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Abstract— In this paper, we present a generalization of
the certainty equivalence principle of stochastic control. One
interpretation of the classical certainty equivalence principle
for linear systems with output feedback and quadratic costs
is as follows: the optimal action at each time is obtained by
evaluating the optimal state-feedback policy of the stochastic
linear system at the minimum mean square error (MMSE)
estimate of the state. Motivated by this interpretation, we
consider certainty equivalent policies for general (non-linear)
partially observed stochastic systems and allow for any state
estimate rather than restricting to MMSE estimates. In such
settings, the certainty equivalent policy is not optimal. For
models with Lipschitz cost and dynamics, we derive upper
bounds on the sub-optimality of certainty equivalent policies in
terms of expected error of the proposed estimator. We present
several examples to illustrate the results.

I. INTRODUCTION

Consider the optimal output feedback control of a discrete-
time linear system driven by an independent noise pro-
cess and incurring a quadratic per-step cost. The model is
sometimes also called the LQG optimal control problem
but we are not imposing the Gaussian assumption on the
noise. As is well known, the optimal control policy for this
problem has the following structure: the optimal action at
each time is a linear function of the state estimate and the
corresponding feedback gain is the same as the feedback
gain of the optimal state-feedback control of the deterministic
system obtained by assuming that the realization of all future
random variables equals to their conditional mean (which,
under the assumption that the noise process is independent
across time, is equivalent to assuming that the realization
of all future random variables equals to their means). This
result is typically called the certainty equivalence principle
of stochastic control [1]–[5].

In this paper, we present a generalization of the certainty
equivalence principle to general partially observable Markov
decision processes (POMDPs) [6], [7]. Our generalization is
based on a slightly different interpretation of the certainty
equivalence principle where we view the optimal output
feedback control policy as follows: the optimal action at each
time is obtained by evaluating the optimal state-feedback
policy of the stochastic system (obtained by assuming that
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the decision maker perfectly observes the state of the system)
at the MMSE (minimum mean square error) estimate of the
state. For clarity, we present a formal description of this
interpretation.

Let P denote the partially observable linear system with
state st ∈ S, action at ∈ A, and output yt ∈ Y , where S, A,
and Y are Euclidean spaces. Let M be the fully observable
linear system where the decision maker has access to the
state. Note that the fully observed system M is different
from one typically assumed in certainty equivalence. As
is the case in the standard certainty equivalence principle,
we are assuming that M is fully observed but we are
not assuming that the dynamics of M are deterministic.
For simplicity, suppose that the system runs for a finite
horizon T . Let πM = (πM

1 , . . . , πM
T ) denote the optimal

policy for model M and µP = (µP
1 , . . . , µ

P
T ) denote the

optimal policy for model P . Moreover, for any history
ht = (y1, a1, y2, a2, . . . , yt) of observations and actions at
the decision maker until time t, let Et(ht) denote the MMSE
estimator of the state given the history ht. Then, the standard
result for LQG optimal control is that

µP
t (ht) = πM

t (Et(ht)).

As mentioned earlier, the model M is stochastic rather
than deterministic. But we will still call the above result
as the certainty equivalence principle. Similar views on
the certainty equivalence principle have been used in the
reinforcement learning and adaptive control literature [8].

In this paper, we consider two generalizations of the above
result.

1) We allow Et to be any estimate of the state rather than
restricting attention to MMSE estimates.

2) We consider general POMDPs rather than restricting
attention to linear systems.

In this general setting, we define the generalized certainty
equivalence policy µGCE = (µGCE

1 , . . . , µGCE
T ) as

µGCE
t (ht) = πM

t (Et(ht)). (1)

Clearly, in general, µGCE is not optimal. Our main result is to
characterize the degree of sub-optimality of the generalized
certainty equivalence policy µGCE and illustrate via examples
that such a policy is an attractive approximation policy in
some situations.

Our results may be viewed as an instance of characterizing
the sub-optimality gap of approximate policies for POMDPs.
There is a rich literature on deriving such sub-optimality gaps
such as using tools from predictive state representation [9],



[10], bisimulation metrics [11], approximation information
states (AIS) [12], and filter stability [13], [14]. Our analysis
is based on AIS-based approximation bounds of [12].

Notation: We use uppercase letters to denote random
variables (e.g., S, A, etc.), the corresponding lowercase
letters to denote their realizations (e.g., s, a, etc.), and the
corresponding calligraphic letters to denote their space of
realizations (e.g., S, A, etc.). Subscripts denote time, so
St denotes a variable at time t. The notation S1:t is a
shorthand for the sequence (S1, . . . , St). P(·) denotes the
probability of an event and E[·] denotes the expectation of a
random variable. We use the notation of the form P(St+1 ∈
MS |st, at) as a shorthand for P(St+1 ∈ MS |St = st, At =
at). Similar notation is used for conditional expectations. The
Wasserstein-1 distance on the space of probability measures
is denoted by dWas.

We use R to denote the set of real numbers. For a
topological space X , ∆(X ) denotes the set of all probability
measures on X and B(X ) denotes all bounded and mea-
surable real-valued functions on X . For square symmetric
matrices P and Q, P ⪯ Q means that Q−P is positive semi-
definite. The Lipschitz constant of a function f is denoted
by Lip(f).

II. A MOTIVATING EXAMPLE

Consider a linear system that starts from a known initial
state s1 and, for t > 1, has the dynamics

st+1 = Ast + Bat + wt, yt = st + nt

where st ∈ Rds , at ∈ Rda , A ∈ Rds×ds , B ∈ Rds×da , and
{wt}T−1

t=1 and {nt}Tt=1 are processes that are independent
across time and also mutually independent. We assume that
the noises are zero mean and have covariances Wt and Nt

(but we do assume that they have a Gaussian density). The
objective is to find a policy µ = (µ1, . . . , µT−1), where
µt : ht 7→ at to minimize the expected total cost

J(µ) := Eµ

[T−1∑
t=1

[
s⊺tQtst + a⊺t Rtat

]
+ sTQ

⊺
T sT

]
where Qt ∈ Rds×ds are symmetric and positive semi-definite
matrices and Rt ∈ Rda×da are symmetric and positive
definite matrices. T

The above model is a special case of the standard LQG
optimal control problem and therefore the optimal policy
µP is given as follows. Let {Pt}t≥1 be the solution of
an appropriately defined Riccati equation and Kt = (Rt +
B⊺Pt+1B)

−1B⊺Pt+1A. Then, the optimal policy is given by

µP
t (ht) = −Ktŝt

where ŝt is the MMSE state estimate computed via non-
linear filtering (or via Kalman filtering when the noise
processes are Gaussian). Furthermore, the performance of
the optimal policy is given by

J(µP) =

T−1∑
t=1

[
Tr(WtPt+1)+Tr(ΣtK

⊺
t (Rt +B⊺Pt+1B)Kt)

]

where Σt is the covariance of (st − ŝt).
In general, implementing the optimal policy requires

computing the MMSE estimates ŝt via non-linear filtering,
which can be computationally challenging (in the case when
the noises are non-Gaussian). An alternative and easy-to-
implement policy is a generalized certainty equivalence pol-
icy which uses the last observation as a state estimate, i.e.,
Et(ht) = yt and µGCE

t (ht) = −Ktyt with the same feedback
gain Kt as before. Simple algebra shows that the performance
of this generalized certainty equivalent policy is

J(µGCE) =

T−1∑
t=1

[
Tr(WtPt+1)+Tr(NtK

⊺
t (Rt+B⊺Pt+1B)Kt)

]
.

Thus, we obtain that the sub-optimality gap of µGCE is

J(µGCE)−J(µP) =

T−1∑
t=1

Tr((Nt−Σt)K
⊺
t (Rt+B⊺Pt+1B)Kt),

which is small when the observation noise has a small
covariance.

III. SYSTEM MODEL

Consider a discrete-time partially observable Markov de-
cision process (POMDP), denoted by P , with state space S,
observation space Y , and action space A that runs for a finite
horizon T . Let St ∈ S denote the state of system, Yt ∈ Y
denote the observation of controller, and At ∈ A denote the
control action taken by the controller at time t. We assume
that S is a metric space with a metric dS .

The initial state and observation (S1, Y1) are distributed
according to a probability distribution ξ ∈ ∆(S × Y). The
dynamics and observation are assumed to be Markovian.
In particular, we assume that there exist stochastic kernels
Pt : S × A → ∆(S × Y), t ∈ {1, . . . , T − 1}, such that for
any t ∈ {1, . . . , T − 1}, any Borel subsets MS ,MY of S
and Y respectively, and any realizations s1:t, y1:t and a1:t of
S1:t, Y1:t, A1:t, respectively, we have

P(St+1 ∈ MS , Yt+1 ∈ MY |s1:t, y1:t, a1:t)
= P(St+1 ∈ MS , Yt+1 ∈ MY |st, at)
=: Pt(MS ,MY |st, at). (2)

We will use the notation PS,t(·|st, at) and PY,t(·|st, at) to
denote the state and observation marginals of Pt(·, ·|st, at).

At each time t, the system incurs a per-step cost ct(St, At),
which is uniformly bounded i.e., there exists a cmax such that
sups∈S,a∈A |ct(s, a)| ≤ cmax.

The controller has access to observation and action history
ht = {y1:t, a1:t−1} at time t. Let Ht denote the space of
realization of ht. Let µ = (µ1, . . . , µT ) denote any history
dependent deterministic policy. The value function of policy
µ is defined as WP,µ

t (ht) = E
µ[
∑T

τ=t cτ (sτ , aτ )|ht] where
Eµ denotes expectation with respect to a joint measure on the
system variables induced by the policy µ. The optimal value
function is defined as WP

t (ht) = infµ W
P,µ
t (ht), where the

infimum is over all history dependent policies.
The standard approach to solve a POMDP is to use a

belief-state based dynamic program [6], [7]. As discussed



in the introduction, we are interested in obtaining approxi-
mately optimal policies that are motivated by the certainty
equivalence principle. We explain the approximation ap-
proach in the next section.

A. Generalized certainty equivalent policies

Consider a state feedback controller for the stochastic
system defined above, where the controller has access to the
state St at time t. This system is a finite horizon Markov
decision process (MDP) M with state space S, action space
A, dynamics PS,t, and per-step cost ct.

Definition 1 (Measurable selection) An MDP with state
and action spaces S and A, per-step cost {ct}Tt=1 and
dynamics {PS,t}T−1

t=1 is said to satisfy measurable selection
if for every measurable function V : S → R and each
time t ∈ {1, . . . , T − 1}, there exists a measurable selector
π : S → A such that

inf
a∈A

{
ct(s, a) +

∫
S
PS,t(ds

′|s, a)V (s′)

}
= ct(s, π(s)) +

∫
S
PS,t(ds

′|s, π(s))V (s′) =: V+(s),

and V+ : S → R defined above is a measurable function.

Assumption 1 The model M satisfies measurable selection.

An implication of measurable selection is that there exists
an optimal policy πM = (πM

1 , . . . , πM
T ), where πM

t : S →
A, with associated optimal value functions (V M

1 , . . . , V M
T ),

V M
t : S → R, for this MDP [15].
We now use the optimal policy πM for the MDP M

to define a feasible policy for the POMDP P . Suppose we
are given a sequence of state estimation functions {Et}Tt=1,
where Et : Ht → S . For instance, Et may be the MMSE
(minimum mean square error) or the MAP (maximum a pos-
teriori probability) estimator which depend on the conditional
distribution of the state given the history of observations
and actions. Alternatively, the estimator could be a simple
function (e.g. linear) of the last few observations. Note that
these estimates need not be “good”, just that they should
generate an estimate that belongs to the state space.

We call a history-dependent policy µE = (µE
1 , . . . , µ

E
T )

generalized certainty equivalent with respect to {Et}t≥1 if

µE
t (ht) = πM

t (Et(ht)). (3)

As argued earlier, such policies are optimal in the LQ
setting but are, in general, not optimal. We are interested in
the following problem.

Problem 1 Characterize the sub-optimality gap of general-
ized certainty equivalent policies for POMDPs, i.e., bound∥∥WP

t −WP,µE

t

∥∥
∞ = sup

ht∈Ht

∣∣WP
t (ht)−WP,µE

t (ht)
∣∣.

B. Some examples

As seen from the motivating example in Sec. II, certainty
equivalent policies are attractive when there is “small obser-
vation noise”. In general, the choice of a good estimator

depends on the observation model. We present some ex-
amples to illustrate observation models (and corresponding
estimators) where generalized certainty equivalent policies
may be useful.

Example 1 Consider a POMDP where Y = S and the
observation model is such that dS(Yt, St) ≤ r, a.s. Sup-
pose the state estimate is simply the last observation, i.e.,
Et(ht) = yt. Then, the generalized certainty equivalent
policy is µE

t (ht) = πM
t (yt).

Example 2 Consider a POMDP where Y = S and the ob-
servation model is such that the controller perfectly observes
the state St with probability (1− p) and gets a random ob-

servation with probability p, i.e., Yt =

{
St, w.p. (1− p)

Ut, w.p. p
where {Ut}t≥1 is a sequence of independent and identically
distributed random variables uniformly distributed on S.
Similar to Example 1, if the state estimate is chosen as
the last observation, i.e., Et(ht) = yt, then the generalized
certainty equivalent policy is µE

t (ht) = πM
t (yt).

Example 3 Consider the MDP learning setting where the
underlying system with state S̃t ∈ S̃ depends on an
unknown parameter θ ∈ Θ with the state transition ker-
nel PS̃,t(·|s̃t, at; θ), the cost function ct(s̃t, at; θ), and the
optimal state-feedback policy πM

t (s̃t; θ), all parametrized
by θ, which is not directly observed. This parameter can
be estimated/learned using various estimators, such as the
MMSE estimator θ̂t = E[θ|ht]. By setting the overall system
state St = (S̃t, θ), the MDP learning problem becomes a
POMDP with observation Yt = S̃t. Then, the state estimate
corresponding to the MMSE estimator is given by Et(ht) =
(s̃t, θ̂t), and the generalized certainty equivalent policy is
µE
t (ht) = πM

t (s̃t; θ̂t).

Example 4 Consider a first-order linear system, i.e., a sys-
tem with S = Y = A = R, where the dynamics are
deterministic and given by St+1 = St + At, and the
observations are given by Yt = St+Nt, where {Nt}t≥1 is an
independent and identically distributed process. We assume
that the metric on the state space is dS(s1, s2) = |s1−s2| and
|Nt| ≤ r. The cost function is general, and not necessarily
quadratic.

Suppose the estimator is chosen as

E(ht) =
1

t

[ t∑
τ=1

(yτ )−
t−1∑
τ=1

(t− τ)aτ

]
+

t−1∑
τ=1

aτ .

Then, the generalized certainty equivalent policy is µE
t (ht) =

πM
t (E(ht)).

IV. BACKGROUND

In this section we cover some of the background material
needed to present our main result. We start by a discussion
of some policy independent beliefs that are used in the
analysis of POMDPs. We then introduce integral probability
metrics (IPMs) [16], and provide a brief overview of the AIS



theory [12], which is the framework that we use to derive
our sub-optimality bounds.

A. Policy independent beliefs

Consider an arbitrary history dependent policy µ for the
model P defined in Sec. III. We define the following two
beliefs which are commonly used in POMDPs:

• bt|t(·|ht) denotes the controller’s posterior distribution
on the current state St given the history ht under
the policy µ, i.e., for any Borel subset MS of S,
bt|t(MS |ht) = Pµ(St ∈ MS |ht). The belief bt|t(·|ht)
is referred to as the belief state. It is well known that it
does not depend on the choice of the history dependent
policy µ [6], [7].

• bt+1|t(·, ·|ht, a) denotes the controller’s posterior distri-
bution on the next state St+1 and next observation Yt+1

given the history ht and action at under policy µ. Note
that for any Borel subsets MS and MY of S and Y ,

bt+1|t(MS ,MY |ht, at) =

∫
S
bt|t(dst|ht)Pt(MS ,MY |st, at).

Since the belief state bt|t(·|ht) does not depend on the
choice of the policy µ, the above relationship implies
that neither does bt+1|t(·, ·|ht, at). With a slight abuse
of notation, we will continue to use bt+1|t to denote its
marginals on S or Y .

B. Approximate information states

The AIS theory [12] provides a framework to derive sub-
optimality bounds for a class of approximate solutions to
POMDPs. The key idea in this framework is the notion of
an approximate information state, which we formally define
below. Our definition is similar to that of [12] with one dif-
ference. The analysis in [12] was done under the assumption
that the state and observation spaces are finite valued, while
we are in general state spaces. So, we include a measurable
selection assumption to ensure that the approximate dynamic
program obtained from the AIS has a well-defined solution.

The discussion below is for the general POMDP model P
defined in Sec. III.

Definition 2 Let (Z, dZ) be a metric space. Given ε =
(ε1, . . . , εT ), δ = (δ1, . . . , δT−1) ∈ RT

≥0, a process {Zt}t≥1,
Zt ∈ Z , is called an (ε, δ)-approximate information state
(AIS) if there exist

• a sequence of history compression functions {σAIS
t }Tt=1,

where σAIS
t : Ht → Z with Zt = σAIS

t (Ht)
• a sequence of cost approximators {cAISt }Tt=1, where
cAISt : Z ×A → R

• a sequence of dynamics approximators {PAIS
t }T−1

t=1 ,
where PAIS

t : Z ×A → ∆(Z)

such that following three properties are satisfied:
(AP1) Approximately sufficient for performance evaluation:

for any time t ∈ {1, . . . , T} and any ht ∈ Ht and
at ∈ A, we have∣∣E[ct(St, at)|ht]− cAISt (σAIS

t (ht), at)
∣∣ ≤ εt

(AP2) Approximately sufficient for predicting itself: for any
time t ∈ {1, . . . , T−1} and any ht ∈ Ht and at ∈ A,
define the stochastic kernel νt on Ht ×At → ∆(Z)
as follows: for any Borel measurable subset MZ of
Z ,

νt(MZ |ht, at) = P(Zt+1 ∈ MZ |ht, at)

=

∫
Y
1{σAIS

t+1(ht, at, yt+1) ∈ MZ}bt+1|t(dyt+1|ht, at).

Then, for any time t ∈ {1, . . . , T − 1}, we have

dWas

(
νt(·|ht, at), P

AIS
t (·|σAIS

t (ht), at)
)
≤ δt.

(M) Measurable selection: The MDP model with state
space Z , action space A, per-step costs {cAISt }Tt=1 and
dynamics {PAIS

t }Tt=1 satisfies measurable selection.
The tuple (σAIS, cAIS, PAIS), where each component is a
sequence, is called an AIS-generator.

Observe that components (cAIS, PAIS) of an AIS-generator
define a model MAIS for an MDP. We can therefore write a
dynamic program for this model where the value function
{V AIS

t }T+1
t=1 , V AIS

t : Z → R, are defined as follows. We
initialize V AIS

T+1(z) = 0 for all z ∈ Z and then recursively
define for t ∈ {T, T − 1, . . . , 1}

V AIS
t (zt) = min

a∈A

{
cAISt (zt, a)+

∫
Z
PAIS
t (dz′|zt, a)V AIS

t+1(z
′)

}
.

(4)
The measurable selection condition (M) implies that there
exists a measurable selector πAIS

t : Z → A, t ∈ {1, . . . , T},
such that πAIS

t (zt) is an arg min of the right hand side
of (4) and the functions V AIS

t are measurable. From standard
results in MDP theory [15], we know that the policy πAIS =
(πAIS

1 , . . . , πAIS
T ) is an optimal policy for MAIS.

The main result of the AIS theory is the following:

Theorem 1 Define a history-dependent policy µAIS =
(µAIS

1 , . . . , µAIS
T ) for the POMDP P as follows: for any

t ∈ {1, . . . , T} and any ht ∈ Ht, define

µAIS
t (ht) = πAIS(σAIS

t (ht)).

Then, for any t ∈ {1, . . . , T} and ht ∈ Ht, we have

WP,µAIS

t (ht)−WP
t (ht) ≤ 2αt (5)

where

αt = εt +

T−1∑
τ=t

[
δt Lip(V

AIS
t+1) + ετ+1

]
.

PROOF (SKETCH) As argued earlier, the measurable selec-
tion condition ensures that V AIS

t and πAIS
t are well-defined

and measurable. The approximation bound follows from
exactly the same analysis as in [12, Theorem 9]. ■

V. APPROXIMATION BOUNDS

The main idea of our sub-optimality bounds for Problem 1
is to show that the process {Ŝt}t≥1, where Ŝt = Et(Ht) is
an (ε, δ) AIS for appropriate choice of ε and δ. Recall that
dS is the metric on the state space S.



We impose the following assumption on the model.

Assumption 2 There exist finite constants {Lc
t}Tt=1 and

{LP
t }Tt=1 such that for any s1, s2 ∈ S and a ∈ A, we have∣∣ct(s1, a)− ct(s2, a)

∣∣ ≤ Lc
tdS(s1, s2), (6)

dWas(PS,t(·|s1, a), PS,t(·|s2, a)) ≤ LP
t dS(s1, s2). (7)

These are standard assumptions for smoothness of the per-
step cost and the dynamics, and imply smoothness (Lipschitz
continuity) of the value function of model M [17].

Our bounds for the sub-optimality gap of generalized cer-
tainty equivalent policy µE

t (ht) defined in (3) will depend on
the quality of the estimates produced by the state estimation
functions Et. We will assess the quality of the estimates using
the metric dS on the state space. For each time t, we define

ηt := sup
ht∈Ht

E[dS(St, Et(ht))|ht]. (8)

We state the following lemma (proofs are omitted due to
space limitations).

Lemma 1 Under Assumption 2, for any ht ∈ Ht and at ∈
A, we have∣∣E[ct(St, at)|ht]− ct(Et(ht), at)

∣∣ ≤ Lc
tηt.

Given a ht ∈ Ht and at ∈ A, define the stochastic kernel
ν̂t : Ht ×At → ∆(S) as follows: for any Borel measurable
subset MS of S,

ν̂t(MS |ht, at) = P(Et+1(Ht+1) ∈ MS |ht, at) (9)

=

∫
Y
1{Et+1(ht, at, yt+1) ∈ MS}bt+1|t(dyt+1|ht, at). (10)

The interpretation of ν̂t(·|ht, at) is that it is the conditional
probability distribution of Ŝt+1 = Et+1(Ht+1) given ht, at.

Lemma 2 Under Assumption 2, for any ht ∈ Ht and at ∈
A, we have

dWas(ν̂t(·|ht, at), PS,t(·|Et(ht), at)) ≤ LP
t ηt + ηt+1,

where ν̂t(·|ht, at) is the probability distribution on S defined
in (10) and PS,t(·|Et(ht), at) is the distribution of the next
state (i.e. St+1) if the current state is Et(ht) and the current
action is at.

Theorem 2 Under Assumptions 1 and 2, (E , c, P ) is an
(ε, δ)-AIS-generator with

εt = Lc
tηt, δt = LP

t ηt + ηt+1.

Consequently, we have that for the generalized certainty
equivalent policy µE (defined in (3)),

WP,µE

t (ht)−WP
t (ht) ≤ 2αt (11)

where

αt = εt +

T−1∑
τ=t

[
δt Lip(V

M
t+1) + ετ+1

]
(12)

and {V M
t }Tt=1 are the optimal value functions for MDP M.

PROOF Under Assumption 2, Lemmas 1 and 2 ensure
that conditions (AP1) and (AP2) of AIS are satisfied with
εt = Lc

tηt, δt = LP
t ηt + ηt+1. Assumption 1 ensures that

condition (M) of AIS is satisfied. Thus, the result follows
from Theorem 1. ■

Remark 1 Following the argument in [17], it can be shown
that under Assumptions 1 and 2, the optimal value function
V M
t for the MDP M is Lipschitz with constant Lip(V M

t ) ≤
Lc(1+Lp+L2

p+ · · ·+LT−t
p ). Using this inequality in (12),

gives an upper bound on αt.

VI. SOME ILLUSTRATIVE EXAMPLES

In this section we apply our results to the examples
presented in Section III-B to derive explicit bounds on the
sub-optimality of generalized certainty equivalent policies for
specific observation models.

A. Example 1

For the observation model given in Example 1,

E[dS(St, Et(Ht))|ht] = E
[
dS(St, Yt)|ht

]
≤ r.

Hence, we have ηt ≤ r. Thus, if the model M satisfies
Assumptions 1 and 2, then (E , c, P ) is an AIS generator
with εt = rLc

t and δt = r(1+LP
t ). Therefore, the bound

in Theorem 2 can be explicitly written as

WP,µE

t (ht)−WP
t (ht)

≤ 2r

[
Lc
t +

T−1∑
τ=t

[
(1 + LP

t ) Lip(V
M
t+1) + Lc

τ+1

]]
where µE

t (ht) = πM
t (yt). This bound scales linearly with r,

which means that as the observation becomes closer to the
underlying state, the performance of the generalized certainty
equivalent policy approaches that of the optimal policy.

B. Example 2

For the model presented in Example 2,

E[dS(St, Et(Ht))|ht]

= (1− p)E
[
dS(St, St)|ht

]
+ pE

[
dS(St, Ut)|ht

]
≤ p sup

s′∈S
E
[
dS(St, s

′)|ht

]
≤ pD

where D := sups1,s2∈S dS(s1, s2) is the diameter of the
space S. Hence, we have ηt ≤ pD. Thus, if the model
M satisfies Assumptions 1 and 2, then (E , c, P ) is an AIS
generator with εt = pDLc

t and δt = pD(1+LP
t ). Therefore,

the bound in Theorem 2 can be explicitly written as

WP,µE

t (ht)−WP
t (ht)

≤ 2pD

[
Lc
t +

T−1∑
τ=t

[
(1 + LP

t ) Lip(V
M
t+1) + Lc

τ+1

]]
.

where µE
t (ht) = πM

t (yt). This bound scales linearly with
p, the probability of receiving a random observation. As p
approaches zero, i.e., as the probability of correctly observing
the state increases, the bound decreases, indicating that the



generalized certainty equivalent policy becomes closer to the
optimal policy.

These results demonstrate that when the state estimation
error is small, either due to observations with small noise
(Example 1) or observations that are frequently accurate
(Example 2), generalized certainty equivalent policies can
perform near-optimally. The bounds provide a quantitative
measure of the sub-optimality in terms of the estimation error
and the Lipschitz constants of the model.

C. Example 3

For the MDP learning setting of Example 3, suppose

E[dS(St, Et(Ht))|ht] = E[dΘ(θt, θ̂t)|ht] ≤ ηt. (13)

Suppose there exist finite constants {Lc
t}Tt=1 and {LP

t }Tt=1

such that for any s̃ ∈ S̃, a ∈ A and any θ1, θ2 ∈ Θ, we have∣∣ct(s̃1, a; θ1)− ct(s̃2, a; θ2)
∣∣ ≤ Lc

t(dS̃(s̃1, s̃2) + dΘ(θ1, θ2)),

dWas(PS̃,t(·|s̃1, a; θ1), PS̃,t(·|s̃2, a; θ2))
≤ LP

t (dS̃(s̃1, s̃2) + dΘ(θ1, θ2)).

Then, Assumptions 2 is satisfied with {Lc
t}Tt=1 and

{LP
t }Tt=1. As a result, under Assumption 1, the bound in

Theorem 2 also holds in the MDP learning setting with ηt
being the parameter estimation error given by (13).

D. Example 4

In Example 4 assume that the per-step cost is Lipschitz and
satisfies (6). It can be shown that the dynamics are Lipschitz
and satisfy (7) with LP

t = 1. Further,

E
[
|St − E(ht)|

∣∣ ht

]
= E

[∣∣∣1
t

t∑
τ=1

Nτ

∣∣∣ ∣∣∣∣∣ ht

]
≤ r.

Hence, we have ηt ≤ r. Thus, if the model M satisfies
Assumptions 1 and 2, then (E , c, P ) is an AIS generator
with εt = rLc

t and δt = r(1 + LP
t ) = 2r. Therefore, the

bound in Theorem 2 can be explicitly written as

WP,µE

t (ht)−WP
t (ht) ≤ 2r

[
Lc
t +

T−1∑
τ=t

[
2Lip(V M

t+1) + Lc
τ+1

]]
.

VII. CONCLUSION

In this paper, we introduced a generalization of the cer-
tainty equivalence principle for control policies in partially
observable Markov decision processes (POMPDs). Our ap-
proach applies optimal state-feedback policies from the fully
observable MDP to state estimates, without restricting to
specific types of estimators such as MMSE. We established
theoretical performance bounds that characterize their degree
of sub-optimality. Specifically, we leveraged the approximate
information state (AIS) framework [12] to quantify the
impact of estimation errors on control performance, deriving
bounds in terms of the Lipschitz constants of the system
dynamics and the per-step cost function.

To illustrate the practical relevance of our results, we
examined several examples, including settings where the

observation noise is small, cases with partial state obser-
vations, and learning scenarios where the system model is
learned. These examples demonstrated that generalized cer-
tainty equivalent policies can perform near-optimally when
state estimation errors are small. The bounds we derived
provide quantitative measures of sub-optimality that scale
linearly with the estimation error, highlighting that as obser-
vations become more accurate, the performance of general-
ized certainty equivalent policies approaches that of optimal
policies. This suggests that in scenarios where exact optimal
policies are computationally intractable, generalized certainty
equivalent policies offer a practical and efficient alternative,
making effective use of available state estimates to achieve
reliable decision-making while maintaining tractability.
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