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Sufficient Conditions for the Value Function and Optimal Strategy to be
Even and Quasi-Convex

Jhelum Chakravorty and Aditya Mahajan

Abstract—Sufficient conditions are identified under which the
value function and the optimal strategy of a Markov decision pro-
cess (MDP) are even and quasi-convex in the state. The key idea
behind these conditions is the following. First, sufficient conditions
for the value function and optimal strategy to be even are identified.
Next, it is shown that if the value function and optimal strategy are
even, then one can construct a “folded MDP” defined only on the
nonnegative values of the state space. Then, the standard sufficient
conditions for the value function and optimal strategy to be mono-
tone are “unfolded” to identify sufficient conditions for the value
function and the optimal strategy to be quasi-convex. The results
are illustrated by using an example of power allocation in remote
estimation.

Index Terms—Markov decision processes (MDPs), stochastic
monotonicity, submodularity.

I. INTRODUCTION

A. Motivation

Markov decision theory is often used to identify structural or qual-
itative properties of optimal strategies. Examples include control limit
strategies in machine maintenance [1], [2], threshold-based strategies
for executing call options [3], [4], and monotone strategies in queueing
systems [5], [6]. In all of these models, the optimal strategy is monotone
in the state, i.e., if x > y, then the action chosen at x is greater (or less)
than or equal to the action chosen at y. Motivated by this, general con-
ditions under which the optimal strategy is monotone in scalar-valued
states are identified in [7]–[12]. Similar conditions for vector-valued
states are identified in [13]–[15]. General conditions under which the
value function is increasing and convex are established in [16].

Most of the above results are motivated by queueing models where
the state is the queue length that takes nonnegative values. However,
for typical applications in systems and control, the state takes both
positive and negative values. Often, the system behavior is symmetric
for positive and negative values, so one expects the optimal strategy
to be even. Thus, for such systems, a natural counterpart of monotone
functions is even and quasi-convex (or quasi-concave) functions. In this
paper, we identify sufficient conditions under which the value function
and optimal strategy are even and quasi-convex.

As a motivating example, consider a remote estimation system in
which a sensor observes a Markov process and decides whether to
transmit the current state of the Markov process to a remote estimator.
There is a cost or constraint associated with transmission. When the
transmitter does not transmit or when the transmitted packet is dropped
due to interference, the estimator generates an estimate of the state of
the Markov process based on the previously received states. The objec-
tive is to choose transmission and estimation strategies that minimize
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either the expected distortion and cost of communication or minimize
expected distortion under the transmission constraint. Variations of
such models have been considered in [17]–[23].

In such models, the optimal transmission and estimation strategies
are identified in two steps. In the first step, the joint optimization of
transmission and estimation strategies is investigated and it is estab-
lished that there is no loss of optimality in restricting attention to
estimation strategies of a specific form. In the second step, estimation
strategies are restricted to the form identified in the first step and the
structure of the best response transmission strategies is established.
In particular, it is shown that the optimal transmission strategies are
even and quasi-convex.1 Currently, in the literature these results are
established on a case by case basis. For example, see [18, Th. 1],
[20, Th. 3], [24, Th. 1], [21, Th. 1] among others.

In this paper, we identify sufficient conditions for the value func-
tions and optimal strategy of a Markov decision process (MDP) to be
even and quasi-convex. We then consider a general model of remote
estimation and verify these sufficient conditions.

B. Model and Problem Formulation

Consider a discrete time MDP with state space X (which is either
R, the real line, or a symmetric subset of the form [−a, a]) and action
space U (which is either a subset of integers or a compact subset of
reals).

Let Xt ∈ X and Ut ∈ U denote the state and action at time t, respec-
tively. The initial state X1 is distributed according to the probability
density function μ and the state evolves in a controlled Markov manner,
i.e., for any Borel measurable subset A of X

P (Xt+1 ∈ A | X1:t = x1:t , U1:t = u1:t )

= P (Xt+1 ∈ A | Xt = xt , Ut = ut )

where x1:t is a short-hand notation for (x1 , . . . , xt ) and a similar
interpretation holds for u1:t . We assume that there exists a (time-
homogeneous) controlled transition density p(y|x; u), which is con-
tinuous in y for any x ∈ X and u ∈ U . Thus, for any Borel measurable
subset A of X

P (Xt+1 ∈ A | Xt = x, Ut = u) =
∫

A

p(y|x; u)dy.

We use p(u) to denote transition density corresponding to action
u ∈ U .

The system operates for a finite horizon T . For any time t ∈
{1, . . . , T − 1}, a measurable and lower semicontinuous2 function
ct : X × U → R denotes the instantaneous cost at time t, and at the
terminal time T , a measurable and lower semicontinuous function
cT : X → R denotes the terminal cost.

1When the action space is binary—as is the case in most of the models of
remote estimation—an even and quasi-convex strategy is equivalent to one in
which the action zero is chosen whenever the absolute value of the state is less
than a threshold; otherwise, action one is chosen.

2A function is called lower semicontinuous if its lower level sets are closed.
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The actions at time t are chosen according to a Markov strategy gt ,
i.e.,

Ut = gt (Xt ), t ∈ {1, . . . , T − 1}.
The objective is to choose a decision strategy g := (g1 , . . . , gT −1 ) to
minimize the expected total cost

JT (g) := Eg

[
T −1∑
t=1

ct (Xt , Ut ) + cT (XT )

]
. (1)

We denote such an MDP by (X, U , p, ct ).
From Markov decision theory [25], we know that an optimal strategy

is given by the solution of the following dynamic program. Recursively
define value functions Vt : X → R and value-action functions Qt :
X × U → R as follows: for all x ∈ X and u ∈ U

VT (x) = cT (x) (2)

and for t ∈ {T − 1, . . . , 1}
Qt (x, u) = ct (x, u) + E[Vt+1 (Xt+1 ) | Xt = x, Ut = u]

= ct (x, u) +
∫

X
p(y|x; u)Vt+1 (y)dy, (3)

Vt (x) = min
u∈U

Qt (x, u). (4)

Then, a strategy g∗ = (g∗
1 , . . . , g

∗
T −1 ) defined as

g∗
t (x) ∈ arg min

u∈U
Qt (x, u)

is optimal. To avoid ambiguity when the arg min is not unique, we pick

g∗
t (x) =

{
max

{
v ∈ arg minu∈U Qt (x, u)

}
, if x ≥ 0

min
{
v ∈ arg minu∈U Qt (x, u)

}
, if x < 0.

(5)

Let X≥0 and X> 0 denote the sets {x ∈ X : x ≥ 0} and {x ∈ X :
x > 0}, respectively. We say that a function f : X → R is even and
quasi-convex if it is even and for x, x′ ∈ X≥0 such that x < x′, we have
that f (x) ≤ f (x′). The main contribution of this paper is to identify
sufficient conditions under which Vt and g∗

t are even and quasi-convex.

C. Main Result

Definition 1 (Even transition density): For a given u ∈ U , we say
that a controlled transition density p(u) on X × X is even if for all
x, y ∈ X, p(y|x; u) = p(−y|−x; u).

Our main result is the following.
Theorem 1: Given an MDP (X, U , p, ct ), define for x, y ∈ X≥0

and u ∈ U

S(y|x; u) := 1 −
∫

A y

[p(z|x; u) + p(−z|x; u)]dz (6)

where Ay = {z ∈ X : z < y}. Consider the following conditions:
(C1) cT (·) is even and quasi-convex and for t ∈ {1, . . . , T − 1} and

u ∈ U , ct (·, u) is even and quasi-convex.
(C2) For all u ∈ U , p(u) is even.
(C3) For all u ∈ U and y ∈ X≥0 , S(y|x; u) is increasing3 for x ∈

X≥0 .
(C4) For t ∈ {1, . . . , T − 1}, ct (x, u) is submodular4 in (x, u) on

X≥0 × U .
(C5) For all y ∈ X≥0 , S(y|x; u) is submodular in (x, u) on X≥0 × U .

Then, under (C1)–(C3), Vt (·) is even and quasi-convex for all t ∈
{1, . . . , T } and under (C1)–(C5), g∗

t (·) is even and quasi-convex for
all t ∈ {1, . . . , T − 1}.

3We use the terms increasing and decreasing to mean weakly increasing and
weakly decreasing respectively.

4Submodularity is defined in Section III-B.

The main idea of the proof is as follows. First, we identify conditions
under which the value function and optimal strategy of an MDP are
even. Next, we show that if we construct an MDP by “folding” the
transition density, then the “folded MDP” has the same value function
and optimal strategy as the original MDP for nonnegative values of
the state. Finally, we show that if we take the sufficient conditions
under which the value function and the optimal strategy of the folded
MDP are increasing and “unfold” these conditions back to the original
model, we get conditions (C1)–(C5) above. The details are given in
Sections II and III.

II. EVEN MDPS AND FOLDED REPRESENTATIONS

We say that an MDP is even if for every t and every u ∈ U , Vt (x),
Qt (x, u), and g∗

t (x) are even in x. We start by identifying sufficient
conditions for an MDP to be even.

A. Sufficient Conditions for an MDP to be Even

Proposition 1: Suppose an MDP (X, U , p, ct ) satisfies the follow-
ing properties:
(A1) cT (·) is even and for every t ∈ {1, . . . , T − 1} and u ∈ U ,

ct (·, u) is even.
(A2) For every u ∈ U , the transition density p(u) is even.

Then, the MDP is even.
Proof: We proceed by backward induction. VT (x) = cT (x), which

is even by (A1). This forms the basis of induction. Now, assume that
Vt+1 (x) is even in x. For any u ∈ U , we show that Qt (x, u) is even
in x. Consider

Qt (−x, u) = ct (−x, u) +
∫

X
p(y|−x; u)Vt+1 (y)dy

(a )
= ct (x, u) +

∫
X

p(−z|−x; u)Vt+1 (−z)dz

(b )
= ct (x, u) +

∫
X

p(z|x; u)Vt+1 (z)dz = Qt (x, u)

where (a) follows from (A1), a change of variables y = −z, and the
fact that X is a symmetric interval; and (b) follows from (A2) and the
induction hypothesis that Vt+1 (·) is even. Hence, Qt (·, u) is even.

Since Qt (·, u) is even, (4) and (5) imply that Vt and g∗
t are also

even. Thus, the result is true for time t and, by induction, true for all
time t. �

B. Folding Operator for Distributions

We now show that if the value function is even, we can construct a
“folded” MDP with state space X≥0 such that the value function and
optimal strategy of the folded MDP match that of the original MDP on
X≥0 . For that matter, we first define the following.

Definition 2 (Folding Operator): Given a probability density π on
X, the folding operator Fπ gives a density π̃ on X≥0 such that for any
x ∈ X≥0 , π̃(x) = π(x) + π(−x).

As an immediate implication, we have the following.
Lemma 1: If f : X → R is even, then for any probability distribu-

tion π on X and π̃ = Fπ, we have
∫

X
f (x)π(x)dx =

∫
X≥0

f (x)π̃(x)dx.

Now, we generalize the folding operator to transition densities.
Definition 3: Given a transition density p on X × X, the folding

operator Fp gives a transition density p̃ on X≥0 × X≥0 such that for
any x, y ∈ X≥0 , p̃(y|x) = p(y|x) + p(−y|x).

Definition 4 (Folded MDP): Given an MDP (X, U , p, ct ), define
the folded MDP as (X≥0 , U , p̃, ct ), where for all u ∈ U , p̃(u) =
Fp(u).
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Let Q̃t , Ṽt , and g̃∗
t denote respectively the value-action function, the

value function, and the optimal strategy of the folded MDP. Then, we
have the following.

Proposition 2: If the MDP (X, U , p, ct ) is even, then for any x ∈ X
and u ∈ U

Qt (x, u) = Q̃t (|x|, u), Vt (x) = Ṽt (|x|), g∗
t (x) = g̃∗

t (|x|). (7)

Proof: We proceed by backward induction. For x ∈ X and x̃ ∈
X≥0 , VT (x) = cT (x) and ṼT (x̃) = cT (x̃), respectively. Since VT (·) is
even, VT (x) = VT (|x|) = ṼT (|x|). This is the basis of induction. Now,
assume that for all x ∈ X, Vt+1 (x) = Ṽt+1 (|x|). Consider x ∈ X≥0
and u ∈ U . Then, we have

Qt (x, u) = ct (x, u) +
∫

X
p(y|x; u)Vt+1 (y)dy

(a )
= ct (x, u) +

∫
X≥0

p̃(y|x; u)Vt+1 (y)dy

(b )
= ct (x, u) +

∫
X≥0

p̃(y|x; u)Ṽt+1 (y)dy = Q̃t (x, u)

where (a) uses Lemma 1 and that Vt+1 is even and (b) uses the
induction hypothesis.

Since the Q-functions match for x ∈ X≥0 , (4) and (5) imply that the
value functions and the optimal strategies also match on X≥0 , i.e., for
x ∈ X≥0

Vt (x) = Ṽt (x) and g∗
t (x) = g̃∗

t (x).

Since Vt and g∗
t are even, we get that (7) is true at time t. Hence, by

the principle of induction, it is true for all t. �

III. MONOTONICITY OF THE VALUE FUNCTION AND THE

OPTIMAL STRATEGY

We have shown that under (A1) and (A2) the original MDP is equiv-
alent to a folded MDP with state space X≥0 . Thus, we can use standard
conditions to determine when the value function and the optimal strat-
egy of the folded MDP are monotone. Translating these conditions back
to the original model, we get the sufficient conditions for the original
model.

A. Monotonicity of the Value Function

The results on monotonicity of value functions rely on the notion of
stochastic monotonicity.

Given a transition density p defined on X, the cumulative transition
distribution function P is defined as

P (y|x) =
∫

A y

p(z|x)dz, where Ay = {z ∈ X : z < y}.

Definition 5 (Stochastic Monotonicity): A transition density p on
X is said to be stochastically monotone increasing if for every y ∈
X, the cumulative distribution function P (y|x) corresponding to p is
decreasing in x.

Proposition 3: Suppose the folded MDP (X≥0 , U , p̃, ct ) satisfies
the following:
(B1) cT (x) is increasing in x for x ∈ X≥0 ; for any t ∈ {1, . . . , T −

1} and u ∈ U , ct (x, u) is increasing in x for x ∈ X≥0 .
(B2) For any u ∈ U , p̃(u) is stochastically monotone increasing.

Then, for any t ∈ {1, . . . , T }, Ṽt (x) is increasing in x for x ∈ X≥0 .
A version of this proposition when X is a subset of integers is given

in [8, Th. 4.7.3]. The same proof argument also works when X is a
subset of reals.

Recall the definition of S given in (6). (B2) is equivalent to the
following:
(B2’) For every u ∈ U and x, y ∈ X≥0 , S(y|x; u) is increasing in x.

An immediate consequence of Propositions 1–3 is the following.

Corollary 1: Under (A1), (A2), (B1), and (B2) [or (B2’)], the value
functions Vt (·) is even and quasi-convex.

Remark 1: Note that (A1) and (B1) are equivalent to (C1), (A2)
is the same as (C2), and (B2) [or equivalently, (B2’)] is equivalent to
(C3). Thus, Corollary 1 proves the first part of Theorem 1.

B. Monotonicity of the Optimal Strategy

Now, we state sufficient conditions under which the optimal strategy
is increasing. These results rely on the notion of submodularity.

Definition 6 (Submodular function): A function f : X × U → R
is called submodular if for any x, y ∈ X and u, v ∈ U such that x ≥ y
and u ≥ v, we have

f (x, u) + f (y, v) ≤ f (x, v) + f (y, u).

An equivalent characterization of submodularity is that

f (y, u) − f (y, v) ≥ f (x, u) − f (x, v)

⇐⇒ f (x, v) − f (y, v) ≥ f (x, u) − f (y, u)

which implies that the differences in one variable are decreasing in the
other variable.

Proposition 4: Suppose that in addition to (B1) and (B2) [or (B2’)],
the folded MDP (X≥0 , U , p̃, ct ) satisfies the following:
(B3) For all t ∈ {1, . . . , T − 1}, ct (x, u) is submodular in (x, u) on

X≥0 × U .
(B4) For all y ∈ X≥0 , S(y|x; u) is submodular in (x, u) on X≥0 × U ,

where S(y|x; u) is defined in (6).
Then, for every t ∈ {1, . . . , T − 1}, the optimal strategy g̃∗

t (x) is
increasing in x for x ∈ X≥0 .

A version of this proposition when X is a subset of integers is given
in [8, Th. 4.7.4]. The same proof argument also works when X is a
subset of reals.

An immediate consequence of Propositions 1–4 is the following.
Corollary 2: Under (A1), (A2), (B1), (B2) [or (B2’)], (B3), and

(B4), the optimal strategy g∗
t (·) is even and quasi-convex.

Remark 2: As argued in Remark 1, (A1), (A2), (B1), and (B2)
[or (B2’)] are equivalent to (C1)–(C3). Note that (B3) and (B4) are the
same as (C4) and (C5). Thus, Corollary 2 proves the second part of
Theorem 1.

IV. REMARK ON INFINITE HORIZON SETUP

Although we restricted attention to finite horizon models, the re-
sults extend immediately to infinite horizon discounted cost setup.
In particular, suppose the per-step cost is time-homogeneous and
given by c : X × U → R and future is discounted by a discount
factor β ∈ (0, 1). Define the following Bellman operators: for any
g : X → U , and V : X → R

[Bg V ](x) = c(x, g(x)) + β

∫
X

p(y|x; g(x))V (y)dy

and

B∗V = min
g :X→U

Bg V.

Suppose the model satisfies standard conditions (see [25, Ch. 4]) so
that B∗ is a contraction and has a unique fixed point (which we denote
by Vβ ) and there exists a strategy gβ : X → U such that Vβ = Bgβ

Vβ .
Then, the result of Theorem 1 is also true for Vβ and gβ . In particular,
we have the following.

Corollary 3: Given an MDP (X, U , p, c) and a discount factor β ∈
(0, 1), consider the following conditions:
(C1’) For u ∈ U , c(·, u) is even and quasi-convex.
(C4’) c(x, u) is submodular in (x, u) on X≥0 × U .

Then, under (C1’), (C2), and (C3), Vβ (·) is even and quasi-convex,
and under (C1’), (C2), (C3), (C4’), and (C5), g∗

β (·) is even and
quasi-convex.
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Proof: Note that the equivalence to folded MDP continues to hold
for infinite horizon setup. Therefore, the result follows from extension
of Propositions 3 and 4 to infinite horizon setup. For example, see [8,
Sec. 6.11]. �

V. REMARKS ABOUT DISCRETE X

So far, we assumed that X was a subset of the real line. Now, suppose
X is discrete (either the set Z of integers or a symmetric subset of the
form {−a, . . . , a}). With a slight abuse of notation, let p(y|x; u) denote
P (Xt+1 = y|Xt = x, Ut = u).

Theorem 2: The result of Theorem 1 is true for discrete X with S
defined as

S(y|x; u) = 1 −
∑

z∈A y

[
p(z|x; u) + p(−z|x; u)

]

where Ay = {x ∈ X : x < y}.
The proof proceeds along the same lines as the proof of Theorem 1.

In particular,
1) Proposition 1 is also true for discrete X.
2) Given a probability mass function π on X, define the folding op-

erator F as follows: π̃ = Fπ means that π̃(0) = π(0) and for any
x ∈ X> 0 , π̃(x) = π(x) + π(−x).

3) Use this definition of the folding operator to define the folded MDP,
as in Definition 4. Proposition 2 remains true with this modified
definition.

4) A discrete state Markov chain with transition function p is stochas-
tically monotone increasing if for every y ∈ X

P (y|x) =
∑

z∈Ay

p(z|x), where Ay = {z ∈ X : z < y},

is decreasing in x.
5) Propositions 3 and 4 are also true for discrete X.
6) The result of Theorem 2 follows from Corollaries 1 and 2.

A. Monotone Dynamic Programming

Under (C1)–(C5), the even and quasi-convex property of the optimal
strategy can be used to simplify the dynamic program given by (2)–(4).
For conciseness, assume that the state space X is a set of integers of
the form {−a,−a + 1, . . . , a − 1, a} and the action space U is a set
of integers of the form {u, u + 1, . . . , ū − 1, ū}.

Initialize VT (x) as in (2). Now, suppose Vt+1 (·) has been calculated.
Instead of computing Qt (x, u) and Vt (x) according to (appropriately
modified versions of) (3) and (4), we proceed as follows:
1) Set x = 0 and wx = u.
2) For all u ∈ [wx , ū], compute Qt (x, u) according to (3).
3) Instead of (4), compute

Vt (x) = min
u∈[w x ,ū ]

Qt (x, u), and set

gt (x) = max{v ∈ [wx , ū] s.t. Vt (x) = Qt (x, v)}.
4) Set Vt (−x) = Vt (x) and gt (−x) = gt (x).
5) If x = a, then stop. Otherwise, set wx+1 = gt (x) and x = x + 1.

Go to step 2.

B. Remark on Randomized Actions

Suppose U is a discrete set of the form {u, u + 1, . . . , ū}. In con-
strained optimization problems, it is often useful to consider the action
space W = [u, ū], where for u, u + 1 ∈ U , an action w ∈ (u, u + 1)
corresponds to a randomization between the “pure” actions u and
u + 1. More precisely, let transition probability p̆ corresponding to
W be given as follows: for any x, y ∈ X and w ∈ (u, u + 1)

p̆(y|x; w) = (1 − θ(w))p(y|x; u) + θ(w)p(y|x; u + 1)

where θ : W → [0, 1] is such that for any u ∈ U

lim
w ↓u

θ(w) = 0, and lim
w ↑u+1

θ(w) = 1, (8)

and for any v, w ∈ (u, u + 1) such that v ≤ w, θ(v) ≤ θ(w). Thus,
p̆(w) is continuous at all u ∈ U .

Theorem 3: If p(u) satisfies (C2), (C3), and (C5), then so does
p̆(w).

Proof: Since p̆(w) is linear in p(u) and p(u + 1), both of which
satisfy (C2) and (C3), so does p̆(w).

To prove that p̆(w) satisfies (C5), note that

S̆(y|x, w) = S(y|x; u) + θ(w)[S(y|x, u + 1) − S(y|x; u)].

So, for v, w ∈ (u, u + 1) such that v > w, we have that

S̆(y|x; v)−S̆(y|x; w)=
(
θ(v) − θ(w)

)[
S(y|x; u + 1)−S(y|x; u)

]
.

Since θ(·) is increasing in (u, u + 1), θ(v) − θ(w) ≥ 0. Moreover,
since S(y|x; u) is submodular in (x, u), S(y|x; u + 1) − S(y|x; u) is
decreasing in x, and, therefore, so is S̆(y|x; v) − S̆(y|x; w). Hence,
S̆(y|x; w) is submodular in (x, w) on X × (u, u + 1). Due to (8),
S̆(y|x; w) is continuous in w. Hence, S̆(y|x; w) is submodular in
(x, w) on X × [u, u + 1]. By piecing intervals of the form [u, u + 1]
together, we get that S̆(y|x; w) is submodular on X × W . �

VI. EXAMPLE: OPTIMAL POWER ALLOCATION STRATEGIES IN

REMOTE ESTIMATION

Consider a remote estimation system that consists of a sensor and
an estimator. The sensor observes a first-order autoregressive process
{Xt}t≥1 , Xt ∈ X, where X is either R or Z. The system starts with
X1 = 0 and for t > 1

Xt+1 = aXt + Wt

where a ∈ X is a constant and {Wt}t≥1 , Wt ∈ X is an indepen-
dent identically distributed (i.i.d.) noise process with probability den-
sity/mass function ϕ.

At each time step, the sensor uses power Ut to send a packet con-
taining Xt to the remote estimator. Ut takes values in [0, umax], where
Ut = 0 denotes that no packet is sent. The packet is received with
probability q(Ut ), where q is an increasing function with q(0) = 0 and
q(umax) ≤ 1.

Let Yt denote the received symbol. Yt = Xt if the packet is received,
and Yt = E if the packet is not received. Packet reception is acknowl-
edged, so the sensor knows Yt with one unit delay. At each stage, the
receiver generates an estimate X̂t as follows. X̂0 is 0 and for t > 0

X̂t =

{
aX̂t−1 , if Yt = E

Yt , if Yt �= E.
(9)

Under some conditions, such an estimation rule is known to be opti-
mal [18], [20], [22], [23], [26].5

There are two types of costs: 1) a communication cost λ(Ut ),
where λ is an increasing function with λ(0) = 0; and 2) an estimation
cost d(Xt − X̂t ), where d is an even and quasi-convex function with
d(0) = 0.

5The model presented above appears as an intermediate step in the analysis
of remote estimation problem. One typically starts with a model where the
transmission strategy is of the form Ut = gt (X1:t , Y1:t−1 , U1:t−1 ) and the
estimation strategy is of the form X̂t = ht (Y1:t ). This is a decentralized control
problem. After a series of simplifications, it is shown that there is no loss of
optimality to restrict attention to estimation strategies of the form (9) (see [18,
Fact B.3], [20, Th. 3], [23, Th. 1] among others). Once the attention is restricted
to estimation strategies of the form (9), the next step is to simplify the structure
of the optimal transmission strategy (see [18, Fact A.4], [20, Th. 3], [24, Th. 1],
[23, Th. 1] among others). The model presented above corresponds to this step.
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Define the error process {Et}t≥0 as Et = Xt − aX̂t−1 . The error
process {Et}t≥0 evolves in a controlled Markov manner as follows:

Et+1 =

{
aEt + Wt , if Yt = E

Wt , if Yt �= E.
(10)

Due to packet acknowledgments, Et is measurable at the sensor at
time t. If a packet is received, then X̂t = Xt and the estimation cost
is 0. If the packet is dropped, Xt − X̂t = Et and an estimation cost of
d(Et ) is incurred.

The objective is to choose a transmission strategy g = (g1 , . . . , gT )
of the form Ut = gt (Et ) to minimize6

E

[
T∑

t=1

[
λ(Ut ) + (1 − q(Ut ))d(Et )

]]
.

The above model is an MDP with state Et ∈ X, control action Ut ∈
[0, umax], per-step cost

c(e, u) = λ(u) + (1 − q(u))d(e) (11)

and transition density/mass function

p(e+ |e; u) = q(u)ϕ(e+ ) + (1 − q(u))ϕ(e+ − ae). (12)

For ease of reference, we restate the assumptions imposed on the
cost:
(M0) q(0) = 0 and q(umax) ≤ 1.
(M1) λ(·) is increasing with λ(0) = 0.
(M2) q(·) is increasing.
(M3) d(·) is even and quasi-convex with d(0) = 0.

In addition, we impose the following assumptions on the probability
density/mass function of the i.i.d. process {Wt}t≥1 :
(M4) ϕ(·) is even.
(M5) ϕ(·) is unimodal (i.e., quasi-concave).

Claim 1: We have the following:
1) Under assumptions (M0) and (M3), the per-step cost function given

by (11) satisfies (C1).
2) Under assumptions (M0), (M2), and (M3), the per-step cost func-

tion given by (11) satisfies (C4).
3) Under assumption (M4), the transition density p(u) given by (12)

satisfies (C2).
4) Under assumptions (M0), (M2), (M4), and (M5), the transition

density p(u) satisfies (C3) and (C5).
The proof is given in Appendix A.
An immediate consequence of Theorem 1 and Claim 1 is the

following.
Theorem 4: Under assumptions (M0) and (M2)–(M5), the value

function and the optimal strategy for the remote estimation model are
even and quasi-convex.

Remark 3: Although Theorem 4 is derived for continuous action
space, it is also true when the action space is a discrete set. In particular,
if we take the action space to be {0, 1} and q(1) = 1, we get the results
of [18, Th. 1], [17, Proposition 1], [20, Th. 3], and [21, Th. 1]; if we
take the action space to be {0, 1} and q(1) = 1 − ε, we get the result of
[22, Th. 1] and [23, Th. 2].

To illustrate the above result, consider the case when X = R,
U = {0, 1}, a = 1, Wt ∼ N (0, 1), d(e) = e2 , λ = 1, q(0) = 0,
q(1) = 0.9, and T = 4. We discretize the state space with a uni-
form grid of width 0.01 and numerically solve the resulting dynamic
program (2)–(4). The value functions across time are shown in Fig. 1.
The optimal strategy is of the form

gt (e) =

{
1, if |e| > kt

0, if |e| ≤ kt

6It can be shown that {Et}≥0 is a controlled Markov process. Thus, restricting
attention to strategies of the form Ut = gt (Et ) is without loss of optimality.

Fig. 1. Value function for the remote estimation problem of horizon
T = 4 with state space X = R, action space U = {0, 1}, a = 1, Wt ∼
N (0, 1), d(e) = e2 , λ = 1, q(0) = 0, and q(1) = 0.9. The kink in the value
function corresponds to the point where the optimal action changes.

where k1 = 0.77, k2 = 0.84, k3 = 0.93, and k4 = 1.05. The code
for the calculations is available in [27]. Note that, as expected, both
the value function and the optimal policy and even and quasi-convex;
therefore, the value functions of the folded MDP are identical to the
value functions above when restricted to the domain R≥0 .

A. Some Comments on the Conditions

The result does not depend on (M1) for the following reason. Sup-
pose there are two power levels u1 , u2 ∈ U such that u1 < u2 but
λ(u1 ) ≥ λ(u2 ), then for any e ∈ X, c(e, u1 ) ≥ c(e, u2 ). Thus, ac-
tion u1 is dominated by action u2 and is, therefore, never optimal and
can be eliminated.

The other conditions, (M0) and (M2)–(M5), in addition to being
sufficient are also necessary for the reasons given below.

The necessity of (M2) is illustrated with the following exam-
ple. Suppose X = Z and U = {0, u1 , u2} such that u1 < u2 but
q(u1 ) > q(u2 ). Define an alternative action space U ′ = {0, u′

1 , u
′
2}

where u′
1 < u′

2 and a bijection σ : U → U ′ such that σ(0) = 0,
σ(u1 ) = u′

2 and σ(u2 ) = u′
1 . Now, consider a remote estimation sys-

tem with communication cost λ′ = λ ◦ σ−1 and success probabilities
q′ = q ◦ σ−1 . By construction, q′ satisfies (M0) and (M2).7 If d(·)
and ϕ(·) are chosen to satisfy (M3)–(M5), then by Theorem 4, the
optimal strategy g′ : X → U ′ is even and quasi-convex. In particu-
lar, we can pick λ, d, and ϕ such that g′(0) = 0, g′(±1) = u′

1 , and
g′(±2) = u′

2 and g′(x) = g(x) for x ∈ Z \ {0,±1,±2}. However,
this means that with the original labels, the optimal strategy would
have been g = g′ ◦ σ−1 , which means g(0) = 0, g(±1) = u2 and
g(±2) = u1 , and, hence, the optimal strategy is not quasi-convex.

Conditions (M3) and (M4) are necessary. If they are not satisfied,
then it is easy to construct examples where the value function is not
even.

The necessity of (M5) is illustrated by the following example.
Consider an example where X = Z. In particular, let a = 1 and
ϕ have support {−1, 0, 1}, where ϕ(0) = 1 − 2p and ϕ(−1) =
ϕ(1) = p. Suppose p > 1/3, so that (M5) is not satisfied. Further-
more, suppose T = 2, U = {0, 1} and consider the following func-
tions: λ(0) = 0, λ(1) = K ; q(0) = 0 and q(1) = 1; and d(0) = 0,
d(±1) = 1, and for any e �∈ {−1, 0, 1}, d(e) = 1 + k, where k is a
positive constant. Note that q(·) satisfies (M0) and (M2); d(·) satisfies
(M3); and ϕ(·) satisfies (M4) but not (M5). Suppose K > 2(1 + k),
so that action 1 is not optimal at any time. Thus, V2 (e) = d(e)
and V1 (0) = 2p and V1 (±1) = p(1 + k) + (1 − 2p) = pk + 1 − p.
Now, if k < (3p − 1)/p, then V1 (−1) < V1 (0) > V1 (1), and hence

7λ′ does not satisfy (M1), but (M1) is not needed for Theorem 4.
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the value function is not quasi-convex. Hence, condition (M5) is
necessary.

VII. CONCLUSION

We identify sufficient conditions under which the value function
and the optimal strategy of an MDP are even and quasi-convex. The
proof relies on a folded representation of the MDP and uses stochastic
monotonicity and submodularity. We present an example of optimal
power allocation in remote estimation and show that the sufficient
conditions are easily verified.

Establishing that the value function and optimal strategy are even
and quasi-convex has two benefits. First, such structured strategies are
easier to implement. Second, the structure of the value function and
optimal strategy may be exploited to efficiently solve the dynamic
program.

For example, when the action space is discrete, say |U | = m, then
even and quasi-convex strategy is characterized by m − 1 thresholds.
Such a threshold-based strategy is simpler to implement than an arbi-
trary strategy. Furthermore, the threshold structure also simplifies the
search of the optimal strategy. For discrete state spaces, see the mono-
tone dynamic programming presented in Section V-A; for continuous
state spaces, see [28], where a simulation based algorithm is presented
to compute the optimal thresholds in remote estimation over a packet
drop channel.

Even for continuous action spaces, it is easier to search within the
class of even and quasi-convex strategies. Typically, some form of ap-
proximation is needed to search for an optimal strategy. Two commonly
used approximation schemes are discretizing the action space or pro-
jecting the strategy on to a parametric family of function. If the action
state is discretized, then the search methods for discrete action spaces
may be used. If the strategy is projected on to a parametric family
of function, then the structure may help in reducing the size of the
parameter space. For example, when approximating an even and quasi-
convex strategy as a finite-order polynomial, one can restrict attention
to polynomials where the coefficients of even powers are positive and
the coefficients of odd powers are zero.

In this paper, we assume that the state space X is a subset of reals. It
will be useful to generalize these results to higher dimensions.

APPENDIX A
PROOF OF CLAIM 1

We first prove some intermediate results.
Lemma 2: Under (M4) and (M5), for any x, y ∈ X≥0 , we have that

ϕ(y − x) ≥ ϕ(y + x).

Proof: We consider two cases: y ≥ x and y < x.
1) If y ≥ x, then y + x ≥ y − x ≥ 0. Thus, (M5) implies that ϕ(y +

x) ≥ ϕ(y − x).
2) If y < x, then y + x ≥ x − y. Thus, (M5) implies that ϕ(y +

x) ≥ ϕ(x − y) = ϕ(y − x), where the last equality follows from
(M4). �

Some immediate implications of Lemma 2 are the following.
Lemma 3: Under (M4) and (M5), for any a ∈ X and x, y ∈ X≥0 ,

we have that
a
[
ϕ(y − ax) − ϕ(y + ax)

] ≥ 0.

Proof: For a ∈ X≥0 , from Lemma 2, we get that ϕ(y − ax) ≥
ϕ(y + ax). For a ∈ X< 0 , from Lemma 2, we get that ϕ(y + ax) ≥
ϕ(y − ax). �

Lemma 4: Under (M4) and (M5), for any a, b, x, y ∈ X≥0 , we have
that

ϕ(y − ax − b) ≥ ϕ(y + ax + b) ≥ ϕ(y + ax + b + 1).

Proof: By taking y = y − b and x = ax in Lemma 2, we get

ϕ(y − b − ax) ≥ ϕ(y − b + ax).

Now, by taking y = y + ax and x = b in Lemma 2, we get

ϕ(y + ax − b) ≥ ϕ(y + ax + b).

By combining these two inequalities, we get

ϕ(y − ax − b) ≥ ϕ(y + ax + b),

which proves the first inequality in the result. The second inequality in
the result follows from (M5). �

Lemma 5: Under (M4) and (M5), for a ∈ Z and x, y ∈ Z≥0

Φ(y + ax) + Φ(y − ax) ≥ Φ(y + ax + a) + Φ(y − ax − a)

where Φ is the cdf (cumulative distribution function) of ϕ.
Proof: The statement holds trivially for a = 0. Furthermore, the

statement does not depend on the sign of a. So, without loss of gener-
ality, we assume that a > 0.

Now, consider the following series of inequalities (which follow
from Lemma 4):

ϕ(y − ax) ≥ ϕ(y + ax + 1)

ϕ(y − ax − 1) ≥ ϕ(y + ax + 2)

. . . ≥ . . .

ϕ(y − ax − a + 1) ≥ ϕ(y + ax + a).

Adding these inequalities, we get

Φ(y − ax) − Φ(y − ax − a) ≥ Φ(y + ax + a) − Φ(y + ax)

which proves the result. �
Proof of Claim 1: First, we assume that X = R and prove

each part separately.
1) Fix u ∈ [0, umax]. c(·, u) is even because d(·) is even [from (M3)].

c(·, u) is quasi-convex because 1 − q(u) ≥ 0 [from (M0)] and d(·)
is quasi-convex [from (M3)].

2) Consider e1 , e2 ∈ R≥0 and u1 , u2 ∈ [0, umax] such that e1 ≥ e2

and u1 ≥ u2 . The per-step cost is submodular on R≥0 × [0, umax]
because

c(e1 , u2 ) − c(e2 , u2 ) = (1 − q(u2 ))(d(e1 ) − d(e2 ))

(a )
≥ (1 − q(u1 ))(d(e1 ) − d(e2 ))

= c(e1 , u1 ) − c(e2 , u1 )

where (a) is true because d(e1 ) − d(e2 ) ≥ 0 [from (M3)] and
1 − q(u2 ) ≥ 1 − q(u1 ) ≥ 0 [from (M0) and (M2)].

3) Fix u ∈ [0, umax] and consider e, e+ ∈ R. Then, p(u) is even be-
cause

p(−e+ |−e; u) = q(u)ϕ(−e+ ) + (1 − q(u))ϕ(−e+ + ae)

(b )
= q(u)ϕ(e+ ) + (1 − q(u))ϕ(e+ − ae)

= p(e+ |e; u)

where (b) is true because ϕ is even [from (M4)].
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4) First note that

S(y|x; u) = 1 −
∫ y

−∞

[
p(z|x; u) + p(−z|x; u)

]
dz

= 1 −
∫ y

−∞
q(u)

[
ϕ(z) + ϕ(−z)

]
dz

−
∫ y

−∞
(1 − q(u))

[
ϕ(z − ax) + ϕ(−z − ax)]dz

(c )
= 1 − 2q(u)Φ(y)

− (1 − q(u))
[
Φ(y − ax) + Φ(y + ax)

]
where Φ is the cumulative distribution function of ϕ and (c) uses
the fact that ϕ is even [condition (M4)].
Let Sx (y|x; u) denote ∂S/∂x. Then,

Sx (y|x; u) = (1 − q(u))a
[
ϕ(y − ax) − ϕ(y + ax)

]
.

From (M0) and Lemma 3, we get that Sx (y|x; u) ≥ 0 for any
x, y ∈ R≥0 and u ∈ [0, umax]. Thus, S(y|x; u) is increasing in x.
Furthermore, from (M2), Sx (y|x; u) is decreasing in u. Thus,
S(y|x; u) is submodular in (x, u) on R≥0 × [0, umax].

Now, let us assume that X = Z. The proof of the first three parts
remains the same. Now, in part 4), it is still the case that

S(y|x; u) = 1 − 2q(u)Φ(y)

− (1 − q(u))
[
Φ(y − ax) + Φ(y + ax)

]
.

However, since X is discrete, we cannot take the partial derivative
with respect to x. Nonetheless, following the same intuition, for any
x, y ∈ Z≥0 , consider

S(y|x + 1; u) − S(y|x; u) = (1 − q(u))
[
Φ(y + ax)

−Φ(y + ax + a) + Φ(y − ax) − Φ(y − ax − a)
]
.

(13)

Now, by Lemma 5, the term in the square bracket is positive, and
hence S(y|x; u) is increasing in x. Moreover, since (1 − q(u)) is de-
creasing in u, so is S(y|x + 1; u) − S(x|x; u). Hence, S(y|x; u) is
submodular in Z≥0 × [0, umax].
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