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Abstract— In this paper, we consider the problem of finding
the shortest path in a graph when there is aleatoric uncertainty
about the presence and/or cost of certain edges. We investigate
hybrid path planning, in which an agent observes the uncertain
information as it traverses the graph and may adapt to
the new information. We model this problem as a robust
partially observable Markov decision process (robust POMDP)
and identify an information state for dynamic programming
decomposition. We propose a series of pruning steps, which
truncate the state space based on the relationship between the
cost and the uncertainty. We then show how to adapt the Neural
Monte Carlo Tree Search (Neural MCTS) algorithm to obtain
an approximate solution. Finally, we present a numerical study
to illustrate the effectiveness of the proposed approach.

I. INTRODUCTION

Consider the problem of dispatching first responders (e.g.,
ambulances, fire trucks, etc.) during a natural disaster. It is
critical to determine routes to ensure that first responders
can arrive as quickly as possible, but the road network may
be damaged, and real-time information from cameras and
sensors might not be available. However, the dispatcher may
have some information on which roads could potentially be
damaged based on historical data on road conditions during
past disasters, such as floods [1], [2]. As the first responders
travel from the source to the destination, new information
about road accessibility may become available, and they must
update their routes based on this new information.

Shortest path problems arise in a variety of applications
including robotics, communication networks, and search and
rescue, and others. For deterministic models, exact solutions
may be computed using Dijkstra’s algorithm [3] or its
approximations such as the A* search [4]. These algorithms
can be generalized to stochastic shortest path problems as
well [5]. However, all these classical algorithms assume that
there is no aleatoric uncertainty about the model.

In many models there is aleatoric uncertainty about the
model, either about the existence of the edges, or the cost of
the edges, or the transition probabilities. Such problems are
formulated as robust shortest path (RSP) problems [6] where
the uncertainty across different options could be modeled as
either independent [6], [7] or correlated [8].

RSP problems are often modeled as an adversarial zero-
sum game against nature, where the agent seeks to identify
the shortest cost path and nature selects a realization of the
uncertainty that maximizes the agent’s cost. The solution
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approaches can be categorized based on when the solution is
computed as follows: (i) Offline path planning, which seeks
to identify the path with the worst case cost prior to the agent
acting in the environment [9]. Such problems can be posed
as robust Markov decision process (RMDP) [10] but RSPs
do not usually satisfy the (s, a)-rectangularity assumptions
needed for RMDPs to have efficient solutions [11], [12].
Some iterative heuristic algorithms for offline RSPs have
been proposed in the literature [13], but in general the
solution is NP-hard [14]. (ii) Online path planning, which
does not assume any prior knowledge on the uncertainty [15].
The proposed solution approaches predict the edge costs
and iteratively improve these predictions as the edge costs
are revealed [16]. (iii) Hybrid path planning, generates a
general solution before the agent acts in the environment
and then update the solution as additional information is
revealed [17]. A commonly used algorithm is D* [17], which
is a variant of A* search that optimistically assumes the best
case scenario and selects a path according to that. When new
information becomes available, the agent re-plans according
to the new optimistic best case scenario. Various extensions
of D* algorithm exist in the literature, including Focused
D* [18], D* Lite [19], Lifelong Planning A* [20], which all
follow the same general framework as D* but use different
heuristics to speed up computations.

Motivated by dispatch of first-responders during natural
disasters, we are interested in hybrid path planning for RDP
with worst case performance guarantees. Heuristics such as
D* do not guarantee that the proposed solution provides the
optimal (or close to optimal) worst case performance. Our
main contributions are as follows. We show that hybrid path
planning can be modeled as a robust partially observable
MDP (robust POMDP) [10], [21]. Exact solution approaches
for robust POMDPs suffer from the curse of dimensionality.
To circumvent these computational limitations, we propose
a series of pruning steps which truncate the state spaces
based on the relationship between cost and uncertainty. In
addition, we show how to adapt Neural Monte Carlo Tree
Search (MCTS) methods [22] to efficiently solve hybrid
path planning in RSP. We illustrate the effectiveness of the
proposed solution approach via a numerical study of different
environments of increasing complexity.

II. PRELIMINARIES ON GRAPHS

We start with some terminology and notation from graph
theory that are used in this paper.

• A weighted directed graph G = {N , w} is given by
a finite set of vertices N and a weight function w :
N ×N 7→ R ∪ {+∞}.
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(b) Uncertain graph G1.
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(c) Uncertain graph G2.
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Fig. 1: Uncertain graphs for Example 1.

• The weight function w implicitly encodes the edges of
the graph. In particular, for n,m ∈ N , if w(n,m) <∞
then (n,m) is an edge of the graph, otherwise it is not.
For this reason, we do not explicitly model the set of
edges in the graph.

• A weighted graph G = (N , w) is said to be undirected
if for all n,m ∈ N , w(n,m) = w(m,n).

• Given a graph (N , w), the set of out-neighbors of a
vertex n ∈ N is defined as:

N+(n) := {m ∈ N : w(n,m) <∞}. (1)

• Given two vertices n,m ∈ N , we say that there is a
path between n and m if there exists an integer k and
vertices n1, . . . , nk ∈ N such that n1 = n, nk = m
and for all i ∈ {1, . . . , k − 1}, ni+1 ∈ N+(ni).

• A path is said to be loopless (or without cycles) if all
the vertices in the path are unique.

III. PROBLEM FORMULATION

As mentioned in the Introduction, we are interested in
finding the shortest path from a source to a destination vertex
when there is uncertainty about the weight function of the
graph.

We model this uncertainty as follows. The agent knows
that the true graph lies in an uncertain set of L weighted
directed graphs, denoted by G1, . . . ,GL, where for ℓ ∈ L :=
{1, . . . , L}, Gℓ := (N , wℓ), wℓ : N × N → C, where C
is a finite subset of R>0 ∪ {+∞} that contains +∞. The
true graph is denoted by Gℓ∗ , ℓ∗ ∈ L. The agent knows the
uncertain set L but does not know the index ℓ∗ of the true
graph.

A source vertex ns ∈ N and a destination node nd ∈ N
are given and it is assumed that the following assumption
holds.

Assumption 1 For each graph Gℓ, ℓ ∈ L, there exists a path
from ns to nd.

The agent starts with the knowledge of just G1, . . . ,GL.
Additional information about the local neighborhood be-
comes available incrementally to the agent as it traverses
the graph. In particular, the agent knows where the vertex of
the graph is at, and the local neighborhood of that node (in
the true graph Gℓ∗). This can be modeled by assuming that
at each time t, the agent knows the node nt and obtains an

observation ot = O(ℓ∗, nt) where

O(ℓ, n) :=
⋃

m∈N+
ℓ (n)

{(m,wℓ(n,m))}, ℓ ∈ L, n ∈ N .

(2)
We use Θ = {O(ℓ, n) : ℓ ∈ L, n ∈ N} to denote the set of
all possible observations.

The agent can construct the out-neighborhood of nt from
the observation ot as follows:

A(ot) := {m ∈ N : (m, c) ∈ ot and c <∞} = N+
ℓ∗(nt).

(3)
Based on the history of these observations, the agent

chooses an action at ∈ A(ot) = N+
ℓ∗(nt) to decide where

to go next. The actions are chosen according to a policy
π = (π1, π2, . . . , πt, . . . ) where:

πt : (n1:t, o1:t, a1:t−1) 7→ at, such that at ∈ A(ot). (4)

Let Π denote the set of all such policies.
Given policy π ∈ Π and ℓ ∈ L, let Tπ

ℓ denote the first
time when an agent starting at vertex ns in graph Gℓ and
following policy π reaches the destination nd.

Definition 1 (Proper Policy) A policy π ∈ Π is called
proper if for every ℓ ∈ L, Tπ

ℓ <∞.

Assumption 2 There exists a policy π ∈ Π that is proper.

Remark 1 Suppose each graph Gℓ, ℓ ∈ L has the property
that for every n,m ∈ N , m ̸= nd, such that wℓ(n,m) <
∞, we have wℓ(m,n) < ∞. Then, Assumption 1 implies
Assumption 2.

The cost of a policy π ∈ Π in graph Gℓ, ℓ ∈ L, when the
agent starts at ns and ends at nd is given by:

Jπ
ℓ :=

Tπ
ℓ∑

t=1

wℓ(nt, at). (5)

The worst-case cost of a policy π ∈ Π when the agent
starts at ns and ends at nd is given by:

Jπ := max
ℓ∈L

Jπ
ℓ (6)

We are interested in the following optimization problem.

Problem 1 Given N , ns, nd ∈ N , and uncertain graphs
G1, . . . ,GL, find a policy π ∈ Π of the form in (4) to



minimize Jπ given by (6), i.e., solve

min
π∈Π

max
ℓ∈L

Jπ
ℓ .

We now illustrate the model via a simple example.

Example 1 Consider the grid-world shown in Fig. 1a. The
objective is to find a path for an agent (denoted by the red
triangle) to reach the destination (shown by the green square).
The gray walls are open, the black walls are blocked, and the
blue walls are uncertain: they may be either open or closed,
but the agent does not know their status..

We model this uncertain shortest path problem with two
uncertain graphs {G1,G2}, as shown in Figs. 1b and 1c. We
will later use the more compact representation of Fig. 1d to
compactly represent graphs {G1,G2}.

For this example, it is easy to verify that Assumption 1
holds. Moreover, both {G1,G2} satisfy the condition of
Remark 1. Therefore, Assumption 2 also holds.

IV. EXACT SOLUTION USING DYNAMIC PROGRAMMING

A. Information State

The problem outlined in Problem 1 can be modeled as an
uncertain dynamical system with a partially observed state
st = (ℓ∗, nt). At t = 1, the system starts in the initial state
s1 = (ℓ∗, ns). For t > 1, the state evolves as:

st+1 = f(st, at) (7)

where the update function f is given by

f((ℓ, n), a) = (ℓ, a), ℓ ∈ L, n ∈ N , a ∈ N+
ℓ (n). (8)

At each t, the agents gets an observation ot = O(st) given
by (2) and chooses an action at accordingly to a policy π =
(π1, π2, . . . ) of the form (4). The performance of the policy
is given by (6).

Following [23], we can convert the above partially observ-
able uncertain system to a fully observable uncertain system
using an information state. The information state is given by
xt := (Ft, nt,A(ot)) where Ft is the set of feasible ℓ ∈ L
consistent with the history of observations and actions up to
time t. The feasible set Ft evolves as follows:

Ft = ϕ(Ft−1, nt, ot) (9)

where the update function ϕ is given by

ϕ(F , n, o) = {ℓ ∈ F : O(ℓ, n) = o},
∀F ∈ 2L, n ∈ N , o ∈ Θ (10)

Where, 2L denotes the power set of L.
At t = 0, the initial uncertainty is given by F0 = L. At

t = 1, the agent makes an observation o1 and updates the
uncertain set as F1 = ϕ(F0, n1, o1). Thus, the information
state at time t = 1 is x1 = (F1, ns,A(o1)) and for t > 1,
evolves as

xt+1 = (ϕ(Ft, nt+1, ot+1), nt+1,A(ot+1)).

Remark 2 The cost of an outgoing edge at the current
agent’s vertex nt with action at is wℓ∗(nt, at). In (10), the
sets Ft are constructed such that the out neigborhood of
every ℓ ∈ Ft are the same. Thus, for any feasible action
at ∈ A(nt), the agent knows the cost wℓ∗(nt, at).

B. Dynamic Programming Solution

Theorem 1 Suppose Assumptions 1 and 2 hold. Let V be
the unique bounded solution of the following fixed point
equation, called the dynamic program:

V (F , n,A(o)) = min
a∈A(o)

max
ℓ∈F

{
wℓ(n, a)

+ V (ϕ(F , a,O(ℓ, a)), a,A(O(ℓ, a)))
}
. (11)

Define π∗(F , n,A(o)) to be the argmin of the RHS of (11).
Then the time homogeneous policy π∗ = (π∗, π∗, . . . ), i.e.,
choosing at = π∗(Ft, nt,A(ot)), is optimal for Problem 1.

PROOF The dynamic programming solution follows from
[23]. The analysis in [23] was for finite horizon models.
Following the arguments in [24] these finite horizon results
can be extended to infinite time horizons for stochastic
shortest path problem under Assumptions 1 and 2.

C. Interpretation as a two-player zero-sum game

Problem 1 is a minimax optimization problem and as such
can be viewed as a two-player zero-sum game where the
agent is player one and is trying to minimize the cost of going
from the source to the destination while nature is player two
and is trying to maximize the cost. The zero-sum game has
the following salient features: it is sequential since the agents
play one-by-one; it is multi-stage since the play evolves over
multiple rounds; and finally, it has one-sided asymmetric
information since nature’s actions are not perfectly observed
by the agent but agent’s actions are perfectly observed by
nature. The dynamic program of Theorem 1 computes a
minimax equilibrium of the game.

D. Value Iteration

The dynamic program of Theorem 1 can be compactly
written in terms of Bellman operators. In particular, for any
value function V define the Bellman operator

[BV ](F , n, o) = min
a∈A(o)

max
ℓ∈F

{
wℓ(n, a)

+ V (ϕ(F , a,O(ℓ, a)), a,A(O(ℓ, a))
}

(12)

and the greedy policy

[ΛV ](F , n, o) = arg min
a∈A(o)

max
ℓ∈F

{
wℓ(n, a)

+ V (ϕ(F , a,O(ℓ, a)), a,A(O(ℓ, a))
}
. (13)

Then, the dynamic program of Theorem 1 can be written as

V = BV.



Value iterature (VI) is the simplest iterative algorithm to
compute the fixed point of the above fixed-point equation.
Given an accuracy level ε > 0, the VI algorithm proceeds
as follows.

1) Initialize k = 0 and V0 ≡ 0.
2) Compute Vk+1 = BVk and πk = ΛVk.
3) If ∥Vk+1 − Vk∥∞ ≤ ε, return πk and stop. Else set

k = k + 1 and return to step 2.

E. Pruning of the uncertainty graphs

The complexity of VI depends on the size of the set of
all feasible information states. In this section, we propose a
method to prune the graphs G1, . . . ,GL, which reduces the
number of feasible information states and thereby improves
the computational complexity of the algorithm. We start with
some definitions.

For any path p in graph Gℓ, ℓ ∈ L, let Cℓ(p) denote the
cost of the path. If the path contains an edge with infinite
weight, then its cost is infinity. For any path p, define

Cmax(p) = max
ℓ∈L

Cℓ(p)

For any edge (n,m), n,m ∈ N , let Dℓ(n,m) denote the
cost of the shortest path from the source to the destination in
graph Gℓ that contains the edge (n,m). For any edge (n,m),
define:

Dmin(n,m) = min
ℓ∈L

Dℓ(n,m).

We consider three types of pruning:

1) Pruning of L. For every ℓ◦ ∈ L, remove the graph Gℓ◦
if there exists a graph Gℓ′ , ℓ′ ∈ L, ℓ′ ̸= ℓ◦, such that
wℓ◦(n,m) ≤ wℓ′(n,m), for all vertices n,m ∈ N .

2) Pruning of Edges in Gℓ, ℓ ∈ L. Take a vertex n ∈ N
and a loopless path p◦ from n to the destination such
that Cmax(p◦) < ∞. Consider an edge (n,m), which
does not lie on p◦, such that

Dmin(n,m) > Cmax(p◦).

Then remove the edge (n,m) from all graphs Gℓ, ℓ ∈
L. Note that removing an edge is equivalent to setting
its weight to +∞.

3) Pruning of Vertices in all Gℓ, ℓ ∈ L. Remove all
vertices n ∈ Gℓ that do not belong to any finite-cost
path from the source ns to the destination nd in any
graph Gℓ, ℓ ∈ L.
Removing a vertex means that we remove it from the
node set N .

Note that the pruning steps can be repeated. So, when we
start with a problem, we apply the pruning steps one by one,
until they no longer lead to a simplification.

Proposition 1 The three pruning methods described above
do not change the optimal solution.

PROOF We will separately establish that each of the pruning
methods do not change the optimal solution.

1) Fix an ℓ◦ ∈ L. Suppose there exists an ℓ′ ∈ L such
that wℓ◦(m,n) ≤ wℓ′(m,n) for all m,n ∈ N . Then,
for any policy π, we have

Jπ
ℓ◦ ≤ Jπ

ℓ′

where we allow the right hand side to be infinity. Thus,

max
ℓ∈L

Jπ
ℓ = max

ℓ∈L\{ℓ◦}
Jπ
ℓ

Thus, nature can ignore ℓ◦ while selecting its action.
2) Let p◦ and (n,m) be as in the definition of pruning.

Consider any information state x = (F , n,A(o)). Let
(n,m◦) be the first edge of p◦. Since Cmax(p◦) <∞,
we must have that wℓ(n,m◦) < ∞ for all ℓ ∈ L.
Therefore, m◦ ∈ A(o) for all feasible observations o
at vertex n. Define

Q(F , n,A(o), a) = max
ℓ∈F

{
wℓ(n, a)

+ V (ϕ(F , a,O(ℓ, a)), a,A(O(ℓ, a)))
}
. (14)

Note that Q(x,m) ≥ Dmin(n,m) (because no path for
n to the destination can cost less than Dmin(n,m)) and
Q(x, n) ≤ Cmax(p◦) (because following the path p◦
is a feasible policy, hence the optimal policy must be
at least as good as p◦). The fact that Dmin(n,m) >
Cmax(p◦) implies that

Q(x,m) ≥ Dmin(n,m) > Cmax(p◦) ≥ Q(x,m◦).

Hence, action m is never optimal, and can therefore
be eliminated

3) Under Assumption 2, an optimal policy will never visit
a vertex that does not belong to any finite-cost path
from the source to the destination. So, removing such
a node, does not change the optimal policy.

V. APPROXIMATE SOLUTION USING NEURAL
MONTE-CARLO TREE SEARCH

It is well acknowledged that optimally solving dynamic
programming equations suffers from the curse of dimension-
ality, even in the perfectly observed expected cost setting.
This is exacerbated in the partially observed setting. Due to
this fact, the dynamic programming solution of Theorem 1
can only be used to solve small toy-examples. In the case
of larger models, some form of an approximate solution is
needed.

In recent years, Monte-Carlo Tree Search (MCTS) has
emerged as an efficient method to solve large scale dynamic
programming problems [25], especially in the zero-sum
game setting, with AlphaGo [22] being the most prominent
example. For small-scale environments, MCTS builds a game
tree and learns a value for each vertex of the game tree
using a variant of upper confidence bounds (UCB) [26] called
UCT (upper confidence bounds applied to trees). For larger
models, it is not possible to explicitly construct a game tree.
In such situations, a variant of MCTS called Neural MCTS
is used, which only constructs a part of the game tree and



approximates the value of all vertices in the game tree using
a deep neural network. We describe how to adapt such Neural
MCTS approach to obtain an approximate solution.

Algorithm 1 Neural MCTS

Initialize:
Create root node t0 representing initial state
Initialize a DNN Ψθ with parameters θ

for each episode do
Set t← t0.
repeat

if t is not fully expanded then
Add a random unexpanded edge to tree
break

end if
Selection action according to UCT
Set t to be the next state.
if t is destination then

Set v to be cost incurred so far
break

else Action limit is reached
Set v to be a large penalty
break

end if
until break is called
Backpropogate v along the nodes traversed

and update values using temporal difference
Update DNN weights to predict updated values.

end for

A Neural MCTS consists of a tree T and a deep neural
network (DNN) that approximates the value; function of the
dynamic program. The tree is a truncated approximation of
the game tree corresponding to the zero-sum game between
the agent and nature. In our case, the nodes of the tree at even
depth (including depth 0) correspond to the moves of the
agent, while the nodes at odd depth correspond to the moves
of nature. The root node corresponds to the initial state of
the system. The algorithm works in two steps: training and
inference.

During training, a tree starting from the root node is built
incrementally until a budget of a fixed number of nodes
has been reached (this is called the expansion limit). A tree
policy is used to traverse the tree and, at each node, either
expand the tree by adding one or more new child nodes,
or select an action by looking at the value of each of the
available available child nodes and selecting one of them
using UCT (upper confidence bounds for trees). The value
is then backed up through the traversed path (using temporal
difference learning) to update the values of all nodes along
the path. The main feature of Neural MCTS is that a DNN
is trained in parallel, which learns a mapping from the state
of knowledge at that node to its value.

Training proceeds in multiple episodes. In each episode,
the tree policy is followed either to expand the tree, or to take
actions until the agent reaches the destination vertex or until
a total budget on the number of action is reached (this budget

is called the action limit). If the episode ends because of the
agent reaching the destination vertex, the terminal node is
given a value equal to the cost of path followed from the
source until the destination (and this value is backed up as
described above); if the episode ends on reaching the action
limit, the terminal node is given a large value as penalty (and
this value is backed up as described above). This process is
repeated for large number of episodes.

During inference, the weights of the DNN are frozen and
the agent chooses the greedy action at each node, according
to the values learned by the DNN.

VI. NUMERICAL EXAMPLES

In this section, we present a simulation study to analyze
the performance of the algorithms presented in this paper
with a baseline algorithm.

A. Models Considered

We test the algorithms on four models with increasing
complexity. The models are shown in Fig 2 using the
compact graph notation, which was presented in Fig. 1d.
The details of the models are as follows:

1) Model 1, as shown in Figure 2a, is a 23 vertex graph
with 3 uncertain edges where at least one of these
edges exist. Thus, there are |L| = 7 possible true
weights for the graph.

2) Model 2, as shown in in Figure 2b, is a 49 vertex graph
with 3 uncertain edges. There is uncertainty in whether
the blue edges exist or not and uncertainty in the cost
of the red edges. If all the blue edges do not exist, the
red edges are valued at 3, if one of the pairs of blue
edges exist, then the red edges, are valued at 1. Thus,
there are |L| = 4 possible true weights for the graph.

3) Model 3, as seen in Figure 2c, is a 36 vertex graph with
9 uncertain edges where at least one edge in each row
exists. Thus, there are |L| = 27 possible true weights
for the graph.

4) Model 4, as seen in Figure 2d, is a 92 vertex graph
with 8 uncertain edges where there is uncertainty in the
cost of the blue edges and the sum of all the weights
is 30. Thus, there are |L| = 168 possible true weights
for the graph.

For each model, we run the graph pruning procedure
described in Sec. IV-E.

1) For model 1, the only pruning which can be done is
removing all graph weights which has more than 1 of
the uncertain edges existing. This pruning comes from
Pruning of L. After the pruning, there are |L| = 3
possible true weights for the graph.

2) For model 2, pruning does not simplify the graphs.
3) For model 3, pruning does not simplify the graphs.
4) In model 4, all edges highlighted in yellow in Figure 2d

can be removed through a combination of Pruning of
Edges and Pruning of Vertices methods. After the
pruning, there are |L| = 21 possible true weights for
the graph.
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Fig. 2: The four models considered in the numerical experiments.

We denote model 1 pruned by model 1p and model 4
pruned by model 4p.

B. Algorithms Evaluated

We consider the performance of the following algorithms:
1) The Value Iteration (VI) algorithm, as presented in

Sec. IV. The size of the set of feasible states for each
model is as follows:

• Model 1 has 7 states
• Model 1p has 3 states
• Model 2 has 4 states
• Model 3 has approximately 4.83× 109 states.
• Model 4 has approximately 3.44× 1052 states.
• Model 4p has approximately 1.55× 108 states.

Because of the size of the state space for models 3,
4 and 4p, we cannot evaluate Value Iteration on these
models.

2) The Neural MCTS algorithm, as presented in Sec. V.
This algorithm has several hyperparameters, that we
discuss below. The DNN had four layers, where the
first three layers were linear layers with Relu activation
function and the last layer was a softplus layer. The
size of the first three layers was equal to the number
of possible edges in the network (to capture the state of
knowledge of each edge) plus the number of vertices
(to capture the current location of the agent); the output
of the final layer was a real number approximating the
value of the vertex. We performed a hyperparameter
search to select the learning rate of 10−5. For the
MCTS component, we set the expansion depth, action
limit, and exploration depth to be 50, 50 and 500,
respectively. We performed a hyperparameter search
to select the exploration parameter (in UCT) to 1.

3) The D* algorithm [17], which was explained in the
Introduction.

C. Results

We run all algorithms for all models and evaluate the worst
case performance of the resultant policy, which is evaluated
according to (6). The results are shown in Table I. The
training of curves Neural MCTS is shown in Fig. 3 relative
to D* and the optimal value which is computed via VI in
Fig. 3a, 3b, 3c and via a hand-crafted selective search in

(a) Model 1 (b) Model 1p

(c) Model 2 (d) Model 3

(e) Model 4 (f) Model 4p

Fig. 3: Neural MCTS training curves.

Fig. 3d, 3e, 3f. The computational time for each algorithm
is shown in Table II.

For the smaller models (models 1, 1p, and 2), all algo-
rithms compute a solution. Moveover, the solution obtained
by Neural MCTS is the same as the optimal solution obtained
via VI. For model 2, D* obtains a worse than optimal solu-
tion; for models 1 and 1p, it obtains the same solution as VI.
For the larger models (models 3, 4, and 4p), VI is infeasible
Because of the size of the state space. The other algorithms
do converge, with Neural MCTS outperforming D*, but
this improved performance comes at the cost of increased
computation time. It is worth highlighting that most of the
computational time for Neural MCTS is spent during offline
training (and pruning). Once trained, the inference time for



TABLE I: Worst case performance of the policy learned
by each algorithm

Model VI Neural MCTS D*

1 16 16± 0 16

1p 16 16± 0 16

2 30 30± 0 250

3 N/A 34± 0 42

4 N/A 36± 0 41

4p N/A 36± 0 41

TABLE II: Computation time (in seconds) taken by each
algorithm

Model VI Neural MCTS D*

1 13.11 12.03 1.11

1p 2.28 13.73 1.34

2 4.20 215.02 1.61

3 N/A 2,495.56 69.37

4 N/A 15,410.43 303.75

4p N/A 755.02 117.86

Neural MCTS is small. Thus, Neural MCTS is a scalable
and effective algorithm for approximately solving large-scale
robust shortest path problems.

Note that the computational time reported in Table II
includes the time taken to prune the models. For small
models such as model 1, pruning does not provide compu-
tational savings for Neural MCTS because the pruning time
is a significant portion of the training time. However, for
larger models such as model 4, pruning reduces the overall
computational time by almost a factor of 20. This suggests
that it is worthwhile to run the model pruning step for larger
models.

VII. CONCLUSION

In this paper, we formulate the robust shortest path (RSP)
problem as a robust POMDP and present a dynamic pro-
gramming decomposition to identify the hybrid policy with
the best worst-case guarantees. We present a series of graph
pruning steps that truncate the state space based on the
relationship between cost and uncertainty. We then show how
to adapt Neural MCTS algorithms to efficiently provide an
approximate solution to the dynamic program. Our numerical
experiments show that Neural MCTS effectively scales to
environment with large state spaces.

The results of our paper offer both theoretical guarantees
and practical methods for real-world deployment. Future
work can explore extensions of this approach to other forms
of uncertainty and further refine the proposed methods for
broader application in uncertain dynamical systems.
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