
Asymmetric Actor-Critic with Approximate Information State

Amit Sinha and Aditya Mahajan

Abstract— Reinforcement learning (RL) for partially observ-
able Markov decision processes (POMDPs) is a challenging
problem because decisions need to be made based on the entire
history of observations and actions. However, in several scenarios,
state information is available during the training phase. We are
interested in exploiting the availability of this state information
during the training phase to efficiently learn a history-based
policy using RL. Specifically, we consider actor-critic algorithms,
where the actor uses only the history information but the
critic uses both history and state. Such algorithms are called
asymmetric actor-critic, to highlight the fact that the actor and
critic have asymmetric information. Motivated by the recent
success of using representation losses in RL for POMDPs [1], we
derive similar theoretical results for the asymmetric actor-critic
case and evaluate the effectiveness of adding such auxiliary losses
in experiments. In particular, we learn a history representation—
called an approximate information state (AIS)—and bound the
performance loss when acting using AIS.

I. INTRODUCTION

Partially observable Markov decision processes (POMDPs)
are a more powerful modeling tool than Markov decision
processes (MDPs) as they allow for the possibility of a hidden
state which is not seen by the decision maker. This feature
is useful while modeling many real-world applications such
as autonomous driving [2], quantitative trading [3], energy
systems [4], robotics [5] etc. However, this modeling power
comes at a cost, as solving POMDPs is computationally
harder than solving MDPs [6]–[8]. Recently, reinforcement
learning (RL) has emerged as a powerful tool to solve high-
dimensional POMDP models [9]–[16].

In many instances, the RL algorithm uses a simulation
environment. In such settings, the state of the system is
available during the learning phase and can be used to
speed up learning as long as the learned policy does not use
the additional state information. Typically, such additional
information is exploited in actor-critic class of algorithms by
providing the additional information to the critic but not the
actor. Such algorithms are called asymmetric actor-critic due
to the asymmetry of the information available to the actor and
critic. There have been a series of recent papers which have
shown that asymmetric actor-critic algorithms significantly
speed up the learning process [12], [13], [17]–[22].

It was shown in [17], [19] that using critics with just
the state information significantly improves empirical per-
formance. However, it was shown in [12] that the value
functions defined in [17] are generally ill-defined, and that

The authors are with the Department of Electrical and Computer Engineer-
ing, McGill University, Montreal amit.sinha@mail.mcgill.ca,
aditya.mahajan@mcgill.ca

This was supported in part by the NSERC International Catalyst Grant
AALRP 571054-21.

even when they are well defined, then the policy gradient
may be biased. A stronger theoretical basis for incorporating
state information into the critic was presented in [12], where
a variation of asymmetric actor-critic with well-defined value
functions and unbiased policy gradient was presented.

There have also been some recent results for vanilla actor-
critic methods, which show that adding representation learning
losses as an auxiliary loss in RL for POMDPs improves
learning [1], [23]–[26]. So, a natural question is whether
adding similar representation learning losses in asymmetric
actor-critic improves learning. We investigate this question
in this paper.

Our main contribution is to develop a theoretical framework
for characterizing the representation loss in state-based
dynamic programs for POMDPs. To do so, we propose
a notion of approximate information state (AIS), which is
motivated by the notion of AIS presented in [1], but has some
differences because of the presence of state in the action-
value function. We also provide an explanation of why having
additional information at the critic improves performance
of actor-critic algorithms. Such an explanation was missing
from the literature. Finally, we propose an RL algorithm
which uses the AIS losses as auxiliary losses and present a
detailed experimental study to compare the performance of the
proposed algorithm with vanilla asymmetric actor-critic. Our
experiments show that there is no significant improvement in
performance due to the addition of AIS-losses. This suggests
that unlike symmetric actor-critic, where adding AIS losses
provided significant performance improvement, adding AIS
losses does not provide significant improvement when the
full state information is available to the critic.

Notation: Uppercase letters denote random variables
(e.g. X,Y, etc.), lowercase letters denote their realizations
(e.g. x, y, etc.) and sans serif letters denote sets (e.g. X,Y,
etc.). Subscripts (e.g. Xt, Yt, etc.) denote a variable at time t.
∆(X) denotes the space of probability measures on a set
X; P(·) and E[·] denote the probability of an event and the
expectation of a random variable, respectively. ∥x∥ denotes
the norm of a vector x.

Given a set S and a function f : S → R, span(f) denotes
the span of f , i.e., span(f) = sups,s′∈S |f(s) − f(s′)| and
∥f∥∞ denotes the sup-norm of function f , i.e., ∥f∥∞ =
sups∈S f(s). Given a metric space (S, d) and a function
f : S → R, Lip(f) to denote the Lipschitz constant of f ,
i.e.,

Lip(f) = sup
s,s′∈S

|f(s)− f(s′)|
d(s, s′)

.

II. BACKGROUND

A. Background on POMDPs

A partially observable Markov decision process (POMDP)
is a tuple ⟨S,Y,A, P S, PY, r,T, γ⟩, where

• S denotes the state space, Y denotes the observation
space and A denotes the action space. Moreover, St ∈ S,
Yt ∈ Y, At ∈ A denote the state, action and observation,
respectively, at time t.

• P S : S × A → ∆(S) is the transition dynamics of the
state, i.e., for any realization s1:t of S1:t, y1:t of Y1:t,
a1:t of A1:t and any Borel subset B of S, we have

P(St+1 ∈ B | S1:t = s1:t, Y1:t = y1:t, A1:t = a1:t)

= P S(B | st, at).

• PY : S×A → ∆(Y) is the observation channel, i.e., for
any realization s1:t of S1:t, y1:t−1 of Y1:t−1, a1:t−1 of
At−1 and any Borel subset B of Y, we have

P(Yt ∈ B | S1:t = s1:t, Y1:t−1 = y1:t−1, A1:t−1 = a1:t−1)

= PY(B | st, at−1).

• r : S × A 7→ R is the per-step reward function. The
reward at time step t is a random variable Rt =
r(St, At).

• T denotes the horizon for which the system runs.
• γ ∈ (0, 1] denotes the discount factor.

It is sometimes useful to work with the conditional distribution
of observation given the state and the actions, which we
denote by P S,Y and which is given as follows: for Borel
subset B of Y, we have

P S,Y(Yt+1 ∈ B | st, at)

:=

∫
S

PY(Yt+1 ∈ B | st, st+1, at)P
S(dst+1 | st, at)

=

∫
S

PY(Yt+1 ∈ B | st+1, at)P
S(dst+1 | st, at).

The standard solution method for POMDPs is to construct
a belief space and write a dynamic program in terms of the
belief space. It is well established that belief is a sufficient
statistic for optimality [6]. However, for our results, it is
more convenient to work with the entire history instead of
the belief space. For that matter, let Ht = (Y1:t, A1:t−1)
denote the history of observations and actions until time t
and let Ht = Yt × At−1 denote the space of realizations of
all histories until time t. Let π = (π1, . . . , πT) be any history
dependent randomized policy, i.e., πt : Ht → ∆(A) and the
action at time t is chosen according to At ∼ πt(Ht). Let

V πt (ht) := E
π

[
T∑
τ=t

γτ−tRτ

∣∣∣∣∣Ht = ht

]
(1)

denote the performance of policy π from time t on wards,
when starting at history ht ∈ Ht. The function V π is
also called the value function of policy π and it satisfies

the following dynamic program: V πT+1 ≡ 0 and for t ∈
{T, . . . , 1}, we have

Qπt (ht, at) =

∫
S

r(st, at)P(dst | ht)

+ γ

∫
S

∫
Y

V πt+1(ht+1)P
S,Y(dyt+1 | st, at)P(dst | ht),

(2)

V πt (ht) =
∑
at∈A

π(at|ht)Qπt (ht, at). (3)

Let Π denote the set of all randomized history dependent
policies. A policy π⋆ ∈ Π is called optimal if

V π
⋆

1 (h1) ≥ V π1 (h1), ∀π ∈ Π,∀h1 ∈ H1.

Let V ⋆t : Ht → R denote the performance of any optimal
policy. The function V ⋆t is also called the optimal value
function and it satisfies the following dynamic program:
V ⋆T+1 ≡ 0 and for t ∈ {T, . . . , 1}, we have

Q⋆t (ht, at) =

∫
S

r(st, at)P(dst | ht)

+ γ

∫
S

∫
Y

V ⋆t+1(ht+1)P
S,Y(dyt+1 | st, at)P(dst | ht),

(4)
V ⋆t (ht) = max

at∈A
Q⋆t (ht, at). (5)

B. Background on integral probability metrics

Our results rely on a class of metrics on probability spaces
known as integral probability metrics (IPMs) [27].

Definition 1: Let (X,G) be a measurable space and F
denote a class of uniformly bounded measurable functions
on (X,G). The integral probability metric (IPM) between
two probability distributions µ, ν ∈ P(X) with respect to
the function class F is defined as

dF(µ, ν) := sup
f∈F

∣∣∣∣∫
X

fdµ−
∫
X

fdν

∣∣∣∣.
Our approximation results are stated in terms of the
Minkowski functional of a function f with respect to a
function class F, which is defined as follows:

ρF(f) := inf{ρ ∈ R>0 : ρ−1f ∈ F}. (6)

A key implication of this definition is that for any function f
(not necessarily in F),∣∣∣∣∫

X

fdµ−
∫
X

fdν

∣∣∣∣ ≤ ρF(f) · dF(µ, ν). (7)

Different forms of IPMs that can be used in this paper are
as follows

1) Total variation distance: If F is chosen as FTV := {f :
span(f) ≤ 1}, then dF is the total variation distance.
For this class ρF(f) = span(f).

2) Wasserstein distance: If X is a metric space and F
is chosen as FW := {f : Lip(f) ≤ 1} (where the
Lipschitz constant is computed with respect to the
metric on X), then dF is the Wasserstein distance. For
this class ρF(f) = Lip(f).

3) Maximum mean discrepancy (MMD) Let H be a
reproducing kernel Hilbert space (RKHS) of real valued
functions on X and let F be chosen as FMMD :=
{f ∈ H : ∥f∥H ≤ 1}, then dF is the maximum mean
discrepancy. For this class ρF(f) = ∥f∥H.

III. ASYMMETRIC ACTOR-CRITIC

A. Using state information in dynamic programs for POMDPs

First, we introduce value functions that use the state st
along with the history ht in their dynamic programs.

Ṽ πt (st, ht) := E
π

[
T∑
τ=t

γτ−tRτ | St = st, Ht = ht

]
, (8)

Q̃πt (st, ht, at)

:= Eπ

[
T∑
τ=t

γτ−tRτ | St = st, Ht = ht, At = at

]
= r(st, at) + γ

∫
Y

V πt+1(ht+1)P
S,Y(dyt+1 | st, at). (9)

We call Ṽ πt and Q̃πt as the augmented value and action-value
functions. We can retrieve the original value functions V πt
and Qπt from the augmented ones, Ṽ πt and Q̃πt , as follows:

V πt (ht) =

∫
S

Ṽ πt (st, ht)P(dst | ht), (10)

Qπt (ht, at) =

∫
S

Q̃πt (st, ht, at)P(dst | ht). (11)

Similarly, the optimal value function Q⋆t can be obtained
from Q̃⋆t as follows

Q⋆t (ht, at) =

∫
S

Q̃⋆t (st, ht, at)P(dst | ht), (12)

Q̃⋆t (st, ht, at) = r(st, at)

+ γ

∫
Y

V ⋆t+1(ht+1)P
S,Y(dyt+1 | st, at).

(13)

The augmented value and action-value functions defined
above are useful to understand the asymmetric actor-critic
algorithm, which we explain in the next section.

B. Asymmetric actor-critic algorithm

An actor-critic algorithm involves an actor function πθ
with parameters θ which takes the history as input and gives
a probability distribution over actions as output; and a critic
function Qζ with parameters ζ which takes the history and
action as input and gives a real number denoting the value as
an output [28], [29]. In settings where the state information
is available during training, an asymmetric critic function Q̃ζ
(which corresponds to the augmented action-value function
defined in (9)) with parameters ζ can be used which takes
the state, history and action as input and gives a real number
denoting the value as an output. As proposed in [12], the
actor loss Lactor

θ and the critic loss Lcritic
ζ for the asymmetric

actor-critic algorithm are optimized simultaneously using the
following gradient equations:

∇θLactor
θ (ht) = −

T∑
τ=t

Eπθ
[
γτ−t∇θ log πθ(Aτ | Hτ)

Q̃ζ(Sτ , Hτ , Aτ) | Ht = ht
]

(14)
and

∇ζLcritic
ζ (st, ht) = ∇ζE

πθ

[
Q̃ζ(St, Ht, At)

−
T∑
τ=t

γτ−tRτ (Sτ , Aτ)

∣∣∣∣ St = st, Ht = ht, At = at

]2
.

(15)

C. Benefits of using state-history critic over history critic

It is shown in [12] that the policy gradient used in
actor-critic and asymmetric actor-critic are the same in
expectation. However, there is no discussion on why one
expects asymmetric actor-critic to do better than symmetric
actor-critic. In this section, we provide such an explanation.

Let’s consider the training setup for a standard actor-critic
implementation. The agent starts with an initial policy and
generates trajectories {sτ , hτ , aτ , rτ}Tτ=1 which are stored in
a buffer. Next, an empirical estimate of the policy gradient is
constructed (as described below) and gradient descent on the
policy parameters θ is performed based on this estimate. This
process of performing rollouts and gradient descent happens
iteratively till the policy converges.

When only observation and action history is used, the
empirical policy gradient is constructed as follows

∇V πθ
t ≈

M∑
m=1

γτm−t∇ log πθ(aτm | hτm)Qπθ
τm(hτm , aτm),

where M is the size of the mini-batch. We call this estimate
as history-only critic policy gradient (HOPG).

When state information is available, the empirical policy
gradient can be constructed as follows

∇V πθ
t ≈

M∑
m=1

γτm−t∇ log πθ(aτm | hτm)Q̃πθ
τm(sτm , hτm , aτm).

We call this estimate as state-history critic policy gradient
(SHPG).

Note that we are not using the state information from
the buffer for the HOPG expression, but only in the SHPG
expression. The TD(0) estimates for the Q-functions can be
obtained as follows

Qπθ
τm(hτm , aτm) ≈ rτm(sτm , aτm)

+ γQπθ
τm+1(hτm+1, aτm+1),

Q̃πθ
τm(sτm , hτm , aτm) ≈ rτm(sτm , aτm)

+ γQ̃πθ
τm+1(sτm+1, hτm+1, aτm+1).

In both policy gradient expressions, we are sampling from
a joint distribution of P(sτm , hτm). In the HOPG expression,
we discard the state information, so we marginalize sτm out
and sample over P(hτm). But now, to estimate the HOPG
critic we need to sample the reward rτm(sτm , aτm), which

indirectly requires sampling the state through the reward. This
means that we require sampling from P(sτm | hτm) after we
have already discarded state information from P(sτm , hτm)
to get P(hτm). Effectively, we are combining this distribution
P(hτm) and the conditional distribution P(sτm | hτm) to get
a joint distribution P(sτm , hτm) which is just a reconstruction
of the original distribution. But since we are taking a practical
batch size M which is not too large, it will be very unlikely
that we will get more than a single sample from each unique
history trajectory. Thus the variance due to the single sample
estimate of P(sτm | hτm) will be very high which means the
variance for the final policy gradient expression which samples
from P(sτm , hτm) will be very high. A high variance policy
gradient update can lead to slow or even unstable learning
and would also be less sample efficient.

In contrast to this, we have the SHPG policy gradient
expression which samples directly from P(sτm , hτm). In this
case, we pay the cost of requiring extra state information for
each sample but this removes the requirement of sampling
from P(sτm | hτm) which is the main source of problems
in the HOPG case (single sample issue). It would not
be a requirement to encounter the same histories over
different samples, since we are sampling from the joint
distribution. There is no reconstruction of the joint distribution
P(sτm , hτm) required, and thus the variance from this directly
sampled distribution is lower. A lower variance policy gradient
update can lead to faster and more stable learning since there
is less noise in the updates. It would also be more sample
efficient since fewer samples would be required to construct
the batch gradient.

IV. REPRESENTATION LOSS FOR STATE-BASED DYNAMIC
PROGRAM FOR POMDPS

In practice, one does not implement the history-based
asymmetric actor-critic described in (14) and (15). Rather,
the history is compressed via a recurrent neural network,
and the compressed version of the history is used as a
state. Using such a history compression leads to a loss in
performance, which we call representation loss. In this section,
we present a bound of representation loss for state-based
dynamic programs.

A. Approximate Information State for POMDPs with state
information

Next, we present an alternate form of the concept of an
approximate information state (AIS) [1] that incorporates
state information.

Definition 2: Let Z be a pre-specified Banach space, F be
a function class for IPMs and {ε, δZ, δS} be pre-specified
positive real numbers. A history compression function
σ : Ht → Z, reward approximation function ˆ̃r : S×Z×A → R,
approximate update kernel P̂ Z : S × Z × A → ∆(Z) and
an approximate state distribution kernel P̂ S : Z → ∆(S), is
called a {ε, δZ, δS}-AIS generator if the process Zt = σ(Ht)
satisfies the following properties for all t ∈ {1, . . . ,T}:

(P1) Sufficient for approximate reward evaluation. For
any realization st of St, ht of Ht and any choice

at of At, we have

|r(st, at)− ˆ̃r(st, zt, at)| ≤ ε.

(P2) Sufficient to predict itself approximately. For any
realization st of St, ht of Ht and any choice at
of At, and for any Borel subset B of Z, define
µZ
t (B) := P(Zt+1 ∈ B | St = st, Ht = ht, At =
at) and νZ(B) := P̂ Z(B | st, σ(ht), at); then,

dF(µ
Z
t , ν

Z) ≤ δZ.

(P3) Sufficient to generate the belief over the state
approximately. For any realization ht of Ht, and
for any Borel subset B of S, define µS

t (B) :=
P(St ∈ B | Ht = ht) and νS(B) := P̂ S(B | σ(ht));
then,

dF(µ
S
t , ν

S) ≤ δS.
Using this {ε, δZ, δS}-AIS Zt, we can construct an approx-

imate dynamic program that uses the approximate functions
and kernels associated with the AIS, which tries to approx-
imate the functions and kernels of the original dynamics.
For all sT+1, zT+1 and aT+1, we initialize V̂T+1(zT+1),
Q̂T+1(zT+1, aT+1) and ˆ̃QT+1(sT+1, zT+1, aT+1) to zero and
set:

V̂t(zt) := max
at∈A

Q̂t(zt, at), (16)

Q̂t(zt, at) :=

∫
S

ˆ̃Qt(st, zt, at)P̂
S(dst | zt), (17)

ˆ̃Qt(st, zt, at) := ˆ̃r(st, zt, at)

+ γ

∫
Z

V̂t+1(zt+1)P̂
Z(dzt+1 | st, zt, at).

(18)

Next, given any AIS dependent time-homogeneous recur-
sively updateable policy π̂(zt) = π̂(σ(ht)) = π(ht), we
can write down the associated value functions to evaluate
the performance of that policy in the approximated setup.
For all sT+1, zT+1 and aT+1, we initialize V̂ π̂T+1(zT+1)

Q̂π̂T+1(zT+1, aT+1) and ˆ̃Qπ̂T+1(sT+1, zT+1, aT+1) to zero and
set:

V̂ π̂t (zt) :=
∑
at∈A

π̂(at | zt)Q̂π̂t (zt, at), (19)

Q̂π̂t (zt, at) :=

∫
S

ˆ̃Qπ̂t (st, zt, at)P̂
S(dst | zt), (20)

ˆ̃Qπ̂t (st, zt, at) := ˆ̃r(st, zt, at)

+ γ

∫
Z

V̂ π̂t+1(zt+1)P̂
Z(dzt+1 | st, zt, at).

(21)

It is relevant to discuss some common aspects between [30]
and our work. The degree of approximation in the approx-
imate representation, which we refer to as an approximate
information state (AIS) [1], can be quantified and performance
guarantees can be obtained for the AIS representation, which
are of a different nature from the regret based bounds in [30].
The regret bounds still hold for the POMDP model with the
AIS representation considered in this paper.

B. An upper bound on loss when using an AIS
Theorem 1: Suppose we have for all st, ht and at, an AIS

{Zt}Tt=1 that satisfies (P1), (P2) and (P3); and any π̂ and
π = π̂ ◦ σ, then

|Q⋆t (ht, at)− Q̂t(σ(ht), at)| ≤ αt, (22)

|V ⋆t (ht)− V̂t(σ(ht))| ≤ αt, (23)

|Qπt (ht, at)− Q̂π̂t (σ(ht), at)| ≤ απ̂t , (24)

|V πt (ht)− V̂ π̂t (σ(ht))| ≤ απ̂t , (25)

|Q̃πt (st, ht, at)−
ˆ̃Qπ̂t (st, σ(ht), at)| ≤ α̃π̂t , (26)

where

αt =

T∑
τ=t

γτ−t
[
ε+ δSρF(ˆ̃r)

]
+ γτ−t+1δZρF(V̂τ+1)

+ γτ−t+1δSρF(V̊τ+1),

απ̂t =

T∑
τ=t

γτ−t
[
ε+ δSρF(ˆ̃r)

]
+ γτ−t+1δZρF(V̂

π̂
τ+1)

+ γτ−t+1δSρF(V̊
π̂
τ+1),

with V̊ π̂t+1(st) =
∫
Z
V̂ π̂t+1(zt+1)P̂

Z(dzt+1 | st, zt, at), and

α̃π̂t =

T∑
τ=t

γτ−t
[
ε+ γδZρF(V̂

π̂
τ+1)

]
.

Furthermore, if we have π̂ such that for all ht,
supp(π̂(σ(ht))) ⊆ argmaxat∈A Q̂t(σ(ht), at), then

|Q⋆t (ht, at)−Qπt (ht, at)| ≤ 2αt, (27)
|V ⋆t (ht)− V πt (ht)| ≤ 2αt. (28)

See Appendix I for proof.

V. RL WITH REPRESENTATION LOSSES

Following the main idea of [1], one may conjecture
that adding the representation losses of Theorem 1 in the
standard implementation of asymmetric actor-critic may
improve performance. To test this conjecture, we modify
the asymmetric actor-critic algorithm described in Sec. III-
B by adding representation losses as an auxiliary loss. We
describe this algorithm below.

A. Asymmetric actor-critic with AIS losses
The main idea is to add an “AIS-block” to the existing

asymmetric actor-critic architecture, as shown in Fig. 1. The
AIS-block consists of two parts: (i) an AIS generator σξ with
parameters ξ, which is a recurrent neural network such as
an LSTM or a GRU and (ii) an AIS-predictor {ˆ̃r, P̂ Z, P̂ S}ψ
with parameters ψ, which is a feed-forward neural network.
The loss of the AIS-block is chosen as ε2 + (δZ)2 + (δS)2,
where (ε, δZ, δS) are as defined in Def. 2. Note that δZ and
δS depend on the choice of an IPM. See [1] for a discussion
on the choice of IPM. In our experiments, we choose MMD
as the IPM. For this choice, we have the following gradient
for the AIS loss:
∇ξ,ψLAIS = Eπθ

[
(r − ˆ̃r)2

]
+ Eπθ

[
(E[νZt]− 2Zt+1)

⊺E[νZt]
]

+ Eπθ
[
(E[νSt]− 2St)

⊺E[νSt]
]
,

(29)

RNN: 𝜎𝜉 NN: { ̂̃𝑟 , 𝑃̂𝖹, 𝑃̂𝖲}𝜓
State: 𝑍𝑡−1

AIS Generator AIS Predictor

𝑍𝑡

AIS Block
𝐴𝑡

𝑆𝑡

𝑌𝑡

𝑅𝑡

𝐴𝑡−1

̂̃𝑟 𝑡

𝜈𝖹
𝑡

𝜈𝖲
𝑡

NN: ̃𝑄𝜁NN: 𝜋𝜃

𝑆𝑡

Asymmetric Critic

𝐴𝑡

Actor

Fig. 1: Block diagram of the proposed RL algorithm

(a) Heaven-Hell-3 (b) Heaven-Hell-4

(c) Shopping-5 (d) Shopping-6

(e) Car-Flag (f) Cleaner

Fig. 2: Comparison of AIS-based A2C with history only critic
and state-based critic for 6 benchmarking environments used
in [12] (for 20 random seeds).

where the expression for the last two terms follows from [1,
Prop 35]. We update the AIS parameters (ξ, ψ) by back-
propagating the above gradient.

The AIS generator generates an approximate information
state Zt. We use Zt as a compression for the history in
the auxiliary action-value function Q̃t and the policy π and
update the parameters of the critic and actor in a manner
similar to (14) and (15).

B. Numerical experiments

To test the performance of the asymmetric actor-critic with
AIS losses described above, we compare with the vanilla
asymmetric actor-critic, as presented in [12]. We use the
same environments as used in [12].

We compare the following two algorithms:

1) asym-ac which is the asymmetric actor-critic as pro-
posed in [12]. We use the code provided in [12] to run
our experiments.

2) asym-ac-ais which is the asymmetric actor-critic with
AIS losses presented in Sec. V-A.

We train the asym-ac-ais algorithm on six environments for
106 to 107 steps and compare with the asym-ac baseline
from [12]. Each experiment is repeated for 20 sample paths
and the mean and standard deviation are shown in Fig. 2.
The resuls show that adding AIS losses (or representation
losses) slightly slows down learning and does not lead to an
improvement in the converged value. Based on these results,
there is no advantage (or rather, there is a slight disadvantage)
in adding AIS losses as an auxiliary loss in asymmetric actor-
critic. This is in sharp contrast to the drastic improvement
in performance obtained by adding AIS losses in symmetric
actor-critic demonstrated in [1]. These results suggest that
representation learning is not as important when full state
information is available.

VI. CONCLUSIONS

The main contribution of this work is to establish the
theoretical guarantees on performance for the case of asym-
metric actor-critic using an approximate information state
that is offered by Theorem 1. We also provide an explanation
for why asymmetric actor-critc performs better than actor-
critic algorithms. Motivated by recent successes in actor-critic
algorithms for POMDPs [1], [23]–[26] which establishes
similar bounds and provides experiments in RL, we aim
to study the effectiveness of the concept of approximate
information state for the case of asymmetric actor-critic
methods. This is mainly because several situations arise
where state information is available on a temporary basis
(during training only) following execution without this state
information. Our empirical results perform comparably with
the existing state-of-the-art actor-critic method. However, the
empirical validation of this theory is of secondary importance
and we do not claim that using an AIS with asymmetric actor-
critic always improves performance, rather we aim to provide
a systematic rationale for RL algorithms for this particular
class of problems. Another benefit of using an AIS is that it
allows us to learn a meaningful common representation for
the actor, critic and the AIS generator and predictor. Such a
representation also has utility in the form of interpretability
in terms of why an autonomous decision maker makes certain
types of decisions. Future work involves formally showing
that such an algorithm converges.

REFERENCES

[1] J. Subramanian, A. Sinha, R. Seraj, and A. Mahajan, “Approximate
information state for approximate planning and reinforcement learning
in partially observed systems,” Journal of Machine Learning Research,
vol. 23, no. 12, pp. 1–83, 2022.

[2] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yo-
gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 6, pp. 4909–4926, 2021.

[3] B. An, S. Sun, and R. Wang, “Deep reinforcement learning for
quantitative trading: Challenges and opportunities,” IEEE Intelligent
Systems, vol. 37, no. 2, pp. 23–26, 2022.

[4] A. Perera and P. Kamalaruban, “Applications of reinforcement learning
in energy systems,” Renewable and Sustainable Energy Reviews, vol.
137, p. 110618, 2021.

[5] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[6] R. D. Smallwood and E. J. Sondik, “The optimal control of partially
observable markov processes over a finite horizon,” Operations research,
vol. 21, no. 5, pp. 1071–1088, 1973.

[7] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial intelligence,
vol. 101, no. 1-2, pp. 99–134, 1998.

[8] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of optimal
queueing network control,” in Conference on Structure in Complexity
Theory. IEEE, 1994, pp. 318–322.

[9] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially
observable mdps,” in AAAI Fall symposium, 2015.

[10] N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver, “Memory-based
control with recurrent neural networks,” arXiv:1512.04455, 2015.

[11] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap, “Mastering diverse
domains through world models,” arXiv:2301.04104, 2023.

[12] A. Baisero and C. Amato, “Unbiased asymmetric actor-critic for
partially observable reinforcement learning,” arXiv:2105.11674, 2021.

[13] A. Baisero, B. Daley, and C. Amato, “Asymmetric DQN for partially
observable reinforcement learning,” in Uncertainty in Artificial Intelli-
gence. PMLR, 2022, pp. 107–117.

[14] D. Ha and J. Schmidhuber, “World models,” arXiv:1803.10122, 2018.
[15] P. Zhu, X. Li, P. Poupart, and G. Miao, “On improving deep

reinforcement learning for pomdps,” arXiv:1704.07978, 2017.
[16] D. Wierstra, A. Foerster, J. Peters, and J. Schmidhuber, “Solving deep

memory POMDPs with recurrent policy gradients,” in Int. Conf. on
Artificial Neural Networks. Springer, 2007, pp. 697–706.

[17] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and
P. Abbeel, “Asymmetric actor critic for image-based robot learning,”
arXiv:1710.06542, 2017.

[18] W. Yue, Y. Zhou, X. Zhang, Y. Hua, Z. Wang, and G. Kou,
“Aacc: Asymmetric actor-critic in contextual reinforcement learning,”
arXiv:2208.02376, 2022.

[19] A. Dionigi, A. Devo, L. Guiducci, and G. Costante, “E-vat: An
asymmetric end-to-end approach to visual active exploration and
tracking,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp.
4259–4266, 2022.

[20] A. Warrington, J. W. Lavington, A. Scibior, M. Schmidt, and F. Wood,
“Robust asymmetric learning in pomdps,” in International Conference
on Machine Learning. PMLR, 2021, pp. 11 013–11 023.

[21] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl, “Learning by cheating,”
in Conference on Robot Learning. PMLR, 2020, pp. 66–75.

[22] H. Nguyen, B. Daley, X. Song, C. Amato, and R. Platt, “Belief-
grounded networks for accelerated robot learning under partial observ-
ability,” arXiv:2010.09170, 2020.

[23] G. Patil, A. Mahajan, and D. Precup, “On learning history based
policies for controlling Markov decision processes,” arXiv:2211.03011,
2022.

[24] S. Bhatt, W. Mao, A. Koppel, and T. Başar, “Semiparametric informa-
tion state embedding for policy search under imperfect information,”
in Conference on Decision and Control. IEEE, 2021, pp. 4501–4506.

[25] A. Dave, N. Venkatesh, and A. A. Malikopoulos, “Approximate
information states for worst-case control of uncertain systems,” in
Conference on Decision and Control. IEEE, 2022, pp. 4945–4950.

[26] L. Yang, K. Zhang, A. Amice, Y. Li, and R. Tedrake, “Discrete
approximate information states in partially observable environments,”
in American Control Conference. IEEE, 2022, pp. 1406–1413.

[27] A. Müller, “Integral probability metrics and their generating classes
of functions,” Advances in Applied Probability, vol. 29, no. 2, pp.
429–443, 1997.

[28] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[29] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International Conference on Machine
Learning. PMLR, 2016, pp. 1928–1937.

[30] S. Dong, B. Van Roy, and Z. Zhou, “Simple agent, complex
environment: Efficient reinforcement learning with agent states,”
arXiv:2102.05261, 2021.

APPENDIX I
PROOF OF THEOREM 1

A. Proof of (22) and (23)
First, note that

E[V̂t+1(Zt+1) | St = st, Ht = ht, At = at]

=

∫
Z

V̂t+1(zt+1)P(dzt+1 | St = st, Ht = ht, At = at)

=

∫
Y

V̂t+1(zt+1)P
S,Y(dyt+1 | st, at). (30)

The proof follows by backward induction. At time T+1, the
induction hypothesis is true. Now, consider for time t

|Q⋆t (ht, at)− Q̂t(zt, at)|
(a)

≤
∣∣∣∣∫

S

[
r(st, at)P(dst | ht)− ˆ̃r(st, zt, at)P̂

S(dst | zt)
]∣∣∣∣
(31)

+ γ

∣∣∣∣∫
S

∫
Y

V ⋆t+1(ht+1)P
S,Y(dyt+1 | st, at)P(dst | ht)

−
∫
S

∫
Z

V̂t+1(zt+1)P̂
Z(dzt+1 | st, zt, at)P̂ S(dst | zt)

∣∣∣∣ ,
(32)

where (a) follows from (12), (17) and the triangle inequality.
First, we consider (31) separately:

(31)
(b)

≤
∣∣∣∣∫

S

[
r(st, at)P(dst | ht)− ˆ̃r(st, zt, at)P(dst | ht)

]∣∣∣∣
+

∣∣∣∣∫
S

[
ˆ̃r(st, zt, at)P(dst | ht)− ˆ̃r(st, zt, at)P̂

S(dst | zt)
]∣∣∣∣

(c)

≤ ε+ δSρF(ˆ̃r),

where (b) follows from adding and subtracting∫
S
ˆ̃r(st, zt, at)P(dst | ht) and the triangle inequality

and (c) follows from (P1) and (P3). Next, we consider (32):

(32)
(d)

≤ γ

∣∣∣∣∫
S

∫
Y

V ⋆t+1(ht+1)P
S,Y(dyt+1 | st, at)P(dst | ht)

−
∫
S

∫
Y

V̂t+1(zt+1)P
S,Y(dyt+1 | st, at)P(dst | ht)

∣∣∣∣
(33)

+ γ

∣∣∣∣∫
S

∫
Z

V̂t+1(zt+1)P(dzt+1 | st, ht, at)P(dst | ht)

−
∫
S

∫
Z

V̂t+1(zt+1)P̂
Z(dzt+1 | st, zt, at)P̂ S(dst | zt)

∣∣∣∣,
(34)

where (d) follows from adding and subtracting (30) and the
triangle inequality. Since the induction hypothesis is true for
t+ 1, we have

(33) ≤ γαt+1.

Finally, for the remaining part in (34), we have

(34)
(e)

≤ γ

∣∣∣∣∫
S

∫
Z

V̂t+1(zt+1)P(dzt+1 | st, ht, at)P(dst | ht)

−
∫
S

∫
Z

V̂t+1(zt+1)P̂
Z(dzt+1 | st, zt, at)P(dst | ht)

∣∣∣∣

+ γ

∣∣∣∣∫
S

∫
Z

V̂t+1(zt+1)P̂
Z(dzt+1 | st, zt, at)P(dst | ht)

−
∫
S

∫
Z

V̂t+1(zt+1)P̂
Z(dzt+1 | st, zt, at)P̂ S(dst | zt)

∣∣∣∣
(f)

≤ γδZρF(V̂t+1) + γδSρF(V̊t+1),

where (e) follows from adding and subtracting a term and
the triangle inequality and (f) follows from (P2) and (P3).
Thus, we have shown that

|Q⋆t (ht, at)− Q̂t(zt, at)| ≤ ε+ δSρF(ˆ̃r) + γαt+1

+ γδZρF(V̂t+1) + γδSρF(V̊t+1) = αt.

To complete the induction argument at time t, notice that

|V ⋆t (ht)− V̂t(zt)| =
∣∣∣∣max
at∈A

Q⋆t (ht, at)−max
at∈A

Q̂t(zt, at)

∣∣∣∣
≤ max

at∈A
|Q⋆t (ht, at)− Q̂t(zt, at)| ≤ αt.

This proves (22) and (23).

B. Proof of (24) and (25)
The proof is similar to the proof of (22) and (23).

C. Proof of 26
If π̂ is such that supp(π̂(σ(ht))) ⊆

argmaxat∈A Q̂t(σ(ht), at), so that Q̂t(zt, at) = Q̂π̂t (zt, at),
and also π = π̂ ◦ σ, then (27) and (28) are obtained by the
triangle inequality as follows

|Q⋆t (ht, at)−Qπt (ht, at)|
≤ |Q⋆t (ht, at)− Q̂t(zt, at)|+ |Qπt (ht, at)− Q̂π̂t (zt, at)|
≤ αt + απ̂t = 2αt.

To show 26, first note that

E[V̂ π̂t+1(Zt+1) | St = st, Ht = ht, At = at]

=

∫
Z

V̂ π̂t+1(zt+1)P(dzt+1 | st, ht, at)

=

∫
Y

V̂ π̂t+1(zt+1)P
S,Y(dyt+1 | st, at). (35)

Consider

|Q̃πt (st, ht, at)−
ˆ̃Qπ̂t (st, zt, at)|

(a)

≤ |r(st, at)− ˆ̃r(st, zt, at)|

+ γ

∣∣∣∣∫
Y

V πt+1(ht+1)P
S,Y(dyt+1 | st, at)

−
∫
Y

V̂ π̂t+1(zt+1)P
S,Y(dyt+1 | st, at)

∣∣∣∣
+ γ

∣∣∣∣∫
Z

V̂ π̂t+1(zt+1)P(dzt+1 | st, ht, at)

−
∫
Z

V̂ π̂t+1(zt+1)P̂
Z(dzt+1 | st, zt, at)

∣∣∣∣
(b)

≤ ε+ γαπ̂t+1 + γδZρF(V̂
π̂
t+1)

(c)

≤ απ̂t ,

where (a) follows from (9), (21), adding and subtracting (35)
and the triangle inequality; (b) follows from (P1), (P2) and
(25); and (c) follows from adding a few extra positive terms.

