) If Assumption 6 is satisfied,

D⋆
αV̂

⋆ ≤ εα(µ
⋆, π̂⋆) + γρF(V̂

⋆)δF(µ
⋆, π̂⋆),

for all µ⋆ ∈ Gα(V̂
⋆) ∩ΠS(κ,w) (see Assumption 6).

3) If Assumption 7 is satisfied,

D⋆
α(α1V

⋆) ≤ εα(π
⋆, µ̂⋆) + α1γρF(V

⋆)δF(π
⋆, µ̂⋆),

for all µ̂⋆ ∈ Ĝ(V ⋆
α) ∩ Π̂S(κ,w) (see Assumption 7).

4) If Assumption 5 is satisfied, then for all v ∈ Vw,

Dmax
α v ≤ εmax

α + γρF(v)δ
max
F .

See Appendix J for proof.
Substituting the results of Lemma 8 in Theorem 3 and

Theorem 4, we obtain the following:

Theorem 5 We have the following bounds on V π̂⋆ − V ⋆:
1) Under Assumptions 1 and 2, we have∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 1

α1(1− γκ)

[
εα(π̂

⋆, π̂⋆) + εα(π
⋆, π̂⋆)

+ γρF(V̂
⋆)
(
δF(π̂

⋆, π̂⋆) + δF(π
⋆, π̂⋆)

)]
and∥∥V π̂⋆

− V ⋆
∥∥
w

≤ 1

α1(1− γκ)

[
εα(π̂

⋆, π̂⋆) + α1γρF(V
⋆)δF(π̂

⋆, π̂⋆)
]

+
1 + γκ

α1(1− γκ)2
[
εα(π

⋆, π̂⋆) + α1γρF(V
⋆)δF(π

⋆, π̂⋆)
]
.

2) Under Assumptions 1, 2 and 6, we have∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 1

α1(1− γκ)

[
εα(π̂

⋆, π̂⋆) + εα(µ
⋆, π̂⋆)

+ γρF(V̂
⋆)
(
δF(π̂

⋆, π̂⋆) + δF(µ
⋆, π̂⋆)

)]
for all µ⋆ ∈ Gα(V̂

⋆) ∩ΠS(κ,w) (see Assumption 6).
3) Under Assumptions 1, 2 and 7, we have∥∥V π̂⋆

− V ⋆
∥∥
w

≤ 1

α1(1− γκ)

[
εα(π̂

⋆, π̂⋆) + α1γρF(V
⋆)δF(π̂

⋆, π̂⋆)
]

+
1 + γκ

α1(1− γκ)2
[
εα(π

⋆, µ̂⋆) + α1γρF(V
⋆)δF(π

⋆, µ̂⋆)
]
.

for all µ̂⋆ ∈ Ĝ(V ⋆
α) ∩ Π̂S(κ,w) (see Assumption 7).

4) Under Assumptions 1, 2 and 5, we have∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 2

α1(1− γκ)

[
εmax
α + γρF(V̂

⋆)δmax
F

]



11

and∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 2

α1(1− γκ)2

[
εmax
α + α1γρF(V

⋆)δmax
F

]
.

The bounds of Theorem 5 may be specialized for
specific choices of IPMs. We present these bounds in
terms of (εmax

α , δmax
F ) and V̂ ⋆. The bounds in terms of

(εα(π
⋆, π̂⋆), δF(π

⋆, π̂⋆)) etc. and/or V ⋆ can be expressed in a
similar manner.

Corollary 1 Under Assumptions 1, 2 and 5, we have the
following bounds on V π̂⋆ − V ⋆:

1) Bound in terms of total-variation distance:∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 2

α1(1− γκ)

[
εmax
α

+ γ sup
s∈S
a∈A

dTV(P (·|s, a), P̂ (·|s, a))
w(s)

span(V̂ ⋆)

2

]
.

2) Bound in terms of Wasserstein-1 distance:∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 2

α1(1− γκ)

[
εmax
α

+ γ sup
s∈S
a∈A

dWas(P (·|s, a), P̂ (·|s, a))
w(s)

Lip(V̂ ⋆)

]
.

3) Bound in terms of weighted total variation distance:∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 2

α1(1− γκ)

[
εmax
α

+ γ sup
s∈S
a∈A

dTV,w(P (·|s, a), P̂ (·|s, a))
w(s)

oscw(V̂
⋆)

]
.

Parts 1 and 2 of Corollary 1 may be viewed as weighted
generalization of approximation results presented in [10], [28],
[30] (some of those results assumed that the approximate
model has a smaller state space than the original model).

D. Performance loss in using certainty equivalent control

Certainty equivalence refers to the following design method-
ology to determine a control policy for a stochastic control
problem. Replace the random variables in the stochastic con-
trol problem by their (conditional) expectations, solve the
resulting deterministic control problem to determine a feed-
back control policy, and use the resulting certainty equivalent
control policy in the original stochastic system [40], [41].
It is well known that for systems with linear dynamics and
quadratic cost (LQ problems), certainty equivalent control
policies are optimal. But this is not the case in general. In this
section, we use the results of Theorem 5 to characterize the
performance loss when using certainty equivalence for general
dynamics with additive noise.

Consider a system with state space Rn, action space Rm,
and dynamics

St+1 = f(St, At) +Nt (28)

where f is a measurable function and {Nt}t≥1 is a zero-mean
i.i.d. noise sequence with control law νN . The per-step cost is
given by c(St, At).

Now consider a deterministic model obtained by assuming
that the noise sequence in (28) takes its expected value, i.e.,
the dynamics are

St+1 = f(St, At). (29)

The per-step cost is the same as before.
Let M denote the stochastic model and M̂ denote the

deterministic model. Then, the certainty equivalent design
is to use the control policy π̂⋆ in original stochastic model
M. Suppose Assumptions 1, 2, and 5 are satisfied for some
(κ,w). We use the Wasserstein-1 distance based bounds in
Corollary 1 to bound ∥V π̂⋆−V ⋆∥w, where we take α = (1, 0)
for simplicity. We assume that there is some norm ∥ · ∥ on
Rn and the Wasserstein-1 distance and Lipschitz constant are
computed with respect to this norm.

Since the costs are the same for both models, εmax
α = 0.

We now characterize δmax. By Kantorovich-Rubinstein dual-
ity [38], Wasserstein-1 distance is equivalent to

dWas(νX , νY ) = inf
(X̃,Ỹ ) : X̃∼νX ,Ỹ∼νY

E[∥X̃ − Ỹ ∥]. (30)

Due to the additive nature of the dynamics and (30), we have
that for a fixed (s, a), the Wasserstein-1 distance between
P (·|s, a) and P̂ (·|s, a) is equal to E[∥N∥]. Thus,

δmax
FWas

= sup
(s,a)∈S×A

E[∥N∥]
w(s)

≤ E[∥N∥]

Thus, by Corollary 1, part 2, we get

∥V π̂⋆

− V ⋆∥w ≤ 2γ

1− γκ
E[∥N∥] Lip(V̂ ⋆). (31)

This bound precisely quantifies the engineering intuition that
certainty equivalent control laws are good when the noise is
“small”.

Remark 7 The right hand side of (31) does not depend on
the weight function (provided the weight function satisfies
Assumption 2). Suppose the per-step cost is such that cmin ≥ 0
and w = 1 + V ⋆ satisfies Assumption 2 for some κ < 1/γ.
Then, Eq. (31) implies that

V ⋆(s) ≤ V π̂⋆

(s) ≤
(
1+

2γ

1− γκ
E[∥N∥] Lip(V̂ ⋆)

)(
1+V ⋆(s)

)
.

This inequality may be viewed as a generalization of the
approximation bounds of [42] to dynamical systems.

VI. CONCLUSION

In this paper, we present a series of bounds on the weighted
approximation error when using the optimal policy of an
approximate model M̂ in the original model M. For each
bound, we have two types of bounds: one which depends on
the value function V̂ ⋆ of the approximate model M̂ and the
other which depends on the value function V ⋆ of the original
model M. The first type of bound is more useful in practice
because one would obtain V̂ ⋆ when computing the optimal
policy of the approximate model M̂. However, the second
type of bound is a theoretical upper bound that may be useful
for obtaining bounds for reinforcement learning algorithms,
e.g., in obtaining sample complexity bounds.
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Our results rely on using an appropriate (κ,w) such that
certain policies are (κ,w) stable. The choice of the weight
function w impacts the tightness of the bounds. Understanding
how to choose weight functions is an interesting research
direction.

In this paper, we assumed that the approximate model
M̂ was given. However, often the approximate model is a
design choice. For example, when solving continuous state
models, we may decide how to quantize the state space. The
approximation bounds obtained in this paper may be useful
in guiding the design of such approximate models. They may
also be useful in generalizing the convergence guarantees and
regret bounds of reinforcement learning algorithms to models
with unbounded per-step cost.
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APPENDIX A
PROOF OF LEMMA 1

Proof of part 1: Fix a state s ∈ S. For a policy π ∈
ΠS(κ,w) and a value function v ∈ Vw, we have∣∣∣∣Bπv(s)

w(s)

∣∣∣∣
(a)

≤
∣∣∣∣cπ(s)w(s)

∣∣∣∣+ γ

∣∣∣∣∫
S
Pπ(ds

′ | s) v(s
′)

w(s′)

w(s′)

w(s)

∣∣∣∣
(b)

≤ ∥cπ∥w + γ∥v∥w
∣∣∣∣∫

S
Pπ(ds

′ | s)w(s
′)

w(s)

∣∣∣∣
(c)

≤ ∥cπ∥w + γ∥v∥wκ < ∞,
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where (a) follows from the triangle inequality, (b) follows
from the definition of ∥ · ∥w and (c) follows from the fact that
π is (κ,w) stable.

Proof of part 2: Fix a state s ∈ S. We have∣∣∣∣ [Bπv1 −Bπv2](s)

w(s)

∣∣∣∣
= γ

∣∣∣∣∫
S
Pπ(ds

′ | s)
[
v1(s

′)− v2(s
′)

w(s′)

]
w(s′)

w(s)

∣∣∣∣
(a)

≤ γ∥v1 − v2∥w
∣∣∣∣∫

S
Pπ(ds

′ | s)w(s
′)

w(s)

∣∣∣∣
(b)

≤ γκ∥v1 − v2∥w

where (a) holds from the definition of ∥ · ∥w and (b) holds
because π is (κ,w) stable.

Proof of part 3: From parts 1 and 2 of Lemma 1, we know
that Bπ : Vw → Vw is a contraction. Since Vw is a complete
metric space (under the ∥ · ∥w norm), it follows from Banach
fixed point theorem that Bπ has a unique fixed point F in Vw.
If V π

n denotes the n-step discounted cost for policy π, then it
can be shown that V π

n+1 = BπV π
n and that V π

n ∈ Vw for all
n. Thus, by Banach fixed point theorem, V π

n converges to the
fixed point F of Bπ in the ∥ · ∥w norm. Since convergence in
∥ · ∥w norm implies pointwise convergence, we have F (s) =
limn→∞ V π

n (s) for all s ∈ S. Furthermore, since per-step costs
are bounded from below, we have that for all s ∈ S,

lim
n→∞

V π
n (s) = lim

n→∞
Eπ

[ n∑
t=1

γt−1c(St, At)

]
= Eπ

[
lim
n→∞

n∑
t=1

γt−1c(St, At)

]
= V π(s)

where the second equality follows from the monotone conver-
gence theorem when cmin ≥ 0 (the case of cmin < 0 follows
from a similar argument by shifting {V π

n }n≥0 to make it non-
negative and monotone).

APPENDIX B
PROOF OF PROPOSITION 1

Consider a base-stock policy π with threshold σ ∈
(0, Nmax]. For the cost, simple algebra implies that

cπ(s) ≤ pmax{σ − s, 0}+max{ch, cs}|s|

Therefore, ∥cπ∥w < ∞.
For the dynamics, we can exploit the piecewise linear nature

of the weight function to show that

sup
s∈S

∫
S w(s′)P

(
ds′|s, π(s)

)
w(s)

≤ 1 + ℓmax{ch, cs}Nmax.

Hence, any policy with base-stock level
σ ∈ (0, Nmax] is (κ,w) stable for any choice of
κ ∈ [1 + ℓmax{ch, cs}Nmax, 1/γ).

APPENDIX C
PROOF OF LEMMA 2

Consider∥∥V π − V̂ π̂
∥∥
w
=

∥∥BπV π − B̂π̂V̂ π̂
∥∥
w

≤
∥∥BπV π − B̂π̂V π

∥∥
w
+

∥∥B̂π̂V π − B̂π̂V̂ π̂
∥∥
w

≤ Dπ,π̂V π + γκ
∥∥V π − V̂ π̂

∥∥
w

(32)

where the first inequality follows from triangle inequality, and
the last from the definition of Bellman mismatch functional
and Lemma 1 as π̂ ∈ Π̂S(κ,w). Re-arranging the terms in
(32), we obtain∥∥V π − V̂ π̂

∥∥
w
≤ 1

1− γκ
Dπ,π̂V π. (33)

Next consider∥∥V π − V̂ π̂
∥∥
w
=

∥∥BπV π − B̂π̂V̂ π̂
∥∥
w

≤
∥∥BπV π −BπV̂ π̂

∥∥
w
+
∥∥BπV̂ π̂ − B̂π̂V̂ π̂

∥∥
w

≤ γκ
∥∥V π − V̂ π̂

∥∥
w
+Dπ,π̂V̂ π̂ (34)

where the first inequality follows from triangle inequality,
and the last from Lemma 1 as π ∈ ΠS(κ,w) and from the
definition of Bellman mismatch functional. Re-arranging the
terms in (34), we obtain∥∥V π − V̂ π̂

∥∥
w
≤ 1

1− γκ
Dπ,π̂V̂ π̂. (35)

Combining (33) and (35) establishes (10).

APPENDIX D
PROOF OF LEMMA 3

Proof of part 1: The result follows by using Lemma 2 with
policies π = π⋆ and π̂ = π̂⋆, in which case V π⋆

= V ⋆ and
V̂ π̂⋆

= V̂ ⋆.
Proof of part 2: If B⋆ were a ∥ · ∥w-norm contraction,

then we could have used the exact same proof argument as
in proof of part 1. However, we have not established that B⋆

is a ∥ · ∥w-norm contraction under Assumptions 1, 2 and 3.2

So, we need a different proof argument. We use the shorthand
notation [v]w to denote sups∈S v(s)/w(s) (note that there is
no absolute value sign around v(s)).

From Assumption 3, we know that G(V̂ ⋆)∩ΠS(κ,w) ̸= ∅.
Let µ⋆ ∈ G(V̂ ⋆) ∩ΠS(κ,w). Now, consider

[V ⋆ − V̂ ⋆]w = [B⋆V ⋆ − B̂⋆V̂ ⋆]w
(a)

≤ [B⋆V ⋆ −B⋆V̂ ⋆]w + [B⋆V̂ ⋆ − B̂⋆V̂ ⋆]w
(b)

≤ [Bµ⋆

V ⋆ −Bµ⋆

V̂ ⋆]w +D⋆V̂ ⋆

(c)

≤ γκ∥V ⋆ − V̂ ⋆∥w +D⋆V̂ ⋆ (36)

where (a) follows from the definition supremum, (b) follows
from µ⋆ ∈ G(V̂ ⋆) and the fact that B⋆V ⋆ ≤ Bµ⋆

V ⋆ , and

2Under Assumption 2, Bπ⋆
is a contraction. Even though B⋆ and Bπ⋆

have the same fixed point, contractivity of Bπ⋆
does not imply contractivity

of B⋆ because they are different operators.
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(c) follows from contraction of the Bellman operator Bµ⋆

(since µ⋆ ∈ ΠS(κ,w)).
Now we consider the inequality in the other direction.

[V̂ ⋆ − V ⋆]w = [B̂⋆V̂ ⋆ −B⋆V ⋆]w
(d)

≤ [B̂⋆V̂ ⋆ −B⋆V̂ ⋆]w + [B⋆V̂ ⋆ −B⋆V ⋆]w
(e)

≤ D⋆V̂ ⋆ + [Bπ⋆

V̂ ⋆ −Bπ⋆

V ⋆]w
(f)

≤ D⋆V̂ ⋆ + γκ∥V̂ ⋆ − V ⋆∥w (37)

where (d) follows from the definition of supremum, (e) fol-
lows from π⋆ ∈ G(V ⋆) and the fact that B⋆V̂ ⋆ ≤ Bπ⋆

V̂ ⋆,
and (f) follows from contraction of the Bellman operator Bπ⋆

(since π⋆ ∈ ΠS(κ,w)).
Combining (36) and (37) and rearranging terms, we get (12).
Proof of part 3: The proof argument is similar to that of

part 2. Consider

[V ⋆ − V̂ ⋆]w = [B⋆V ⋆ − B̂⋆V̂ ⋆]w
(a)

≤ [B⋆V ⋆ − B̂⋆V ⋆]w + [B̂⋆V ⋆ − B̂⋆V̂ ⋆]w
(b)

≤ D⋆V ⋆ + [B̂π̂⋆

V ⋆ − B̂π̂⋆

V̂ ⋆]w
(c)

≤ D⋆V ⋆ + γκ∥V ⋆ − V̂ ⋆∥w (38)

where (a) follows from the definition of supremum, (b) fol-
lows the definition of π̂⋆ and the fact that B̂⋆V ⋆ ≤ B̂π̂⋆

V ⋆,
and (c) follows from contraction of the Bellman operator B̂π̂⋆

.
From Assumption 4, we know that Ĝ(V ⋆)∩ Π̂S(κ,w) ̸= ∅.

Let µ̂⋆ ∈ Ĝ(V ⋆)∩ Π̂S(κ,w). Now, we consider the inequality
in the other direction.

[V̂ ⋆ − V ⋆]w = [B̂⋆V̂ ⋆ −B⋆V ⋆]w
(d)

≤ [B̂⋆V̂ ⋆ − B̂⋆V ⋆]w + [B̂⋆V ⋆ −B⋆V ⋆]w
(e)

≤ [B̂µ̂⋆

V̂ ⋆ − B̂µ̂⋆

V ⋆]w +D⋆V ⋆

(f)

≤ γκ∥V̂ ⋆ − V ⋆∥w +D⋆V ⋆ (39)

where (d) follows from the definition of supremum, (e) fol-
lows the definition of µ̂⋆ and the fact that B̂⋆V̂ ⋆ ≤ B̂µ̂⋆

V̂ ⋆,
and (f) follows from contraction of the Bellman operator B̂µ̂⋆

.
Combining (38) and (39) and rearranging terms, we get (13).

APPENDIX E
PROOF OF THEOREM 1

Proof of part 1: For the bound in terms of V̂ ⋆, by triangle
inequality, we have∥∥V π̂⋆

− V ⋆
∥∥
w
≤

∥∥V π̂⋆

− V̂ ⋆
∥∥
w
+
∥∥V̂ ⋆ − V ⋆

∥∥
w

(40)

Recall that V̂ ⋆ = V̂ π̂⋆

. Since π̂⋆ ∈ ΠS(κ,w) ∩ Π̂S(κ,w), we
can use Lemma 2 to bound the first term of (40) by∥∥V π̂⋆

− V̂ ⋆
∥∥
w
≤ 1

1− γκ
Dπ̂⋆,π̂⋆

V̂ π̂⋆

=
1

1− γκ
Dπ̂⋆

V̂ π̂⋆

=
1

1− γκ
Dπ̂⋆

V̂ ⋆. (41)

We bound the second term in (40) using Lemma 3, part 1 by

∥V̂ ⋆ − V ⋆∥w ≤ 1

(1− γκ)
Dπ⋆,π̂⋆

V̂ ⋆. (42)

The result is obtained by combining (41) and (42).
For the bound in terms of V ⋆, we can write∥∥V π̂⋆

− V ⋆
∥∥
w
=

∥∥Bπ̂⋆

V π̂⋆

−B⋆V ⋆
∥∥
w

≤
∥∥Bπ̂⋆

V π̂⋆

−Bπ̂⋆

V ⋆
∥∥
w
+
∥∥Bπ̂⋆

V ⋆ − B̂π̂⋆

V ⋆
∥∥
w

+
∥∥B̂π̂⋆

V ⋆ − B̂π̂⋆

V̂ ⋆
∥∥
w
+

∥∥B̂π̂⋆

V̂ ⋆ −B⋆V ⋆
∥∥
w

≤ γκ
∥∥V π̂⋆

− V ⋆
∥∥
w
+Dπ̂⋆

V ⋆

+ γκ
∥∥V ⋆ − V̂ ⋆

∥∥
w
+
∥∥V̂ ⋆ − V ⋆

∥∥
w

(43)

where the first inequality holds from triangle inequality and the
last from the definition of Bellman mismatch functional and
from Lemma 1 as π̂⋆ ∈ ΠS(κ,w) ∩ Π̂S(κ,w). Re-arranging
the terms in (43), we obtain∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 1

1− γκ

[
Dπ̂⋆

V ⋆ + (1 + γκ)
∥∥V̂ ⋆ − V ⋆

∥∥
w

]
.

(44)

We use Lemma 3, part 1, to bound the last term of (44) by

∥V̂ ⋆ − V ⋆∥w ≤ 1

(1− γκ)
Dπ⋆,π̂⋆

V ⋆. (45)

The result is obtained by combining (44) and (45).
Proof of part 2: Since Assumption 3 holds, we can use

Lemma 3 part 2 to bound the second term of (40) by∥∥V̂ ⋆ − V ⋆
∥∥
w
≤ 1

1− γκ
D⋆V̂ ⋆. (46)

Combining (41) and (46) completes the proof.
Proof of part 3: Since Assumption 4 holds, we can use

Lemma 3 part 3 to bound the last term of (44) by∥∥V̂ ⋆ − V ⋆
∥∥
w
≤ 1

1− γκ
D⋆V ⋆. (47)

Combining (44) and (47) completes the proof.

APPENDIX F
PROOF OF LEMMA 4

Assumption 5 implies that, for each a ∈ A,∫
S
w(s′)P (ds′ | s, a) ≤ κw(s), ∀s ∈ S. (48)

For any v ∈ Vw such that G(v) is nonempty, let πv denote
a policy in G(v). We will first show that πv ∈ ΠS(κ,w) and
then use this to prove Assumption 3.

For policy πv , we have that∫
S
w(s′)Pπv (ds

′|s) =
∫
S

∫
A
w(s′)πv(da|s)P (ds′|s, a)

=

∫
A

∫
S
w(s′)P (ds′|s, a)πv(da|s)

≤
∫
A
κw(s)πv(da|s) = κw(s), ∀s ∈ S.

Thus, πv satisfies (4).
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Next, from the definition of the Bellman operator, we have

cπv
(s) =[Bπvv](s)− γ

∫
A
πv(da | s)

∫
S
v(s′)P (ds′ | s, a)

≤[Bπvv](s) + γ|cmin/(1− γ)|,

where the inequality above is due to the fact that −v(s) ≤
|cmin/(1− γ)| for all v ∈ Vw. Therefore,

∥cπv
∥w =sup

s∈S

|cπv (s)|
w(s)

≤ sup
s∈S

[Bπvv](s) + γ|cmin/(1− γ)|
w(s)

≤∥Bπvv∥w + γ|cmin/(1− γ)|
=∥B⋆v∥w + γ|cmin/(1− γ)| < ∞.

Thus, πv satisfies (3). Hence, πv ∈ ΠS(κ,w).
With v = V̂ ⋆ in the above argument, it follows that πV̂ ⋆ ∈

ΠS(κ,w). Hence, Assumption 3 is satisfied.
Similarly, for any v ∈ Vw, let π̂v denote a policy in Ĝ(v).

Using arguments identical to the ones used above, we can
show that π̂v ∈ Π̂S(κ,w). Setting v = V ⋆ then implies that
π̂V ⋆ ∈ Π̂S(κ,w). Hence, Assumption 4 is satisfied.

APPENDIX G
PROOF OF LEMMA 5

Proof of part 1: By definition, Dmaxv = supa∈A Dπav.
By Assumption 5, πa ∈ ΠS(κ,w) ∩ Π̂S(κ,w) for all a ∈ A.
Therefore,

Dmaxv ≤ sup
π∈ΠS(κ,w)∩Π̂S(κ,w)

Dπv. (49)

Define

Ξ(s,a)v = c(s, a)− ĉ(s, a)

+ γ

∫
S
v(s′)P (ds′|s, a)− γ

∫
S
v(s′)P̂ (ds′|s, a).

Then, we have that

Dmaxv = sup
a∈A

∥Bπav − B̂πav∥w = sup
a∈A

sup
s∈S

∣∣Ξ(s,a)v
∣∣

w(s)

and for every π ∈ ΠS(κ,w) ∩ Π̂S(κ,w),

[Bπv](s)− [B̂πv](s) =

∫
A
π(da | s)Ξ(s,a)v

Therefore,

Dπv = sup
s∈S

∣∣∫
A π(da | s)Ξ(s,a)v

∣∣
w(s)

≤ sup
s∈S

sup
a∈A

|Ξ(s,a)v|
w(s)

= Dmaxv. (50)

Combining (49) and (50), we get the first part of (15)
Proof of part 2: Note that for any set X , | infx∈X f(x)−

infx∈X g(x)| ≤ supx∈X |f(x)− g(x)|. Therefore,

|[B⋆v](s)− [B̂⋆v](s)| ≤ sup
a∈A

|Ξ(s,a)v|.

Using the above inequality in the definition of D⋆, we get

D⋆v = sup
s∈S

∣∣[B⋆v](s)− [B̂⋆v](s)
∣∣

w(s)

≤ sup
s∈S

supa∈A
∣∣Ξ(s,a)v

∣∣
w(s)

= Dmaxv, (51)

which establishes the second part of (15).

APPENDIX H
PROOF OF THEOREM 3

Proof of part 1: The bound in terms of V̂ ⋆ follows from
Theorem 1, part 1 (the bound in terms of V̂ ⋆) and Lemma 6,
part 3.

For the bound in terms of V ⋆, we can use Lemma 6, part 3
and Theorem 1, part 1 to write∥∥V π̂⋆

− V ⋆
∥∥
w
=

1

α1

∥∥V π̂⋆

α − V ⋆
α

∥∥
w

≤ 1

α1(1− γκ)
Dπ̂⋆

α V ⋆
α +

(1 + γκ)

α1(1− γκ)2
Dπ⋆,π̂⋆

V ⋆
α

=
1

α1(1− γκ)
Dπ̂⋆

α (α1V
⋆) +

(1 + γκ)

α1(1− γκ)2
Dπ⋆,π̂⋆

(α1V
⋆),

where, the last step uses part 2 of Lemma 6 to conclude that

Dπ̂⋆

α V ⋆
α = Dπ̂⋆

α (α1V
⋆) and Dπ⋆,π̂⋆

α V ⋆
α = Dπ⋆,π̂⋆

α (α1V
⋆).

Proof of part 2: Assumption 6 is the same as Assumption 3
for model Mα. Hence, the result follows immediately from
Theorem 1, part 2 and Lemma 6, part 3.

Proof of part 3: Assumption 7 is the same as Assumption 4
for model Mα. Hence, the result follows from Theorem 1,
part 3 together with Lemma 6, part 3 and the fact that part 2
of Lemma 6 implies

D⋆
αV

⋆
α = D⋆

α(α1V
⋆).

APPENDIX I
PROOF OF PROPOSITION 2

When α1 = 1, Assumptions 3 and 6 are equivalent. To
apply Theorem 3, we consider α1 = 1 and an arbitrary α2.
Then the Bellman updates for V̂ ⋆(s) can be calculated as

B⋆
(1,α2)

V̂ ⋆(s)

= s⊺
(
Q+ γA⊺P̂A− γ2A⊺P̂B(R+ γB⊺P̂B)−1B⊺P̂A

)
s

+ γ(q̂ +Tr(ΣW P̂ )) + α2,

and

B̂⋆V̂ ⋆(s) = V̂ ⋆(s) = s⊺P̂ s+ q̂.

= s⊺P̂ s+ γ(q̂ +Tr(Σ̂W P̂ ))

where the last term uses the fact that q̂ = γ Tr(Σ̂W P̂ )/(1−γ).
Therefore, we have

|B⋆
(1,α2)

V̂ ⋆(s)− B̂⋆V̂ ⋆(s)|

=
∣∣∣s⊺D⋆s+ γ Tr((ΣW − Σ̂W )P̂ ) + α2

∣∣∣ ,
where D⋆ is given by (22).
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Note that π̂⋆(s) = −K̂⋆s = −γ(R̂ + γB̂⊺P̂ B̂)−1B̂⊺P̂ Âs.
As a result, for any α2, Bπ̂⋆

(1,α2)
V̂ ⋆(s) is given by

Bπ̂⋆

(1,α2)
V̂ ⋆(s) = s⊺

(
Q+ (K̂⋆)⊺RK̂⋆ + γA⊺

K̂⋆
P̂AK̂⋆

)
s

+ γ(q̂ +Tr(ΣW P̂ )) + α2,

and B̂π̂⋆

V̂ ⋆(s) = B̂⋆V̂ ⋆(s) = V̂ ⋆(s). Therefore, we have

|Bπ̂⋆

(1,α2)
V̂ ⋆(s)− B̂π̂⋆

V̂ ⋆(s)|

=
∣∣∣s⊺Dπ̂⋆

s+ γ Tr((ΣW − Σ̂W )P̂ ) + α2

∣∣∣ ,
where Dπ̂⋆

is given by (23). Then, the Bellman mismatches
functionals of Section III-F for V̂ with (1, α2) can be calcu-
lated as follows:

Dπ̂⋆

(1,α2)
V̂ ⋆ = sup

s∈S

∣∣s⊺Dπ̂⋆

s+ dΣ + α2

∣∣
w(s)

,

D⋆
(1,α2)

V̂ ⋆ = sup
s∈S

|s⊺D⋆s+ dΣ + α2|
w(s)

,

where dΣ is given by (25).
Eq. (21) then then follows from Theorem 3 part 2 by

observing that for any symmetric matrix D

sup
s∈S

|s⊺Ds+ dΣ + α2|
1 + ℓs⊺s

≤ max

{
ρ(D)

ℓ
, |dΣ + α2|

}
.

APPENDIX J
PROOF OF LEMMA 8

Proof of part 1: For any (α1, α2) with α2 > 0, we have

Dπ,π̂
α v =sup

s∈S

∣∣Bπ
αv(s)− B̂π̂v(s)

∣∣
w(s)

≤ sup
s∈S

∣∣α1cπ(s) + α2 − ĉπ̂(s)
∣∣

w(s)

+ γ sup
s∈S

∣∣∣∣∫S v(s′)
[
Pπ

(
ds′|s)

)
− P̂π̂

(
ds′|s)

)]∣∣∣∣
w(s)

≤εα(π, π̂)

+ γρF(v) sup
s∈S

dF

(
Pπ

(
·|s

)
, P̂π̂

(
·|s

))
w(s)

=εα(π, π̂) + γρF(v)δF(π, π̂) (52)

Proofs of part 2 and 3: Part 2 follows because D⋆
αV̂

⋆ =
Dµ⋆,π̂⋆

V̂ ⋆. Similarly, part 3 follows because D⋆
α(α1V

⋆) =
Dπ⋆,µ̂⋆

(α1V
⋆).

Proof of part 4: Define

Ξ(s,a)
α v = α1c(s, a) + α2 − ĉ(s, a)

+ γ

∫
S
v(s′)P (ds′|s, a)− γ

∫
S
v(s′)P̂ (ds′|s, a).

Then, we have

Dmax
α v = sup

a∈A
∥Bπa

α v − B̂πav∥w

= sup
(s,a)∈S×A

∣∣Ξ(s,a)
α v

∣∣
w(s)

≤ sup
(s,a)∈S×A

∣∣α1c(s, a) + α2 − ĉ(s, a)
∣∣

w(s)

+ γ sup
(s,a)∈S×A

∣∣∫
S v(s′)[P (ds′|s, a)− P̂ (ds′|s, a)]

∣∣
w(s)

≤ εmax
α + γρF(v) sup

(s,a)∈S×A

dF
(
P (·|s, a), P̂ (·|s, a)

)
w(s)

= εmax
α + γρF(v)δ

max
F . (53)
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