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Abstract— We consider the problem of designing a control
policy for an infinite-horizon discounted cost Markov Decision
Process (MDP) M when we only have access to an approximate
model M̂. If we design an optimal policy π̂⋆ for the approximate
model, how well does it perform when used in the true model
M? We provide an answer to this question by bounding a
weighted norm of the difference between the value function of
π̂⋆ when used in M and the optimal value function of M. The
use of weighted norm allows us to obtain meaningful bounds
for performance loss even when the per-step cost function is
unbounded. This is in contrast to much of the prior literature
which has largely focused only on the case of bounded per-step
cost. We illustrate our results for two specific instances — a
finite MDP model for an inventory control problem and the
discounted linear quadratic regulator problem.

I. INTRODUCTION

We consider the problem of model approximation in
Markov decision processes (MDPs), i.e., the problem of
designing an optimal controller for an MDP using an ap-
proximate model (e.g. designing gait controller of a robot
using a simulation model). Let M denote the true model of
the system and let M̂ denote an approximate model. Suppose
we solve the approximate model M̂ to identify a policy π̂⋆

which is optimal for M̂. How well does π̂⋆ perform in the
original model M?

Several variations of this question have been studied in
the MDP literature. Perhaps the earliest work investigating
this is that of Fox [1], who investigated approximating
MDPs by a finite state approximation. In a series of papers,
Whitt generalized these results to approximating general
MDPs via state aggregation [2]–[4]. Similar results for state
discretization were obtained in [5], [6], state and action
discretization in [7] and for models with state dependent
discounting in [8]. A general framework to view model
approximation using the lens of integral probability metrics
was presented by Müller [9]. There has been considerable
recent advances on these ideas in recent years [10], [11],
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including generalizations to partially observed models [12],
[13].

A related question is that of continuity of optimal policy
in model approximation. In particular, if {M̂n}n≥1 is a
sequence of models that converge to M in some sense,
do the corresponding optimal policies {π̂⋆

n}n≥1, where π̂⋆
n

is optimal for M̂n, converge to an optimal policy for M?
Perhaps the earliest work in this direction is that of Fox [14],
who studied the continuity of state discretization procedures.
Sufficient conditions for continuity of value function on
model parameters were presented in [15]. There are series
of recent papers which significantly generalize these results,
include characterizing conditions under which the optimal
policy is continuous in model parameters [10], [16]–[21].

The question of model approximation is also relevant
for learning optimal policies when the system model is
unknown. Therefore, several notions related to model ap-
proximation have been studied in the reinforcement learning
literature including approximate homeomorphisms [22], [23],
bisimulation metrics [24]–[26], state abstraction [27], and
approximate latent state models [28], [29].

The basic results of model approximation may be charac-
terized as follows. Let M and M̂ be two MDP models with
the same state space S and action space A. Let π̂⋆ : S → A
be an optimal policy for model M̂. Let V π̂⋆

: S → R

denote the performance of policy π̂⋆ in model M and let
V ⋆ : S → R denote the optimal value of model M. Most
of the existing literature on model approximation provides
bounds on ∥V π̂⋆ − V ⋆∥∞ := sups∈S

∣∣V π̂⋆

(s) − V ⋆(s)
∣∣ in

terms of the parameters of the models M and M̂.
However, such bounds are not appropriate for models with

non-compact state spaces and unbounded per-step cost. To
illustrate this limitation, consider the linear quadratic regu-
lation (LQR) problem in which the objective is to minimize
the infinite-horizon expected discounted total cost. Let M
and M̂ be two such LQR models and π̂⋆ be the optimal
policy of M̂. It is well known that

V ⋆(s) = s⊺Ps+ q and V π̂⋆

(s) = s⊺P π̂⋆

s+ qπ̂
⋆

,

where s ∈ Rns is the state, P is the solution of an appro-
priate Riccati equation, P π̂⋆

is a solution of an appropriate
Lyapunov equation (which depends on the gain of policy π̂⋆)
and q and qπ̂

⋆

are constants (where qπ̂
⋆

depends on the gain
of policy π̂⋆). See Sec. IV-C for exact details.

Note that for this model and, in general for models with
unbounded per-step cost, ∥V ⋆ − V π̂⋆∥∞ = ∞. Therefore,
the approximation bounds on ∥V ⋆ − V π̂⋆∥∞ provided by
the existing literature will also evaluate to ∞ and, as a



result, do not provide any insights into the quality of the
approximation.

Our main contribution in this paper is to provide an
alternative characterization of the modeling error in terms
of the weighted norm:

∥V π̂⋆

(s)− V ⋆(s)∥w := sup
s∈S

∣∣V π̂⋆

(s)− V ⋆(s)
∣∣

w(s)
,

where w : S → [1,∞) is a weight function which satisfies
some technical conditions. Our bounds are derived using
what we call the Bellman mismatch functional. In the special
case when w(s) ≡ 1, our bounds recover the existing
sup-norm bounds. For general weight functions, we present
some illustrative examples to compare our weighted-norm
approximation bounds with existing sup-norm approximation
bounds. Finally, we revisit the LQR example illustrated
above and show that the weighted-norm approximation
bounds provide meaningful approximation guarantees for
such unbounded-cost models.

Perhaps the closest result to ours in the literature is [17]
which considers finite approximation of MDP models in
general state spaces. For unbounded per-step cost functions,
they establish sufficient conditions under which V̂ ⋆

n → V ⋆

and V π̂⋆
n → V ⋆, where V̂ ⋆

n and π̂⋆
n are value function

and optimal policy of a discretized model with grid cells
of size less than 1/n. However, they do not establish the
approximation error when a specific approximate model is
used. The results of [17] are also derived using weighted
norms, but there are subtle differences in the way we use
weighted norms. See Remark 1 and Sec. IV-D for details.

II. PRELIMINARIES

A. Markov decision processes

A discrete-time infinite-horizon discounted cost Markov
decision process (MDP) is a tuple M = ⟨S,A, P, c, γ⟩
where

• S is the state space, which is assumed to be a Borel
space. The state at time t is denoted by St ∈ S.

• A is the action space, which is assumed to be a Borel
space. The action at time t is denoted by At ∈ A.

• P : S × A → ∆(S) is a controlled stochastic kernel,
which specifies the system dynamics. In particular, for
any time t and any s1:t ∈ St, a1:t ∈ At and any Borel
set B ⊂ S, we have

P(St+1 ∈ B | S1:t = s1:t, A1:t = a1:t)

= P(St+1 ∈ B | St = st, At = at)

=: P (B | st, at).

• c : S ×A → R≥0 is the per-step cost function which is
assumed to be measurable.

• γ ∈ (0, 1) is the discount factor.

A mapping π : S → ∆(A) is called a (time-homogeneous)
policy. Let Π denote the space of all time-homogeneous
(and possibly randomized) policies. The performance of any

policy π ∈ Π starting from an initial state s ∈ S is given by

V π(s) = Eπ

[ ∞∑
t=1

γt−1c(St, At)

∣∣∣∣ S1 = s

]
(1)

where Eπ denotes the expectation with respect to the proba-
bility measure on all system variables induced by the choice
of policy π. The function V π is called the value function of
policy π.

A policy π⋆ ∈ Π is called an optimal policy if

V π⋆

(s) ≤ V π(s), ∀s ∈ S,∀π ∈ Π. (2)

Note that since we consider general Borel state and action
spaces with possibly unbounded per-step cost function, an
optimal policy is not guaranteed to exist or be unique. If an
optimal policy exists, its value function is called the optimal
value function. We focus on the case when such value func-
tions exist and can be obtained via dynamic programming.
We formally define this as dynamic programming solvability
in the next section.

B. Dynamic programming solvability

Let V denote the space of measurable functions from S →
R≥0 ∪ {+∞}.

Definition 1 (Bellman operators) Define the following
two operators:

• For any π ∈ Π, define the Bellman operator Bπ : V →
V as follows: for any v ∈ V ,

[Bπv](s) =

∫
A
π(da | s)

[
c(s, a)

+ γ

∫
S
v(s′)P (ds′ | s, a)

]
.

• Define the Bellman optimality operator B⋆ : V → V as
follows: for any v ∈ V ,

[B⋆v](s) = inf
a∈A

[
c(s, a) + γ

∫
S
v(s′)P (ds′ | s, a)

]
.

Definition 2 (Dynamic programming solvability) An
MDP M is said to be dynamic programming solvable (DP-
solvable, for short) if it satisfies the following properties:

1) There exists a unique fixed point V ⋆ ∈ V of the
dynamic programming equation

V = B⋆V.

2) There exists an optimal policy π⋆ ∈ Π such that

V π⋆

= V ⋆ and Bπ⋆

V ⋆ = B⋆V ⋆.

Models with finite state and action spaces are always DP-
solvable. For models with general state and action spaces,
there are several conditions in the literature which imply DP-
solvability. See [30] for an overview.



C. Weighted-norm stability

Definition 3 (Weighted norm) Given a weight function
w : S → [1,∞), we define the weighted norm ∥ · ∥w on
V as follows: for any v ∈ V ,

∥v∥w = sup
s∈S

|v(s)|
w(s)

.

Note that when the weight function w(s) ≡ 1, then the
weighted norm ∥v∥w is equivalent to the sup-norm ∥v∥∞ :=
sups∈S |v(s)|.

Definition 4 ((κ,w)-stability) Given an MDP M and a
tuple (κ,w), where κ is a positive constant with γκ < 1 and
w is a function from S to [1,∞), we say a policy π ∈ Π is
(κ,w)-stable if

∥cπ∥w < ∞ (3)

where cπ(s) =
∫
A c(s, a)π(da|s) and∫

A
π(da | s)

∫
S
w(s′)P (ds′ | s, a) ≤ κw(s), ∀s ∈ S.

(4)

Let ΠS(κ,w) denote the set of all (κ,w)-stable policies for
model M. Note that depending on the choice of (κ,w), the
set ΠS(κ,w) might be empty.

Remark 1 The definition of (κ,w)-stability in Definition 4
is similar to but weaker than the notion of stability typically
used in the literature (e.g. [17], [30], [31]). For example, in
Assumption 8.3.2 of [31], it is assumed that there exists a
tuple (κ̄, w̄) where κ̄ is a positive constant with κ̄γ < 1 and
w̄ is a function from S to [1,∞) such that ∥c(·, a)∥w̄ < ∞
for all actions and∫

S
w̄(s′)P (ds′ | s, a) ≤ κ̄w̄(s), ∀s ∈ S,∀a ∈ A. (5)

It is shown in [31] that this assumption is sufficient for
DP-solvability. Note that the notion of (κ,w)-stability is
weaker. We only require the two inequalities to hold for
a given policy rather than for all actions. As we show
via an example in Sec. IV-D, using the weaker notion of
(κ,w)-stability drastically increases the possible choices of
the weight function and lead to tighter upper bounds on
performance.

Lemma 1 Given an MDP M and the tuple (κ,w), define

V̄w =
{
v ∈ V : ∥v∥w < ∞

}
.

Then, for any policy π ∈ ΠS(κ,w), we have the following:
1) If v ∈ V̄w, then Bπv ∈ V̄w.
2) Bπ is a ∥·∥w-norm contraction with contraction factor

γκ, i.e., for any v1, v2 ∈ V̄w, we have

∥Bπv1 −Bπv2∥w ≤ γκ∥v1 − v2∥w.

3) The fixed point equation

V = BπV

has a unique solution in V̄w and that solution is equal
to V π .

TABLE I: Notation for the variables used for the two models

Variable Model M Model M̂

Dynamics P P̂
per-step cost c ĉ

Value function of policy π V π V̂ π

Optimal value function V ⋆ V̂ ⋆

Bellman operator of policy π Bπ B̂π

Bellman optimality operator B⋆ B̂⋆

Set of (κ,w)-stable policies ΠS(κ,w) Π̂S(κ,w)

III. PROBLEM FORMULATION AND MAIN RESULTS

A. Model approximation in MDPs

We are interested in the problem of model approximation
in MDPs. In particular, suppose there is an MDP M =
⟨S,A, P, c, γ⟩ of interest, but the system designer has access
to only an approximate model M̂ = ⟨S,A, P̂ , ĉ, γ⟩. Note
that both models M and M̂ have the same state and action
spaces, but have different transition dynamics and per-step
cost.

We assume that both models M and M̂ are well behaved
in the following sense.

Assumption 1 Models M and M̂ are DP-solvable.

We will use the superscript hat to denote vari-
ables/operators corresponding to the approximate model, as
summarized in Table I. We are interested in the following
approximation problem.

Problem 1 Let π̂⋆ be an optimal policy for the approximate
model M̂. Given a start state s, bound the loss in perfor-
mance when using π̂⋆ in the original model M (compared to
the optimal performance in the original model), i.e., bound
V π̂⋆

(s)− V ⋆(s).

B. Main results

We impose the following additional assumption on the
models.

Assumption 2 There exists a tuple (κ,w), where κ is a
positive constant such that γκ < 1 and w : S → [1,∞)
such that

• there exists an optimal policy π⋆ of the original model
M such that π⋆ ∈ ΠS(κ,w),

• there exists an optimal policy π̂⋆ of the approximate
model M̂ such that π̂⋆ ∈ ΠS(κ,w) ∩ Π̂S(κ,w),

where ΠS(κ,w) and Π̂S(κ,w) denote the set of (κ,w)-stable
policies for models M and M̂, respectively.

For most problems, the optimal policy of a model is
(κ,w)-stable for an appropriate choice of (κ,w). Therefore,
if M̂ is a reasonably good approximation of M, we expect
π̂⋆ to be close to the optimal policy of M and be (κ,w)-
stable in M. So, Assumption 2 holds whenever M̂ is close
to M.

Definition 5 (Bellman mismatch functionals) Given a
weight function w : S → [1,∞), define the following two
functionals:



• For any π ∈ Π, define the Bellman mismatch functional
Dπ

w : V̄w → R≥0 as follows: for any v ∈ V̄w,

Dπ
wv = ∥Bπv − B̂πv∥w.

• Define the Bellman optimality mismatch functional
D⋆

w : V̄w → R≥0 as follows: for any v ∈ V̄w,

D⋆
wv = ∥B⋆v − B̂⋆v∥w.

Theorem 1 Under Assumptions 1 and 2, we have the fol-
lowing two bounds on V π̂⋆ − V ⋆:

1) Bound in terms of properties of V̂ ⋆:∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 1

1− γκ

[
Dπ̂⋆

w V̂ ⋆ +D⋆
wV̂

⋆
]
.

2) Bound in terms of properties of V ⋆:∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 1

1− γκ
Dπ̂⋆

w V ⋆ +
(1 + γκ)

(1− γκ)2
D⋆

wV
⋆.

Remark 2 The bounds on
∥∥V π̂⋆ − V ⋆

∥∥
w

stated in The-
orem 1 can be used to bound the performance loss when
using π̂⋆ in the original model M with a start state s. This
is because, by the definition of ∥ · ∥w,

V π̂⋆

(s)− V ⋆(s) ≤
∥∥V π̂⋆

− V ⋆
∥∥
w
w(s), (6)

where we have used the fact that V π̂⋆

(s) − V ⋆(s) is non-
negative.

Remark 3 The weight function w is assumed to be greater
than or equal to one. This assumption is not necessary as
long as infs∈S w(s) > 0. The definition of (κ,w)-stability
and the bounds on performance loss obtained using (6) and
Theorem 1 are invariant under positive scaling of the weight
function.

Remark 4 Suppose there is a family W of weight functions,
such that for every w ∈ W , there exists a κw < 1/γ such
that (κw, w) satisfies Assumption 2. Then, we can strengthen
the result of (6) as follows:

V π̂⋆

(s)− V ⋆(s) ≤ inf
w∈W

{∥∥V π̂⋆

− V ⋆
∥∥
w
w(s)

}
. (7)

Thus, the choice of weight function that gives the tightest
bound can depend on the start state s. We illustrate the
benefit of such a state-dependent choice of weight function
in Sec. IV-B.

C. A simpler upper bound

In this section, we present a simpler upper bound on
the result of Theorem 1. For that purpose, we define the
Bellman maximum mismatch functional Dmax

w : V̄w → R≥0

as follows: for any v ∈ V̄w,

Dmax
w v = sup

(s,a)∈S×A

∣∣Ξ(s,a)v
∣∣

w(s)

where

Ξ(s,a)v = c(s, a)− ĉ(s, a)

+ γ

∫
S
v(s′)[P (ds′|s, a)− P̂ (ds′|s, a)].

Proposition 1 The following properties hold:

sup
π∈Π

Dπ
wv = Dmax

w v and D⋆
wv ≤ Dmax

w v. (8)

Therefore, under Assumptions 1 and 2, we have:

1) Bound in terms of properties of V̂ ⋆:∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 2

1− γκ
Dmax

w (V̂ ∗).

2) Bound in terms of properties of V ⋆:∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 2

(1− γκ)2
Dmax

w (V ∗).

D. The special case of sup-norm

For models where the per-step cost is bounded, the results
of Theorem 1 also provide a bound on ∥V π̂⋆ − V ⋆∥∞ by
taking the weight function w(s) ≡ 1. As mentioned earlier,
when w(s) ≡ 1, ∥v∥w = ∥v∥∞. Also observe that when
w(s) ≡ 1, Eq. (4) is always satisfied with κ = 1. Thus, for
a model with bounded per-step cost, any policy π is (κ,w)-
stable with κ = 1 and w(s) ≡ 1 . Therefore, if we take
two models M and M̂ with bounded per-step cost, then
Assumption 2 is always satisfied.

We use the notation Dπ
∞, D⋆

∞, Dmax
∞ to denote the Bell-

man mismatch operators when the weight function w(s) ≡
1. Then, an immediate consequence of Theorem 1 and
Proposition 1 is the following:

Corollary 1 Under Assumptions 1, if the per-step cost is
bounded, we have the following two bounds on V π̂⋆ − V ⋆:

1) Bound in terms of properties of V̂ ⋆:∥∥V π̂⋆

− V ⋆
∥∥
∞ ≤ 1

1− γ

[
Dπ̂⋆

∞ V̂ ⋆ +D⋆
∞V̂ ⋆

]
≤ 2

1− γ
Dmax

∞ V̂ ⋆.

2) Bound in terms of properties of V ⋆:∥∥V π̂⋆

− V ⋆
∥∥
∞ ≤ 1

1− γ
Dπ̂⋆

∞V ⋆ +
(1 + γ)

(1− γ)2
D⋆

∞V ⋆

≤ 2

(1− γ)2
Dmax

∞ V ⋆.

The result of Corollary 1 can be further simplified as
follows.

Proposition 2 Under Assumption 1, if the per-step cost is
bounded, we have the following bounds on V π̂⋆ − V ⋆:

• Bound in terms of total-variation distance:∥∥V π̂⋆

− V ⋆
∥∥
∞ ≤ 2

1− γ

[
∥c− ĉ∥∞

+ γ sup
s∈S
a∈A

TV(P (·|s, a), P̂ (·|s, a)) ∥V̂ ⋆∥∞
]

where TV(µ, ν) denotes the total variation distance
between two measures.



• Bound in terms of Wasserstein distance:∥∥V π̂⋆

− V ⋆
∥∥
∞ ≤ 2

1− γ

[
∥c− ĉ∥∞

+ γ sup
s∈S
a∈A

Was(P (·|s, a), P̂ (·|s, a)) Lip(V̂ ⋆)

]
where Was(µ, ν) denotes the Wasserstein distance be-
tween two measures and Lip(·) denote the Lipschitz
constant of a function.

PROOF (OUTLINE) First note that, from triangle inequality,
we have

D⋆
∞v ≤ ∥c−ĉ∥∞+γ sup

s∈S
a∈A

∣∣∣∣∫
S
v(s′)[P (ds′|s, a)−P̂ (ds′|s, a)]

∣∣∣∣
and a similar bound holds for Dπ̂⋆

∞ v. The result then follows
by observing that for any two measures µ and ν and any
function v, we have

∣∣∫ vdµ −
∫
vdν

∣∣ ≤ ∥v∥∞TV(µ, ν)
and also

∣∣∫ vdµ−
∫
vdν

∣∣ ≤ Lip(v)Was(µ, ν). See [13] for
general discussion of such bounds. ■

The results of Prop 2 are similar to the approximation
results presented in [9], [27], [29] (some of those results
assumed that the approximate model has a smaller state space
than the original model).

IV. SOME INSTANCES OF THE MAIN RESULTS

A. Inventory management

In this section, we illustrate the results of Theorem 1
for an inventory management problem with state space
S = {−Smax,−Smax + 1, . . . Smax} and action space A =
{0, 1, . . . , Smax}. Let St ∈ S denote the amount of stock at
the beginning of day t, At ∈ A denote the stock ordered at
the beginning of day t, and Wt ∈ Z≥0 denote the demand
during day t. The dynamics are given by

St+1 =
[
St +At −Wt

]Smax

−Smax

where [·]Smax

−Smax
denotes a function which clips its value

between −Smax and Smax. The demand Wt is assumed to
be an i.i.d. Binomial(n, q) process. The per-step cost is given
by

c(s, a) = pa+ chs1{s≥0} − css1{s<0}

ch is the per-unit holding cost, cs is the per-unit shortage
cost, and p is the per-unit procurement cost. We denote the
above model by M = (Smax, γ, n, q, ch, cs, p).

We consider two models:
• True model M = (500, 0.75, 10, 0.4, 4.0, 2, 5).
• Approx. model M̂ = (500, 0.75, 10, 0.5, 3.8, 2, 5).

Since both models have finite state and action spaces,
Assumption 1 is satisfied. We take the weight function
to be w(s) = 1 + (1.5 · 10−2)

[
ĉhs1{s≥0} − ĉss1{s<0}

]
,

where ĉh and ĉs denote the per-unit holding and shortage
costs of the approximate model, respectively. We verify that
Assumption 2 is satisfied with κ = 1.15,
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Fig. 1: Comparison of the bounds on V ⋆(s) based on
weighted-norm and sup-norm.
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Fig. 2: Zoomed in versions of the bounds of Fig. 1

We compare the bounds obtained for the weighted norm
(Theorem 1) with the sup-norm bounds (Corollary 1). In
particular, the weighted-norm bound of Theorem 1 states that

V π̂⋆

(s)− V ⋆(s) ≤ 1

1− γκ

[
Dπ̂⋆

w V̂ ⋆ +D⋆
wV̂

⋆
]
w(s) (9)

while the sup-norm bound of Corollary 1 states that

V π̂⋆

(s)− V ⋆(s) ≤ 1

1− γ

[
Dπ̂⋆

∞ V̂ ⋆ +D⋆
∞V̂ ⋆

]
(10)

For the models M and M̂ described above, we compute
the policy π̂⋆ using value iteration, compute V π̂⋆

using
policy evaluation, and then plot the weighted- and sup-norm
bounds of (9) and (10) in Fig. 1. To better compare the error
bounds, we zoom into the region of S̄ := {−10,−9, . . . , 10}
in Fig. 2, which shows that the weighted-norm is significantly
better than the sup-norm for small values of start state.

The optimal policy for an inventory management model
described above is a base-stock policy [32]: π⋆(s) =
max(0, s⋆−s). For the model M̂, the base-stock level s⋆ =
2. Since the demand has finite support of {0, 1, . . . , 10},
after an initial transient period, the inventory level always
remains between {−8,−7, . . . , 2}. Thus, we care about the
performance of an approximate policy in this region and,
here, the weighted-norm bounds are substantially tighter than
the sup-norm bounds. These results show that even for
finite state and action spaces, weighted-norm bounds can
be better than sup-norm bounds.

B. Initial state dependent weight function

The bounds shown in Fig. 1 show that for smaller values
of s, the weighted norm bound is tighter but for significantly
larger values of s, the sup-norm bound becomes tighter.
This is a general feature of our bounds: the best choice of
weight function depends on the value of state. As discussed
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Fig. 3: Upper bounds obtained by different weight functions.
Note that the curve corresponding to α = 0 is not visible in
the zoomed in plot (b).

in Remark 4, we can exploit this feature to come up with a
tighter bound.

To illustrate this result, we reconsider the inventory man-
agement problem of the previous section and consider a
family of weight functions:

W =
{
1+αc̄(s) : α ∈ {0, 0.5·10−2, 10−2, . . . , 2.5·10−2}

}
,

where c̄(s) = ĉhs1{s≥0} − ĉss1{s<0}. Note that for α = 0,
w(s) = 1 and, therefore, this corresponds to the sup-norm.
For each w ∈ W , we compute the smallest κw such that
Assumption 2 is satisfied. We plot the corresponding upper
bound given in (9) in Fig. 3. As can be seen from the figure,
the best choice of weight function depends on the state. As
per Remark 4, we can get a tighter bound by minimizing
over all the upper bounds by (7). This tighter upper bound
is highlighted in Fig. 3 using shaded areas shown in red.

C. Linear quadratic regulator

In this section, we use the linear quadratic regulator (LQR)
to show that weighted norm bounds of Theorem 1 provide
meaningful results for models with unbounded per-step cost.
Consider a LQR problem with state space S = Rns and
action space A = Rna . The dynamics are given by

st+1 = Ast +Bat + wt,

where A and B are system matrices of appropriate dimen-
sions and {wt}t≥1 is an i.i.d. zero-mean noise process with
covariance ΣW . The per-step cost is given by

c(st, at) = s⊺tQst + a⊺tRat,

where Q and R are positive semidefinite and positive definite
matrices of appropriate dimensions. We will denote this
model by M = (A,B,Q,R,ΣW , γ) where γ is the discount
factor.

Under standard assumptions of stabilizability and de-
tectability, it is known that the optimal value function is

V ⋆(st) = s⊺t Pst + q,

where P is the solution of the discounted Riccati equa-
tion [33]

P = Q+γA⊺PA−γ2A⊺PB(R+γB⊺PB)−1B⊺PA, (11)

and q = γ Tr(ΣWP )/(1− γ).

We consider two models, a true model M =
(A,B,Q,R,ΣW , γ) and an approximate model M̂ =
(Â, B̂, Q̂, R̂, Σ̂W , γ). Under standard conditions of stabiliz-
ability and detectability, both models M and M̂ satisfy
Assumption 1. Let P and P̂ denote the solution of the Riccati
equations corresponding to models M and M̂.

We take the weight function to be w(s) = 1 + s⊺s
and assume that models M and M̂ are close enough that
Assumption 2 is satisfied for some κ < 1/γ. We follow
the same notation as before and let π̂⋆ denote the optimal
policy of model M̂ and use V π̂⋆

and V ⋆ to denote the value
function of policy π̂⋆ and the optimal value function for
model M, respectively.

Then, the result of Theorem 1 simplifies as follows:

Proposition 3 Under Assumptions 1 and 2, we have∥∥V π̂⋆

− V ⋆
∥∥
w

≤ 1

1− γκ

[
max(ρ(D⋆), dΣ) + max(ρ(Dπ̂⋆

), dΣ)
]
, (12)

where ρ(·) denotes the spectral radius of a matrix and

D⋆ = Q− Q̂+ γ(A⊺P̂A− Â⊺P̂ Â)

− γ2(A⊺P̂B(R+ γB⊺P̂B)−1B⊺P̂A

− Â⊺P̂ B̂(R̂+ γB̂⊺P̂ B̂)−1B̂⊺P̂ Â), (13)

Dπ̂⋆

= Q− Q̂+ γ(A⊺P̂A− Â⊺P̂ Â)

− γ
(
A⊺P̂BK̂ + K̂⊺B⊺P̂A

)
+ K̂⊺(R+ R̂+ γB⊺P̂B + γB̂⊺P̂ B̂)K̂, (14)

K̂ = γ(R̂+ γB̂⊺P̂ B̂)−1B̂⊺P̂ Â, (15)

and

dΣ = γ Tr((ΣW − Σ̂W )P̂ ). (16)

Remark 5 An immediate implication of Proposition 3 is
that for s = 0,

V π̂⋆

(0)− V ⋆(0) ≤
∥∥V π̂⋆

− V ⋆
∥∥
w
w(0)

≤ 1

1− γκ

[
max(ρ(D⋆), dΣ) + max(ρ(Dπ̂⋆

), dΣ)
]
.

(17)

A salient feature of this upper bound is that it does not
depend on Riccati gain P or the control gain K of the
true model.

D. Advantage of using (κ,w)-stability

As mentioned in Remark 1, a condition stronger than
(κ,w)-stability is typically imposed in the literature. In this
section, we show that if we restrict attention to weight
functions which satisfy this stronger condition (described in
Remark 1), then the upper bound is looser or even non-
applicable.

For the LQR problem, (5) in Remark 1 cannot be satisfied
for w(s) = 1 + s⊺s with any finite constant κ̄ due to
the unbounded action space. For the inventory management
problem, considering a family of weight functions

W̄ =
{
1 + αc̄(s) : α ∈ {0, 0.25 · 10−4, . . . , 2.00 · 10−4}

}
,
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Fig. 4: Upper bounds obtained using stability for all actions.
Note that the curves corresponding to α = 1.50 · 10−4 and
α = 1.75 · 10−4 are not visible in both plots.

for each w̄ ∈ W̄ , we compute the smallest κ̄w̄ such that (5)
is satisfied. Greatest possible α that yields the corresponding
κ̄w̄ < 1/γ is found as α = 1.75 · 10−4.

We plot the corresponding upper bound given in (9) in
Fig. 4. As can be seen from the plot, in this case the weight
function w̄(s) ≡ 1 (equivalent to the sup-norm) gives the
tightest upper bound. But, as was seen by the bounds of
Fig. 3, the bounds obtained by weighted functions in class W
were significantly tighter. This highlights the importance of
working with weight functions which satisfy Assumption 2
rather than weight functions which satisfy the conditions of
Remark 1.

V. CONCLUSION

We considered the problem of designing a control policy
for an infinite-horizon discounted cost Markov Decision Pro-
cess (MDP) M when we only have access to an approximate
model M̂. We provided an upper bound on the performance
loss when an optimal policy π̂∗ for the approximate model
is used in the true model and the start state is s. Our bounds
are in terms of the weighted norm of the difference between
the value function of π̂⋆ when used in M and the optimal
value function of M. The use of weighted norm allows us to
obtain meaningful bounds for performance loss even when
the per-step cost function is unbounded. While we focused
on MDPs in this paper, our approach may prove to be useful
for partially observed and multi-agent systems as well.
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APPENDIX I
PROOF OF LEMMA 1

We prove each part of Lemma 1 separately.

Proof of part 1)

Fix a state s ∈ S. For a policy π ∈ ΠS(κ,M,w) and a
value function v ∈ V̄w, we have∣∣∣∣Bπv(s)

w(s)

∣∣∣∣
(a)

≤
∣∣∣∣cπ(s)w(s)

∣∣∣∣+ γ

∣∣∣∣∫
A
π(da | s)

∫
S
P (ds′ | s, a) v(s

′)

w(s′)

w(s′)

w(s)

∣∣∣∣
(b)

≤ ∥cπ∥w + γ∥v∥w
∣∣∣∣∫

A
π(da | s)

∫
S
P (ds′ | s, a)w(s

′)

w(s)

∣∣∣∣
(c)

≤ ∥cπ∥w + γ∥v∥wκ < ∞,

where (a) follows from the triangle inequality, (b) follows
from the definition of ∥ · ∥w and (c) follows from the fact
that π is (κ,w) stable.

Proof of part 2)

Fix a state s ∈ S. We have∣∣∣∣ [Bπv1 −Bπv2](s)

w(s)

∣∣∣∣
= γ

∣∣∣∣∫
A
π(da | s)

∫
S
P (ds′ | s, a)

[
v1(s

′)− v2(s
′)

w(s′)

]
w(s′)

w(s)

∣∣∣∣
(a)

≤ γ∥v1 − v2∥w
∣∣∣∣∫

A
π(da | s)

∫
S
P (ds′ | s, a)w(s′) 1

w(s)

∣∣∣∣
(b)

≤ γκ∥v1 − v2∥w

where (a) holds from the definition of ∥ · ∥w and (b) holds
because π is (κ,w) stable.

Proof of part 3)

From parts 1) and 2) of Lemma 1, we know that Bπ :
V̄w 7→ V̄w is a contraction. Since V̄w is a complete metric
space (under the ∥ · ∥w metric), it follows from Banach fixed
point theorem that Bπ has a unique fixed point F in V̄w. If
V π
n denotes the n−step discounted cost for policy π, then it

can be shown that V π
n+1 = BπV π

n and that V π
n ∈ V̄w for all

n. Thus, by Banach fixed point theorem, V π
n converges to the

fixed point F of Bπ in the ∥·∥w metric. Since convergence in
∥·∥w metric implies pointwise convergence, we have F (s) =
limn→∞ V π

n (s) = V π(s) for all s ∈ S.

APPENDIX II
PROOF OF THEOREM 1

We prove each part separately.

A. Proof of part 1

By triangle inequality, we have∥∥V π̂⋆

− V ⋆
∥∥
w
≤

∥∥V π̂⋆

− V̂ ⋆
∥∥
w
+
∥∥V̂ ⋆ − V ⋆

∥∥
w

(18)

We will bound each term separately. For the first term, using
V̂ ⋆ = V̂ π̂⋆

, we can write∥∥V π̂⋆

− V̂ ⋆
∥∥
w
=

∥∥Bπ̂⋆

V π̂⋆

− B̂π̂⋆

V̂ ⋆
∥∥
w

≤
∥∥Bπ̂⋆

V π̂⋆

−Bπ̂⋆

V̂ ⋆
∥∥
w
+

∥∥Bπ̂⋆

V̂ ⋆ − B̂π̂⋆

V̂ ⋆
∥∥
w

≤ γκ
∥∥V π̂⋆

− V̂ ⋆
∥∥
w
+Dπ̂⋆

w V̂ π̂⋆

(19)

where the first inequality follows from triangle inequality,
and the last from Lemma 1 as π̂⋆ ∈ ΠS(κ,w) and from the
definition of Bellman mismatch functional. Re-arranging the
terms in (19), we obtain∥∥V π̂⋆

− V̂ ⋆
∥∥
w
≤ 1

1− γκ
Dπ̂⋆

w V̂ ⋆. (20)

By a similar argument, we can show that∥∥V̂ ⋆ − V ⋆
∥∥
w
≤ 1

1− γκ
D⋆

wV̂
⋆. (21)

Combining (20) and (21), we have∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 1

1− γκ

[
Dπ̂⋆

w V̂ ⋆ +D⋆
wV̂

⋆
]
. (22)

B. Proof of part 2

We have∥∥V π̂⋆

− V ⋆
∥∥
w
=

∥∥Bπ̂⋆

V π̂⋆

−B⋆V ⋆
∥∥
w

≤
∥∥Bπ̂⋆

V π̂⋆

−Bπ̂⋆

V ⋆
∥∥
w
+
∥∥Bπ̂⋆

V ⋆ − B̂π̂⋆

V ⋆
∥∥
w

+
∥∥B̂π̂⋆

V ⋆ − B̂π̂⋆

V̂ ⋆
∥∥
w
+

∥∥B̂π̂⋆

V̂ ⋆ −B⋆V ⋆
∥∥
w

≤ γκ
∥∥V π̂⋆

− V ⋆
∥∥
w
+Dπ̂⋆

w V ⋆

+ γκ
∥∥V ⋆ − V̂ ⋆

∥∥
w
+
∥∥V̂ ⋆ − V ⋆

∥∥
w

(23)

where the first inequality holds from triangle inequality and
the last from the definition of Bellman mismatch functional
and from Lemma 1 as π̂⋆ ∈ ΠS(κ,w) ∩ Π̂S(κ,w). Re-
arranging the terms in (23), we obtain∥∥V π̂⋆

− V ⋆
∥∥
w
≤ 1

1− γκ

[
Dπ̂⋆

w V ⋆ + (1 + γκ)
∥∥V̂ ⋆ − V ⋆

∥∥
w

]
.

(24)

We can bound the last term of (24) as∥∥V̂ ⋆ − V ⋆
∥∥
w
=

∥∥B⋆V ⋆ − B̂⋆V̂ ⋆
∥∥
w

≤
∥∥B⋆V ⋆ − B̂⋆V ⋆

∥∥
w
+

∥∥B̂⋆V ⋆ − B̂⋆V̂ ⋆
∥∥
w

≤ D⋆
wV

⋆ + γκ
∥∥V ⋆ − V̂ ⋆

∥∥
w

(25)

Re-arranging the terms in (25), we obtain∥∥V̂ ⋆ − V ⋆
∥∥
w
≤ 1

1− γκ
D⋆

wV
⋆. (26)

Combining (24) and (26), we have∥∥V̂ ⋆ − V ⋆
∥∥
w
≤ 1

1− γκ
Dπ̂⋆

w V ⋆ +
1 + γκ

(1− γκ)2
D⋆

wV
⋆. (27)



APPENDIX III
PROOF OF PROPOSITION 1

Note that Ξ(s,a)v may be written as

Ξ(s,a)v = [Bπv](s)− [B̂πv](s)

where π is such that π(s) = a for all s. Let ΠO denote
all such deterministic open loop policies, i.e., policies where
π(s) is a constant action. Then,

Dmax
w v = sup

π∈ΠO

Dπ
wv.

Since ΠO ⊂ Π, the above equation implies that

Dmax
w v ≤ sup

π∈Π
Dπ

wv. (28)

Now consider any π ∈ Π. Then,

[Bπv](s)− [B̂πv](s) =

∫
A
π(da | s)Ξ(s,a)v

Therefore,

Dπ
wv = sup

s∈S

∣∣∫
A π(da | s)Ξ(s,a)v

∣∣
w(s)

≤ sup
(s,a)∈S×A

|Ξ(s,a)v|
w(s)

= Dmax
w v. (29)

Combining (28) and (29), we get the first part of (8).
For the second part, note that for any set X ,

| supx∈X f(x) − supx∈X g(x)| ≤ supx∈X |f(x) − g(x)|.
Therefore,

[B⋆v](s)− [B̂⋆v](s) ≤ sup
a∈A

|Ξ(s,a)v|.

Hence, we have

D⋆
wv = sup

s∈S

supa∈A
∣∣Ξ(s,a)v

∣∣
w(s)

= Dmax
w v, (30)

which establishes the second part of (8).

APPENDIX IV
PROOF OF PROPOSITION 3

We can calculate the Bellman updates for V̂ ⋆(s) as

B⋆V̂ ⋆(s)

= s⊺
(
Q+ γA⊺P̂A− γ2A⊺P̂B(R+ γB⊺P̂B)−1B⊺P̂A

)
s

+ γ(q̂ +Tr(ΣW P̂ )).

The approximate Bellman update for V̂ ⋆(s) is given by

B̂⋆V̂ ⋆(s)

= s⊺
(
Q̂+ γÂ⊺P̂ Â− γ2Â⊺P̂ B̂(R̂+ γB̂⊺P̂ B̂)−1B̂⊺P̂ Â

)
s

+ γ(q̂ +Tr(Σ̂W P̂ )).

Therefore, we have

|B⋆V̂ ⋆(s)− B̂⋆V̂ ⋆(s)| =
∣∣∣s⊺D⋆s+ γ Tr((ΣW − Σ̂W )P̂ )

∣∣∣ ,
where D⋆ is given by (13).

Note that π̂⋆(s) = −K̂s = −γ(R̂ + γB̂⊺P̂ B̂)−1B̂⊺P̂ Âs.
As a result, Bπ̂⋆

is given by

Bπ̂⋆

V̂ ⋆(s)

= s⊺
(
Q+ γA⊺P̂A− γ

(
A⊺P̂BK̂ + K̂⊺B⊺P̂A

)
+ K̂⊺(R+ γB⊺P̂B)K̂

))
s

+ γ(q̂ +Tr(ΣW P̂ )),

and B̂π̂⋆

V̂ ⋆(s) = B̂⋆V̂ ⋆(s). Therefore, we have

|Bπ̂⋆

V̂ ⋆(s)− B̂π̂⋆

V̂ ⋆(s)| =
∣∣∣s⊺Dπ̂⋆

s+ γ Tr((ΣW − Σ̂W )P̂ )
∣∣∣ ,

where Dπ̂⋆

is given by (14). Then, the Bellman mismatches
in Definition 5 for V̂ can be calculated as follows:

Dπ
wV̂

⋆ = sup
s∈S

∣∣s⊺Dπ̂⋆

s+ dΣ
∣∣

w(s)
, D⋆

wV̂
⋆ = sup

s∈S

|s⊺D⋆s+ dΣ|
w(s)

,

where dΣ is given by (16). Since we take the weight function
to be w(s) = 1 + s⊺s, Theorem 1 gives∥∥V π̂⋆

− V ⋆
∥∥
w

≤ 1

1− γκ

[
sup
s∈S

∣∣s⊺Dπ̂⋆

s+ dΣ
∣∣

1 + s⊺s
+ sup

s∈S

∣∣s⊺Dπ̂⋆

s+ dΣ
∣∣

1 + s⊺s

]
=

1

1− γκ

[
max(ρ(D⋆), dΣ) + max(ρ(Dπ̂⋆

), dΣ)
]
.


