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Optimal Control of Network-Coupled
Subsystems: Spectral Decomposition

and Low-Dimensional Solutions
Shuang Gao , Member, IEEE, and Aditya Mahajan , Senior Member, IEEE

Abstract—In this article, we investigate the optimal con-
trol of network-coupled subsystems with coupled dynamics
and costs. The dynamics coupling may be represented by
the adjacency matrix, the Laplacian matrix, or any other
symmetric matrix corresponding to an underlying weighted
undirected graph. Cost couplings are represented by two
coupling matrices which have the same eigenvectors as
the coupling matrix in the dynamics. We use the spec-
tral decomposition of these three coupling matrices to
decompose the overall system into (L + 1) systems with
decoupled dynamics and cost, where L is the number
of linearly independent eigendirections associated with
nonzero eigenvalue triples of the three coupling matrices.
Furthermore, the optimal control input at each subsystem
can be computed by solving (Ldist + 1) decoupled Riccati
equations, where Ldist (Ldist ≤ L) is the number of distinct
nonzero eigenvalue triples of the three coupling matrices.
A salient feature of the result is that, given the spec-
tral decompositions of the couplings, the solution com-
plexity does not directly depend on the number of sub-
systems. Therefore, the proposed solution framework pro-
vides a scalable method for synthesizing and implement-
ing optimal control laws for large-scale network-coupled
subsystems.

Index Terms—Large-scale systems, linear systems, opti-
mal control, Riccati equations, spectral decompositions.

I. INTRODUCTION

A. Motivation

THE RECENT proliferation of low-cost sensors and actu-
ators has given rise to many networked control systems

such as the Internet of Things, smart grids, smart buildings, etc.,
where multiple subsystems are connected over a network. In
such systems, the evolution of the state of a subsystem depends
on its local state and local control and is also influenced by the
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states and controls of its neighbors. Such networks are often
referred to as large-scale systems or complex networks, and
various aspects of such systems have been investigated since
the early 1970s [2], [3], including issues such as controllabil-
ity [4], [5], observability [5], [6], control energy [7], distributed
control [8]–[10] and decentralized control [11]–[14].

A key theme for investigating large-scale networked control
systems is to identify conditions under which the optimal con-
trol laws may be synthesized and implemented with low com-
plexity. Such conditions include simplified control objectives
(e.g., consensus [8]–[10] and synchronization [15]), simplified
control inputs (e.g., pinning control [16]–[18] and ensemble
control [19]), simplified coupling between subsystems (e.g.,
symmetric interconnections [5], [11], [12], [20], [21], exchange-
able or anonymous subsystems [22]–[24], sparse connections
or structure reduction [25], [26], decoupled dynamics [27],
hierarchical decompositions [28] and patterned systems [29]),
and approximate optimality (e.g., mean-field games [30]–[32],
control based on approximate aggregations [33], approximate
distributed control [34], [35], and graphon control [36]).

In this article, we propose a decomposition method for large-
scale network-coupled subsystems which relies on the spectral
decomposition of the dynamic and cost couplings among the
subsystems. Several related approaches have been considered
in the literature. An earlier approach similar in spirit to ours
is [33], which considered the problem of approximating a
high-dimensional system with a low-dimensional system using
state aggregation. Both exact and approximate solutions were
proposed. Spectral decomposition of large-scale systems with
symmetric interconnected subsystems have been considered
in [11] and [12]. Algebraic decomposition of mean-field coupled
subsystems has been considered in [23] and [24]. Algebraic
decomposition with cost couplings and no dynamics couplings
is considered in [27] and [37]. Similar problems under the
graphon LQR framework are studied in [38]. A key feature
which distinguishes our approach from these works above is
that our approach is applicable to models, where the couplings
in dynamics and costs among subsystems are not homogeneous
and such couplings could be dense or spare, and that we establish
optimal solutions rather than an approximate solution. Another
line of related work is graphical games ([25], [39, Ch. 6]), where
the coupling of the utility function depends on an underlying
graph. In contrast to these, we consider a control problem and
propose a different type of decomposition.
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B. Contributions of This Article

In this article, we investigate a control system with multiple
subsystems connected over an undirected graph. Each subsystem
has a local state and takes a local control action. The evolution
of the state of each subsystem depends on its local state and
local control as well as a weighted combination (which we call
the network field) of the states and controls of its neighbors.
Moreover, the weights in the network field, which are repre-
sented by a coupling matrix, may correspond to the adjacency
matrix, Laplacian matrix, or any other symmetric matrix that
characterizes the underlying graph. The subsystems can also
be coupled in the (quadratic) costs via two coupling matrices
that share the same eigenvectors with the coupling matrix in
the dynamics. The objective is to choose the control of each
subsystem to minimize the total cost over time. The above
model is a linear quadratic regulation problem and a centralized
solution can be obtained by solving ndx × ndx-dimensional
Riccati equation, where n is the number of subsystems and dx
is the dimension of the state of each subsystem. In this article,
we propose an alternative solution that has low complexity and
may be implemented in a local manner with aggregated (or pro-
jected) state information and local state information. For some
particular cases, the control can be implemented in a distributed
manner that relies on neighborhood information and local
information.

The main contributions of this article are the following.
1) A spectral decomposition technique is developed to

decompose the linear quadratic control problem for
network-coupled dynamical subsystems into L+ 1 de-
coupled subproblems, where L is the number of linearly
independent eigendirections associated with nonzero
eigenvalue triples of the three coupling matrices.

2) These L+ 1 decoupled subproblems can be solved by
solving only Ldist + 1 decoupled Riccati equations of
dimension dx × dx, where Ldist is the number of distinct
nonzero eigenvalue triples of the three coupling matrices
and dx is the state dimension of each subsystem. In
contrast, a direct centralized solution requires solving
an ndx × ndx-dimensional Riccati equation, where n is
the number of subsystems. We note that the inequalities
Ldist ≤ L ≤ n always hold. Thus the method proposed
in this article leads to considerable simplifications in
synthesizing optimal control laws.

3) To implement the optimal control input, each subsystem
needs to know the (L+ 1)dx-dimensional vector of lo-
cal components of eigen and auxiliary states (which are
defined later in the article). In contrast, to implement the
centralized solution, each subsystem needs to know the
ndx dimensional global state. Thus, in applications such
as [40]–[42], where L � n, the method proposed in this
article leads to considerable simplification in implement-
ing the optimal control law.

4) The solution method is extended to solve stochastic linear
quadratic control problems for network-coupled subsys-
tems.

5) The solution method is applied to study consensus prob-
lems to establish optimal distributed control solutions for
some particular cases.

C. Notations and Definitions

We use N and R to denote, respectively, the sets of natural
and real numbers. The notation A = [aij ] means that aij is the
(i, j)th element of the matrix A. For a vector v, vi denotes
its ith element. For a matrix A, AT denotes its transpose.
Given vectors v1,..., vn, cols(v1, . . . , vn) denotes the matrix
formed by horizontally stacking the vectors. For any n ∈ N,
1n denotes the n-dimensional vector of ones, 1n×n denotes the
n× n-dimensional matrix of ones, and In denotes the n× n-
dimensional identity matrix.

A matrix pair (A,B) is stabilizable if there exists a matrix
L, such that A+BL is Hurwitz (i.e., all its eigenvalues have
negative real parts). A matrix pair (C,A) is detectable if there
exists a matrix F , such that AT + FCT is Hurwitz.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a network consisting of n nodes connected over an
undirected weighted graphG(N , E ,W ), whereN = {1, . . . , n}
is the set of nodes,E ⊆ N ×N is the unordered set of edges, and
W = [wij ] ∈ Rn×n is the weighted adjacency matrix. Let M =
[mij ] ∈ Rn×n be a symmetric coupling matrix corresponding to
the underlying graph G(N , E ,W ). For instance, M may repre-
sent the underlying adjacency matrix (i.e.,M = W ) or represent
the underlying Laplacian matrix (i.e., M = diag(W1n)−W ).
For any node i ∈ N , Ni := {j ∈ N : (i, j) ∈ E} denotes the
set of neighbors of node i. Note that the edge set E is allowed to
include self-loops. Therefore the set Ni may contain node i.

The system operates in continuous time for either a finite
interval [0, T ] or an infinite interval [0,∞). A state xi(t) ∈ Rdx

and a control input ui(t) ∈ Rdu are associated with each node
i ∈ N . At time t = 0, the system starts from an initial state
(xi(0))i∈N and for t > 0, the state of node i evolves according
to

ẋi(t) = Axi(t) +Bui(t) +DxG
i (t) + EuG

i (t) (1)

where A, B, D, and E are matrices of appropriate dimensions
and

xG
i (t) =

∑
j∈N

mijxj(t) and uG
i (t) =

∑
j∈N

mijuj(t) (2)

are the locally perceived network field of states and control
actions at node i. It is assumed that all the different subsystems
have the same parameter matrices A, B, D, and E.

We follow an atypical representation of the “vectorized”
dynamics. Define

x(t) = cols(x1(t), . . . , xn(t))

u(t) = cols(u1(t), . . . , un(t))
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as the global state and control actions of the system, and

xG(t) = cols(xG
1(t), . . . , x

G
n(t))

uG(t) = cols(uG
1(t), . . . , u

G
n(t))

as the global network field of states and actions. Note that
x(t), xG(t) ∈ Rdx×n and u(t), uG(t) ∈ Rdu×n are matrices and
not vectors. The system dynamics may be written as

ẋ(t) = Ax(t) +Bu(t) +DxG(t) + EuG(t). (3)

Furthermore, we may write

xG(t) = x(t)MT = x(t)M anduG(t) = u(t)MT = u(t)M.

B. System Performance and Control Objective

At time t ∈ [0, T ), the system incurs an instantaneous cost

c(x(t), u(t)) =
∑
i∈N

∑
j∈N

[
gijxi(t)

TQxj(t) + hijui(t)
TRuj(t)

]
(4)

and at the terminal time T , the system incurs a terminal cost

cT (x(T )) =
∑
i∈N

∑
j∈N

gijxi(T )
TQTxj(T ) (5)

whereQ,QT , andR are matrices of appropriate dimensions and
gij and hij are real-valued weights.

We are interested in the following optimization problems.
Problem 1: Choose a control trajectory u : [0, T ) → Rdu×n

to minimize

J(u) =

∫ T

0

c(x(t), u(t))dt+ cT (x(T )) (6)

subject to the dynamics in (3).
Problem 2: Choose a control trajectory u : [0,∞) → Rdu×n

to minimize

J(u) =

∫ ∞

0

c(x(t), u(t))dt (7)

subject to the dynamics in (3).

C. Assumptions on the Cost in the Model

(A0) The weight matrices G = [gij ] and H = [hij ] are, re-
spectively, given by

G = q0I + q1Mq, H = r0I + r1Mr

where Mq and Mr are symmetric matrices that share
with M the same set of orthonormal eigenvectors
{v1, . . ., vn} associated with all their eigenvalues.

For any two n× n-dimensional symmetric matrices M1 and
M2, one can verify that the following statements are equivalent:
i) M1 and M2 commute (i.e., M1M2 = M2M1); ii) M1 and M2

are simultaneously diagonlizable (i.e., there exists an invertible
matrix P , such that P−1M1P and P−1M2P are both diagonal
matrices); iii) M1 and M2 are simultaneously diagnolizable by
an orthogonal matrix; and iv) M1 and M2 share the same set of
n orthonormal eigenvectors.

An important special case of Assumption (A0) is that G and
H are both polynomials of M , that is,

G =

KG∑
k=0

qkM
k and H =

KH∑
k=0

rkM
k (8)

where KG and KH denote the degrees of the polynomials and
{qk}KG

k=0 and{rk}KH

k=0 are real coefficients (as those cases in [1]).
Here we use bold face letters to differentiate them from the
coefficients q0, q1, r0 and r1 in Assumption (A0).

When Assumption (A0) holds, let (λ�, λ�
r, λ

�
q) denote

the (real) eigenvalue triple of the coupling matrix triple
(M,Mr,Mq) associated with the shared eigenvector v�, � ∈
{1, . . ., n}. We call the eigenvalue triple a nonzero eigenvalue
triple if at least one eigenvalue in the triple is nonzero. Let L
denote the number of linearly independent eigendirections asso-
ciated with nonzero eigenvalue triples of (M,Mq,Mr). Without
loss of generality, let v1, . . .., vL denote the shared orthonormal
eigenvectors associated with all the nonzero eigenvalue triples.

For ease of notation, for � ∈ {1, . . . , L}, define

q� = q0 + q1λ
�
q and r� = r0 + r1λ

�
r.

(A1) The matrices Q and QT are symmetric and positive
semidefinite and R is symmetric and positive definite.

(A2) For � ∈ {1, . . . , L}, q� is nonnegative and r� is strictly
positive. Moreover q0 ≥ 0 and r0 > 0.

Assumption (A2) ensures that for any y ∈ Rn, yTGy ≥ 0,
and yTHy > 0. Assumptions (A1) and (A2) ensure that G⊗
Q and G⊗QT are symmetric positive semidefinite, and H ⊗
R is symmetric positive definite, which are standard sufficient
conditions for finite-horizon LQR problems to have a unique
optimal solution (see for instance [43]).

D. Remarks on the Assumptions on the Cost Function

Since the subsystems (or agents) are coupled in the dynamics
over an underlying graph, it may be reasonable to assume
that the cost structure respects the same graph structure. The
polynomials in (8) allow us to consider cost coupling structures
which may involve not only the immediate neighborhood but
also multiple-hop neighborhood connections. We present a few
examples with different coefficients {qk}KG

k=0 and {rk}KH

k=0 in
(8) in the following.

1) If KG = KH = 0, q0 = 1, r0 = 1, and all other co-
efficients are zero, then G = H = I . In this case, the
instantaneous cost reduces to

c(x(t), u(t)) =
n∑

i=1

[xi(t)
TQxi(t) + ui(t)

TRui(t)].

Thus, the problem is equivalent to the social optimal
control problem, where the cost is the summation of the
costs of all the subsystems.

2) If KG = 2, KH = 1, q0 = 1,q1 = −2,q2 = 1, r0 = 1,
and all other coefficients are zero, then G = (I −M)2

and H = I . If, furthermore, the matrix M = 1
n1n1

T
n,
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Fig. 1. Graph and its 2-hop neighborhood. (a) Graph G. (b) 2-hop
neighborhood of G.

then the instantaneous cost reduces to

c(x(t), u(t)) =
n∑

i=1

[(xi(t)− x̄(t))TQ(xi(t)− x̄(t))

+ ui(t)
TRui(t)]

where x̄(t) := 1
n

∑n
i=1 xi(t), which is similar to the cost

of the social optimal mean field control problem [44].
3) If KG = 2, KH = 0, q2 = 1, r0 = 1, all other coeffi-

cients are zero, and the coupling matrix is the Laplacian
matrix, then G = M2, H = I,M = L := diag(W1n −
W ). The instantaneous cost reduces to

(x(t), u(t)) =
n∑

i=1

[
ei(t)

TQei(t) + ui(t)
TRui(t)

]
where the local state error for subsystem i is given
by ei(t) :=

∑
j∈Ni

wij(xi(t)− xj(t)). If, furthermore,
there are no couplings in the dynamics and A = 0, this
structure then produces the optimal control problem that
can be exactly associated with a distributed control prob-
lem (see Section V for more details).

4) KG and KH can be ∞ as long as the limit of
the corresponding polynomial series is well defined.
Such examples include the exponential function G =
exp(M) =

∑∞
k=0

1
k!M

k, and the inverse function G =
(I − γM)−1 =

∑∞
k=0 γ

kMk (when the spectral radius
ρ(M) of M satisfies ρ(M) < γ−1).

E. Salient Features of the Model

We highlight salient features of the model via an example.
Consider a system with four nodes connected via a network
shown in Fig. 1(a), with

G = q0I + q1 M + q2 M
2 and H = r0I + r1 M + r2 M

2

whereM andM2 are the weighted adjacency matrix of the graph
G and that of the 2-hop neighborhood of G, respectively, given
by

M =

⎡
⎢⎢⎢⎣
0 2 0 1

2 0 2 0

0 2 0 1

1 0 1 0

⎤
⎥⎥⎥⎦ and M2 =

⎡
⎢⎢⎢⎣
5 0 5 0

0 8 0 4

5 0 5 0

0 4 0 2

⎤
⎥⎥⎥⎦ .

1) Salient Features of the Dynamics: For this example,

xG
1(t) = 2x2(t) + x4(t), xG

2(t) = 2x1(t) + 2x3(t)

xG
3(t) = 2x2(t) + x4(t), xG

4(t) = x1(t) + x3(t).

Thus, each subsystem is affected by its neighbors. The influence
of each neighbor is not homogeneous but depends on the weight
associated with the corresponding edge in the graph. Further-
more, the network field xG(t) is not homogeneous and varies
from subsystem to subsystem.

2) Salient Features of the Cost: IfM is the weighted adja-
cency matrix of the graph G, the matrix Mk, k ∈ N, represents
the weighted adjacency matrix of the k-hop neighborhood of G.
Thus, G = q0I + q1 M + q2 M

2 means that each node has a
coupling of q0 with its own state, a coupling of q1 with its 1-hop
neighborhood and a coupling ofq2 with its 2-hop neighborhood.
Similar interpretation holds for H . Note that

G = q0I + q1 M + q2 M
2

=

⎡
⎢⎢⎣
q0 + 5q2 2q1 5q2 q1

2q1 q0 + 8q2 2q1 4q2

5q2 2q1 q0 + 5q2 q1

q1 4q2 q1 q0 + 2q2

⎤
⎥⎥⎦ .

Thus, the agents are not interchangeable, i.e., in general, Gii 
=
Gjj and Gki 
= Gkj .

III. SPECTRAL DECOMPOSITION OF THE SYSTEM

Since the coupling matrix M is real and symmetric, it admits
spectral factorizations. Under assumption (A0), the following
simultaneous spectral decompositions hold forM ,Mq , andMr:

M =

L∑
�=1

λ�v�v�
T
, Mq =

L∑
�=1

λ�
qv

�v�
T
, Mr =

L∑
�=1

λ�
rv

�v�
T
.

(9)
In the rest of this section, we decompose the dynamics and

the cost based on the above spectral decomposition. Our de-
compositions may be viewed as generalizations of mean-field
decompositions used in [23] and [24] to heterogenous networks.

A. Spectral Decomposition of the Dynamics

For � ∈ {1, . . . , L}, define eigenstates and eigencontrol ac-
tions as

x�(t) = x(t)v�v�
T

(10)

u�(t) = u(t)v�v�
T

(11)

respectively. Multiplying both sides of (3) by v�v�
T
, we get

ẋ�(t) = (A+ λ�D)x�(t) + (B + λ�E)u�(t) (12)

where we have used the fact that Mv�v�
T
= λ�v�v�

T
. Let x�

i(t)

and u�
i(t) denote the ith column of these matrices, i.e.,

x�(t) = cols(x�
1(t), . . . , x

�
n(t))

u�(t) = cols(u�
1(t), . . . , u

�
n(t)).

Therefore, the dynamics (12) can be written as a collection of
decoupled “local” dynamics: for i ∈ N

ẋ�
i(t) = (A+ λ�D)x�

i(t) + (B + λ�E)u�
i(t). (13)
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Using the spectral factorization (9), we may write

xG(t) = x(t)M =

L∑
�=1

λ�x�(t) (14)

uG(t) = u(t)M =

L∑
�=1

λ�u�(t). (15)

Now, define auxiliary state and auxiliary control actions as

x̆(t) = x(t)−
L∑

�=1

x�(t) and ŭ(t) = u(t)−
L∑

�=1

u�(t).

Then, by subtracting (12) from (3) and substituting (14) and (15),
we get

˙̆x(t) = Ax̆(t) +Bŭ(t). (16)

Note that x̆(t) ∈ Rdx×n and ŭ(t) ∈ Rdu×n. Let x̆i(t) and
ŭi(t) denote the ith column of these matrices, i.e.,

x̆(t) = cols(x̆1(t), . . . , x̆n(t))

ŭ(t) = cols(ŭ1(t), . . . , ŭn(t)).

Therefore, the dynamics (16) of the auxiliary state can be written
as a collection of decoupled “local” dynamics

˙̆xi(t) = Ax̆i(t) +Bŭi(t), i ∈ N . (17)

The above decomposition may be summarized as follows.
Proposition 1: The local state and control at each node i ∈ N

may be decomposed as

xi(t) = x̆i(t) +

L∑
�=1

x�
i(t) (18)

ui(t) = ŭi(t) +

L∑
�=1

u�
i(t) (19)

where the dynamics of x̆i(t) depend on only ŭi(t) and are given
by (17) and the dynamics of x�

i(t) depends on only u�
i(t) and

are given by (13).

B. Spectral Decomposition of the Cost

For any n× n matrix P = [pij ], any d× n matrices x =
cols(x1, . . . , xn), and y = cols(y1, . . . , yn), we use the follow-
ing short hand notation:

〈x, y〉P =
∑
i∈N

∑
j∈N

pijx
T
i yj . (20)

Proposition 2: The instantaneous cost may be written as

c(x(t), u(t)) = 〈x(t), Qx(t)〉G + 〈u(t), Ru(t)〉H
which can be simplified as follows:

〈x(t), Qx(t)〉G

=
∑
i∈N

[
q0x̆i(t)

TQx̆i(t) +

L∑
�=1

q�x�
i(t)

TQx�
i(t)

]
,

〈u(t), Ru(t)〉H

=
∑
i∈N

[
r0ŭi(t)

TRŭi(t) +

L∑
�=1

r�u�
i(t)

TRu�
i(t)

]
.

See the Appendix for the proof. �

IV. MAIN RESULTS: STRUCTURE AND SYNTHESIS OF

OPTIMAL CONTROL STRATEGIES

A. Finite Horizon Setup

The main result for the finite horizon setup is the following.
Theorem 1: For � ∈ {1, . . . , L}, letP � : [0, T ] → Rdx×dx be

the solution to the backward Riccati differential equation

−Ṗ �(t) = (A+ λ�D)TP �(t) + P �(t)(A+ λ�D)

− P �(t)(B + λ�E)(r�R)−1(B + λ�E)TP �(t) + q�Q (21)

with the final condition P �(T ) = q�QT . Similarly, let P̆ :
[0, T ] → Rdx×dx be the solution to the backward Riccati dif-
ferential equation

− ˙̆
P (t) = ATP̆ (t) + P̆ (t)A− P̆ (t)B(r0R)−1BTP̆ (t) + q0Q

(22)
with the final condition P̆ (T ) = q0QT .

Then, under assumptions (A0), (A1), and (A2), the optimal
control strategy for Problem 1 is given by

ui(t) = −K̆(t)x̆i(t)−
L∑

�=1

K�(t)x�
i(t), i ∈ N (23)

where

K̆(t) = (r0R)−1BTP̆ (t)

K�(t) = (r�R)−1(B + λ�E)TP �(t).

Proof: Consider the following collections of dynamical
systems.

1) Eigensystem (�, i), � ∈ {1, . . . , L}, i ∈ N , with state
x�
i(t), control inputs u�

i(t), dynamics

ẋ�
i(t) = (A+ λ�D)x�

i(t) + (B + λ�E)u�
i(t)

and cost

J�
i (u

�
i) =

∫ T

0

[
q�x�

i(t)
TQx�

i(t) + r�u�
i(t)

TRu�
i(t)
]
dt

+ q�x�
i(T )

TQx�
i(T ).

2) Auxiliary system i, i ∈ N , with state x̆i(t), control inputs
ŭi(t), dynamics

˙̆xi(t) = Ax̆i(t) +Bŭi(t),

and cost

J̆i(ŭi) =

∫ T

0

[
q0x̆i(t)

TQx̆i(t) + r0ŭi(t)
TRŭi(t)

]
dt

+ q0x̆i(T )
TQx̆i(T ).
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Note that all systems have decoupled dynamics and decoupled
nonnegative cost. By Proposition 2, we have

J(u) =
∑
i∈N

[
J̆i(ŭi) +

L∑
�=1

J�
i (u

�
i)

]
.

Thus, instead of solving:
(CP1) choose control trajectory u : [0, T ) → Rdu×n to

minimize J(u),
we can equivalently solve the following problems:
(CP2) choose control trajectory u�

i : [0, T ) → Rdu to min-
imize J�

i (u
�
i) for i ∈ N , � ∈ {1, . . . , L};

(CP3) choose control trajectory ŭi : [0, T ) → Rdu to min-
imize J̆i(ŭi) for i ∈ N .

Given the solutions of problems (CP2) and (CP3), we can use
Proposition 1 and choose ui(t) according to (19).

Problems (CP2) and (CP3) are standard optimal control prob-
lems and their solution are given as follows. Let P � : [0, T ] →
Rdx×dx and P̆ : [0, T ] → Rdx×dx be as given by (21) and (22).
Then, for all i ∈ N , the optimal solution of (CP2) is given by
u�
i(t) = K�(t)x�

i(t), � ∈ {1, . . . , L}, and the solution of (CP3)
is given by ŭi(t) = K̆(t)x̆i(t). The result follows by combining
the above two equations using (19). �

Remark 1: Based on the definition of x̆i(t), the control in (23)
can be equivalently written as

ui(t) = −K̆(t)xi(t)−
L∑

�=1

(
K�(t)− K̆(t)

)
x�
i(t)

where the first part represents a local state feedback and the
second part represents offset terms proportional to eigen states.

Remark 2: Although the eigenstates {x�
i(t)}L�=1 depend

on the eigenvectors (v1, . . . , vL), the corresponding Ric-
cati equations (21) only depend on the eigenvalue triples
{(λ�, λ�

r, λ
�
q)}L�=1. So, if the coupling matrices have repeated

eigenvalue triples, as is the case when there are certain sym-
metries in the underlying graphs, eigendirections with the same
eigenvalue triples have the same Riccati equation. Therefore,
we only need to solve Ldist + 1, Riccati equations, where Ldist

denotes the number of distinct nonzero eigenvalue triples of the
coupling matrices (M,Mr,Mq).

Remark 3: The Riccati equations (21)–(22) are significantly
simpler to solve compared to the naive centralized Riccati
equation. Each Riccati equation in (21)–(22) is of dimension
dx × dx, while the centralized Riccati equation is of dimension
ndx × ndx. So, even if one of the coupling matrices (M , Mq ,
and Mr) is full rank (i.e., L = n) and all eigenvalue triples
are distinct, solving the n “one-dimensional” Riccati equa-
tions (21)–(22) is significantly simpler than solving one central-
ized “n-dimensional” Riccati equation. For coupling matrices
where L � n, such savings become more drastic.

B. Infinite Horizon Setup

Let Q
1
2 denote the symmetric positive semidefinite matrix

that satisfies Q
1
2

T
Q

1
2 = Q. For infinite horizon problems, we

further impose the following standard assumptions.

(A3) (A,B) is stabilizable and (q
1
2
0 Q

1
2 , A) is detectable.

(A4) For all � ∈ {1, . . ., L}, (A+ λ�D,B + λ�E) is stabi-

lizable and (q�
1
2Q

1
2 , A+ λ�D) is detectable.

Theorem 2: Suppose assumptions (A0)–(A4) hold. For � ∈
{1, . . . , L}, let P � ∈ Rdx×dx be the unique symmetric positive
semidefinite solution to the algebraic Riccati equation

0 = (A+ λ�D)TP � + P �(A+ λ�D)

− P �(B + λ�E)(r�R)−1(B + λ�E)TP � + q�Q. (24)

Similarly, let P̆ ∈ Rdx×dx be the unique symmetric positive
semidefinite solution to the algebraic Riccati equation

0 = ATP̆ + P̆A− P̆B(r0R)−1BTP̆ + q0Q. (25)

Then the optimal control strategy for Problem 2 is given by

ui(t) = −K̆x̆i(t)−
L∑

�=1

K�x�
i(t) (26)

with K̆ = (r0R)−1BTP̆ and K� = (r�R)−1(B + λ�E)TP �.
The proof follows along the similar lines as the proof of

Theorem 1. Under the extra assumptions (A3) and (A4), one only
needs to replace the finite horizon costs with the infinite horizon
costs and then solve decoupled LQR problems by solving the
corresponding algebraic Riccati equations. (A3) and (A4) ensure
the existence of solutions to the algebraic Riccati equations (25)
and (24) (see, e.g., [45]).

C. Remarks on the Information Structure and the
Implementation of the Optimal Strategy

Since we are interested in regulating a deterministic system,
we may implement the optimal control law either using open-
loop (i.e., precomputed) control inputs or using closed-loop (i.e.,
state feedback) control inputs. For both implementations, the
eigenvalue triples {(λ�, λ�

q, λ
�
r)}L�=1 need to be known at all

subsystems.
For the open-loop implementation, one can write

ui(t) = −K̆(t)Φ̆(t, 0)x̆i(0)−
L∑

�=1

K�(t)Φ�(t, 0)x�
i(0) (27)

where the state transition matrices Φ̆(t, 0) and Φ�(t, 0) are
respectively given by the Peano-Baker series associated with
A−BK̆(·) and (A+ λ�D − (B + λ�E)K�(·)). Thus, to im-
plement the control action, subsystem i needs to know x̆i(0) and
{x�

i(0)}L�=1, which can be obtained using one of the following
three information structures.

1) All subsystems know the initial condition x(0) and the
eigendirections {v�}L�=1. Using these, subsystem i can
compute {x�

i(0)}L�=1 and x̆i(0), and implement (27).
2) Subsystem i, i ∈ N , knows its local initial state xi(0)

and its local initial eigensystem states {x�
i(0)}L�=1. Then

subsystem i can compute x̆i(0) and implement (27).
3) All subsystems knows the initial state {x(0)v�}L�=1. In

addition, subsystem i knows vi := (v1i , . . . , v
L
i ) and its

local initial state xi(0). Then subsystem i can compute
{x�

i(0)}L�=1 and x̆i(0), and implement (27).
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The closed-loop implementation, which is given by (23) or
(26), can be obtained by using one of the three information
structures described above with x(0), xi(0), and x�

i(0) replaced
by x(t), xi(t), and x�

i(t), respectively.
Furthermore, for the information structures in 2) and 3), a

mixed implementation, which combines open-loop and close-
loop implementations, can also be obtained via only replacing
xi(0) by xi(t) in 2) and 3). In the mixed implementation, for
any subsystem i ∈ N , the close-loop part corresponds to the
individual state xi(t) and the open-loop part corresponds to the
terms {x�

i(0)}L�=1 or {x(0)v�}L�=1 which involve the aggregate
of initial states of all subsystems.

V. APPLICATIONS TO CONSENSUS

Consensus refers to a distributed coordination problem in
which nodes connected over a graph update their local states
based on the states of their neighbors. The simplest objective is
for all nodes to converge to a “consensus” value starting from any
initial state x(0), i.e., limt→∞ ‖xi(t)− xj(t)‖ = 0, ∀i, j ∈ N .
There are various consensus protocols (i.e., rules to update
the state at each node as a function of the state of the near-
est neighbors and its own state), which have different rates
of convergence. We refer readers to [8], [9], and [46] for an
overview. Often, these consensus protocols are handcrafted
based on intuitions. In this section, we show that the standard
consensus protocol naturally emerges as the optimal solution of
an appropriately chosen networked control problem.

In particular, consider a (nonnegatively) weighted connected
undirected graphG(V, E ,W ), whereW represents its adjacency
matrix. Now consider the system dynamics

ẋi(t) = ui(t), i ∈ N (28)

which is a special case of (1) with A = 0, B = I,D = 0, and
E = 0. Furthermore, consider the cost function

c(x(t), u(t)) = 〈x(t), Qx(t)〉M2 + 〈u(t), Ru(t)〉I (29)

where M = diag(W1n)−W is the graph Laplacian matrix,
and Q and R are arbitrary symmetric positive definite matrices.
The rank of the Laplacian matrix of a (nonnegatively weighted)
connected graph is n− 1 and all nonzero eigenvalues are posi-
tive. Thus, L = n− 1 for this setup.

Proposition 3: The solution to Problem 2 with the dynamics
in (28) and the cost in (29) is given by

ui(t) = −R−1Π

n−1∑
�=1

λ�x�
i(t), i ∈ N (30)

where Π denotes the symmetric positive semidefinite solution
to ΠR−1Π = Q.

Proof: Since B = I , Q > 0, R > 0, q� = (λ�)2 > 0, r� =
1 q0 = 0, and r0 = 1, (A0)–(A4) are obviously satisfied. An
application of Theorem 2 yields the following optimal control

ui(t) = −
n−1∑
�=1

R−1P �x�
i(t), i ∈ N (31)

where P � is the symmetric positive semidefinite solution to the
algebraic Riccati equation

0 = −P �R−1P � + (λ�)2Q. (32)

Note that q0 = 0 in this example implies the solution to the
auxiliary Riccati equation in (25) is P̆ = 0. Hence, K̆ = 0 in
(26) and the control law (31) does not contain the auxiliary part.
Let Π = (λ�)

−1
P �. Substituting P � in (32), Π is then given by

the symmetric positive semidefinite solution to ΠR−1Π = Q.
Hence the optimal control is given by (30). �

Now, recall that

n−1∑
�=1

λ�x�
i(t) = xG

i (t) =
∑
j∈N

mjixj =
∑
j∈N

mijxj

=
∑
j∈N

wij(xi − xj).

Therefore, the optimal control may be written as

ui(t) = −R−1Π
∑
j∈N

wij(xi(t)− xj(t)), i ∈ N . (33)

Thus the optimal control is the same as the standard consensus
protocol in [8] and [46]. A similar result was established in [47,
Th. 4.6] using a more sophisticated proof argument.

VI. GENERALIZATIONS TO STOCHASTIC SYSTEMS

A. Stochastic Networked Control Problem

In this section we consider a model similar to Section II-A but
with stochastic dynamics. As before, there aren subsystems that
are connected over an undirected weighted graph G(N , E ,W ),
with an associated symmetric coupling matrix M . For any i ∈
N , the state xi(t), the control ui(t), and the network fields xG

i (t)
and uG

i (t) are defined as before. The difference is that rather than
being deterministic, the system dynamics are stochastic and are
given by

dxi(t)=
[
Axi(t)+Bui(t)+DxG

i (t)+EuG
i (t)

]
dt+ Fdwi(t)

(34)
for all i ∈ N , where the matrices A,B,D,E, and F are as be-
fore, F is a matrix of an appropriate dimension, the initial states
(xi(0))i∈N are deterministic, and {wi(t) ∈ Rdw : i ∈ N , t ≥
0} are standard (dw-dimensional) Brownian motions that are
independent across nodes.

As before, there is an instantaneous cost c(x(t), u(t)) for t ∈
[0, T ), and a terminal cost c(x(T )), given by (4) and (5).

Let F(t) denote the σ-algebra generated by {w(τ) : 0 ≤ τ ≤
t}, where w(τ) := cols(w1(τ), . . . , wn(τ)).

We are interested in the following optimization problem.
Problem 3: Choose an F(t)-adapted control u : [0, T ) →

Rdu×n to minimize

J(u) = E

[∫ T

0

c(x(t), u(t))dt+ cT (x(T ))

]
(35)

subject to the system dynamics in (34) and initial conditions
(xi(0))i∈N .
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B. Decompositions

Recall thatw(t) := cols(w1(t), . . . , wn(t)) ∈ Rdw×n. We in-
troduce the following noise processes in eigendirections and the
auxiliary direction: for any i ∈ N and � ∈ {1, . . ., L}

w�
i (t) := w(t)v�v�i and w̆i(t) := wi(t)−

L∑
�=1

w�
i (t).

The corresponding matrix representations are given by

w̆(t) := cols (w̆1(t), . . . , w̆n(t))

w�(t) := cols
(
w�

1(t), . . . , w
�
n(t)

)
.

Clearly, w�(t) = w(t)v�v�
T

and E[w�
i ] = E[w̆i] = 0.

Lemma 1: The following statements hold for all t ∈ [0, T ],
i, j ∈ {1, . . . , n}, �, h ∈ {1, . . . , L}:

1) w̆i(t) and w�
i (t) are independent.

2) w̆j(t) and w�
i (t) are independent if and only if v�j(v

�
j −

v�i ) = 0.
3) w̆i(t) and w̆j(t) are independent if and only if v�iv

�
j = 0.

4) w�
i (t) and w�

j(t) are independent if and only if v�iv
�
j = 0.

5) If i 
= j and � 
= h, thenw�
i (t) andwh

j (t) are independent.
Proof: Since for any fixed time t ∈ [0, T ], w̆i(t), w̆j(t),w�

j(t),
and wh

k (t) are Gaussian random variables with zero mean, they
are independent if and only if the covariance matrix is zero.
By explicitly computing the covariance matrices, results in
Lemma 1 are verified. �

Since w�
i and w̆i are linear combinations of independent

standard Brownian motions, they themselves are Brownian mo-
tions. It is easy to verify that for s > 0, t ≥ 0, var(w�

i (t+
s) −w�

i (t)) = s(v�i )
2 Idw

, var(w̆i(t+ s) −w̆i(t)) = s
(
1−∑L

�=1(v
�
i )

2
)
Idw

. Hence the intensities of w�
i and w̆i are |v�i |

and (1−∑L
�=1(v

�
i )

2)
1
2 , respectively. Since {v�}L�=1 forms an

orthonormal basis of a subspace in Rn, one can verify that
1−∑L

�=1(v
�
i )

2 ≥ 0.
Recall the definition of x̆i(t), ŭi(t), x�(t), and u�(t). Follow-

ing arguments similar to the deterministic case, we obtain the
following stochastic differential equations for the decomposed
dynamics:

dx�
i(t) =

[
(A+ λ�D)x�

i(t) + (B + λ�E)u�
i(t)
]
dt+ Fdw�

i (t)
(36)

dx̆i(t) = [Ax̆i(t) +Bŭi(t)] dt+ Fdw̆i(t) (37)

for all i ∈ N , � ∈ {1, . . . , L}. Following the proof argument of
Proposition 2, we obtain

J(u) =
∑
i∈N

[
J̆i(ŭi) +

L∑
�=1

J�
i (u

�
i)

]
(38)

where for all i ∈ N and � ∈ {1, . . . , L}

J�
i (u

�
i) = E

[ ∫ T

0

(
q�x�

i(t)
TQx�

i(t) + r�u�
i(t)

TRu�
i(t)
)
dt

+ q�x�
i(T )

TQTx
�
i(T )

]
(39)

J̆i(ŭi) = E

[ ∫ T

0

(
q0x̆i(t)

TQx̆i(t) + r0ŭi(t)
TRŭi(t)

)
dt

+ q0x̆i(T )
TQT x̆i(T )

]
. (40)

C. Optimal Control Solution

Theorem 3: Under assumptions (A0), (A1), and (A2), the
optimal control strategy for Problem 3 is the same as the strategy
in Theorem 1 given by (23). Furthermore, the optimal cost is
given by

V (x(0)) =
∑
i∈N

(
V̆i(x̆i(0)) +

L∑
�=1

V �
i (x

�
i(0))

)
(41)

where for i ∈ N and � ∈ {1, . . ., L}
V̆i(x̆i(0)) = x̆i(0)

TP̆ (0)x̆i(0)

+

(
1−

L∑
�=1

(v�i )
2

)∫ T

0

Tr
(
P̆ (t)FF T

)
dt

(42)

V �
i (x

�
i(0)) = x�

i(0)
T
P �(0)x�

i(0)

+ (v�i )
2

∫ T

0

Tr
(
P �(t)FF T) dt. (43)

Proof: The dynamics in (34) can be decomposed into (36) and
(37), and the decomposition of the cost in (35) follows (38), (39),
and (40). Therefore, Problem 3 can be equivalently decomposed
into the linear quadratic control problems defined by (36) and
(39), and the linear quadratic control problems given by (37) and
(40), where i ∈ N .

Note that the Brownian motions are not necessarily indepen-
dent across all the decoupled problems as illustrated in Lemma 1.
However, following the certainty equivalence principle for linear
quadratic Gaussian problems (see, e.g., [48]), we obtain the
same optimal control feedback gain as the deterministic case,
which does not depend on the intensity of the Brownian motion.
This, together with the nonnegativity of each term in (38) under
assumptions (A1) and (A2), implies that solving the decom-
posed linear quadratic control problems independently yields
the optimal feedback gain for and, hence, optimal solution to
Problem 3. Therefore, the optimal feedback gains are the same
as those in Theorem 1 for the linear quadratic control problems,
and the optimal control is given by (23). The optimal costs for
the decomposed linear quadratic control problems are given by
(42) and (43) (see, for instance, [49]) and hence the optimal cost
for Problem 3 is given by (41). �

Note that the intensity of the Brownian motion does not
influence the optimal feedback gain but it affects the optimal
cost under optimal control.

Remark 4: The result of Theorem 3 generalizes to the infinite
horizon long run average cost setup and the infinite horizon
discounted cost setup in a natural manner. For each of these
setups, the optimal control law will be of the same form as
Theorem 3 but the control gains will be time homogeneous
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Fig. 2. Graph G with n = 4 nodes and its adjacency matrix.

and determined by solutions of the associated algebraic Riccati
equations.

D. Special Case: Mean-Field Coupling

Suppose the graph G is a complete graph (with self-loops)
with all edge weights equal to 1

n . Let M be its adjacency
matrix. Then M = 1

n1n×n has rank 1 and λ1 = 1 is the
only nonzero eigenvalue with the normalized eigenvector v1 =
1√
n
[1, . . . , 1]T. Then x1(t) = x(t)v1v1

T
= x(t)M. Thus, the

eigenstate x1
i (t) =

1
n

∑n
j=1 xj(t), i ∈ N , is the same for all

subsystems and we denote it by x̄(t). Let Mq = Mr = M .
According to Theorem 1, the Riccati equation of eigensystem is
given by

− ˙̄P (t) = (A+D)TP̄ (t) + P̄ (t)(A+D)

− P̄ (t)(B + E)(r1R)−1(B + E)TP̄ (t) + q1Q
(44)

where P̄ (t) := P 1(t) and the final condition P̄ (T ) = q1QT .
The Riccati equation for the auxiliary system is given by

− ˙̆
P (t) = ATP̆ (t) + P̆ (t)A− P̆ (t)B(r0R)−1BTP̆ (t) + q0Q

with P̆ (T ) = q0QT . The optimal control strategy is given
by ui(t) = −K̆(t)(xi(t)− x̄(t))− K̄(t)x̄(t), where K̆(t) =
(r0R)−1BTP̆ (t) and K̄(t) = (r1R)−1(B + E)TP̄ (t).

The above result is similar in spirit to [23, Th. 1 and Th. 4],
which were derived for discrete time systems.

VII. ILLUSTRATIVE EXAMPLES

A. Adjacency Matrix Coupling

Consider a network with n = 4 subsystems connected over
a graph G, as shown in Fig. 2, with its adjacency matrix as the
coupling matrix M . Note that L = rank(M) = 2. Consider the
following couplings in the cost:

G = I − 2M +M2 and H = I. (45)

For the ease of notation define ρ =
√
2(a2 + b2) and θ =

tan−1(b/a). Then it is easy to verify that the nonzero eigenvalues
of M are λ1 = −ρ and λ2 = ρ. The corresponding eigenvectors
are

v1 =
[
− 1

2
sin(θ)√

2
− 1

2
cos(θ)√

2

]T

and

v2 =
[
1
2

sin(θ)√
2

1
2

cos(θ)√
2

]T

Observe that q� = (1− λ�)2 is nonnegative and r� = 1 is strictly
positive, � ∈ {1, 2}. Thus the model satisfies assumption (A2).

To illustrate how to use the result of Theorem 1, let us pick a
subsystem, say subsystem 1, and consider the calculations that
need to be carried out at that subsystem. Recall that for all i ∈ N ,
x�
i(0) = x(0)v�v�i . Thus

x1
1(0) =

1

4
x1(0)− sin(θ)

2
√
2
x2(0) +

1

4
x3(0)− cos(θ)

2
√
2

x4(0)

x2
1(0) =

1

4
x1(0) +

sin(θ)

2
√
2
x2(0) +

1

4
x3(0) +

cos(θ)

2
√
2

x4(0).

Following the mixed implementation with information struc-
ture 3) described in Section IV-A, subsystem 1 can calculate
the trajectory for x1

1(t), x
2
1(t), t ∈ (0, T ] based on the initial

conditions. This together with real time local observation x1(t)
yields x̆1(t).

Subsystem 1 solves three Riccati equations to computeP 1(t),
P 2(t), and P̆ (t) for t ∈ [0, T ], and then applies the optimal
control action given by

u1(t) = −R−1

(
BTP̆ (t)x̆1(t) + (B − ρE)TP 1(t)x1

1(t)

+ (B + ρE)TP 2(t)x2
1(t)

)
according to Theorem 1. Similar implementations hold for other
subsystems.

Note that if each xi(t) ∈ Rdx then x(t) ∈ R4dx . A naive
centralized optimal solution of the above system would involve
solving a 4dx × 4dx-dimensional Riccati equation. In contrast,
the above solution involves solving three dx × dx-dimensional
Riccati equations.

Moreover, these computational savings may increase with
the size of the networks. For example, consider the graph
G4c = G ⊗ Kc with 4c nodes, where G is the four-node graph
shown in Fig. 2 and Kc is the complete graph with c nodes
and each edge weight is 1

c , where c is a positive integer. The
adjacency matrix of G4c is given by M4c = M ⊗Kc, where M
and Kc =

1
c1c×c are the adjacency matrices of graph G and Kc,

respectively. The only nonzero eigenvalue of Kc is 1. Thus, the
eigenvalues of M4c are the same as eigenvalues of M . Note
that the Riccati equations in Theorem 1 only depend on the
eigenvalues. So for all different graphs G4c, where c can be any
positive integer, the Riccati equations are the same. The method
proposed in Theorem 1 would require solving the same three
dx × dx-dimensional Riccati equations while a naive direct so-
lution would require solving a 4cdx × 4cdx-dimensional Riccati
equation.

As an illustration, we consider the graph G4c = G ⊗ Kc,
where G is given in Fig. 2 with weights a = 2 and b = 1. Recall
that G and H are given by (45). As argued above, the matrix
M4c has two nonzero eigenvalues and the optimal control at
each subsystem can be obtained by solving only three Riccati
equations. Let us set c = 5. Then M20 = M ⊗ 1

515×5.
Example 1: We consider a network of coupled harmonic

oscillators, where for subsystem i ∈ N , the state is given by
xi = [θi, ωi]

T representing the angle and angular velocity, and
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Fig. 3. Numerical example under the proposed optimal control on a
network of 20 coupled harmonic oscillators with T = 2.

Fig. 4. Numerical example with additive noise under the proposed
optimal control on a network of 20 coupled harmonics oscillators with
time horizon T = 2.

the control ui represents the input force. Thus, dx = 2 and
du = 1.

Consider Problem 1 with 20 coupled harmonic oscillators on
G20, where the coupling matrix is the adjacency matrix M20 of
the graph G20 and the parameters are

A =

[
0 10

−20 0

]
, B =

[
0
1.5

]
, D =

[
1 0
0 1

]
, R = 1

E =

[
1
1

]
, Q =

[
6 0
0 6

]
, QT =

[
5 0
0 5

]
, T = 2. (46)

The result is illustrated in Fig. 3.

B. Adjacency Matrix Coupling for Stochastic Systems

We consider the same model as in the previous section, but
assume that the system dynamics are stochastic. In particular,
we consider the graph G20 in Section VII-A.

Example 2: Consider the stochastic generalization of Example

1 with F =
[
1 0

0 1

]
. All other parameters are the same as those

in Example 1. A simulation result is given in Fig. 4.

C. Laplacian Matrix Coupling

We now consider examples where the coupling matrix
M is the Laplacian matrix of the underlying graph G20 in
Section VII-A.

Example 3: Consider Problem 1 with 20 coupled harmonic
oscillators on G20, where dx = 2, du = 1, the coupling matrix
is the Laplacian matrixL := diag(M20120)−M20 of the graph
G20, and the parameters are given by G = L2, H = I , and
(46). The graph G20 is connected and, hence, the rank of L is
19. However, there are only five distinct nonzero eigenvalues.

Fig. 5. Numerical example with Laplacian matrix coupling under the
proposed optimal control on a network of 20 coupled harmonics oscilla-
tors over the time horizon T = 2.

Therefore, the solution following Theorem 1 requires solving
5 + 1 decoupled 2× 2 dimensional Riccati equations (see Re-
mark 2). In contrast, a direct centralized solution requires solving
a 40× 40 dimensional matrix Riccati equation. Note that the
solution to the auxiliary Riccati equation is P̆ (t) = 0 for all
t ∈ [0, T ], which implies the control signal in the auxiliary
direction should always be zero (see the auxiliary control in
Fig. 5). The simulation result is illustrated in Fig. 5.

VIII. CONCLUSION

We consider the optimal control of network-coupled sub-
systems where the dynamics and cost couplings depend on
three symmetric coupling matrices that share the same set of
eigenvectors. The main idea of a low-dimensional decompo-
sition is to project the state x(t) into L orthogonal eigendi-
rections, where L denotes the number of linearly independent
eigendirections associated with nonzero eigenvalue triples of
the coupling matrices. This projection generates L eigenstates
{x�(t)}L�=1 and an auxiliary state x̆(t) = x(t)−∑L

�=1 x
�(t). A

similar decomposition is obtained for the control inputs. These
L+ 1 components are decoupled both in dynamics and cost.
Therefore, the optimal control input for each component can be
obtained by solving decoupled Riccati equations.

The proposed approach requires solving at most L+ 1 Ric-
cati equations, each of dimension dx × dx. If, furthermore,
some of the nonzero eigenvalue triples are repeated and the
coupling matrix has only Ldist (with Ldist ≤ L ≤ n) distinct
nonzero eigenvalue triples, then the proposed approach only
requires solving Ldist + 1 decoupled Riccati equations. In con-
trast, a naive centralized solution requires solving anndx × ndx-
dimensional Riccati equation. Thus, even when Ldist = n, the
proposed approach leads to considerable computational savings.
These savings improve significantly when Ldist � n, as is the
case for adjacency matrices for many real-world networks.

The proposed approach requires spectral decompositions of
the coupling matrices. For some matrices, spectral decompo-
sitions can be obtained analytically [50], e.g., when M is the
adjacency or Laplacian matrix of a complete graph or those
of an undirected circulant graph. For others, the spectral de-
compositions can be approximated via graphons [38]. However,
in general, the spectral decomposition will need to be com-
puted numerically, which typically has a complexity of O(n3)
(e.g., using QR iterations with Householder transformation [51,
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p. 213]). Even when the spectral decomposition needs to be com-
puted numerically, the approach proposed in this article leads to
computational savings. Solving an algebraic Riccati equation
(in the infinite horizon setting) with state dimension dx has a
complexity1 of O(d3x). Hence the complexity of our solution,
including the spectral decomposition, is O(n3) +O(Ldistd

3
x).

In contrast, the complexity of a naive centralized solution is
O(n3d3x).

Future directions of this work include: 1) Models where the
subsystems have different local dynamics, 2) models where the
coupling matrices only admit an approximate low-rank repre-
sentations, and 3) models with nonlinear local dynamics. Some
generalizations of the coupling structure using the common
invariant subspace property appear in [38]. A learning algorithm
that exploits the spectral decomposition proposed in this article
appears in [53].

APPENDIX

PROOF FOR PROPOSITION 2

A. Preliminary Properties of the State Decomposition

Lemma 2: Let k be a positive integer k and �, �′ ∈ {1, . . . , L}.
Let the pair (M̄, λ̄�) represent (M, λ�), (Mr, λ

�
r), or (Mq, λ

�
q).

Then, under Assumption (A0), we have the following.
(P1) x�(t)M̄ = λ̄�x�(t) and u�(t)M̄ = λ̄�u�(t).
(P2) x�(t)M̄k = (λ̄�)kx�(t) and u�(t)M̄k = (λ̄�)ku�(t).
(P3) x�(t)G = q�x�(t) and u�(t)H = r�u�(t).
(P4) x̆(t)M̄ = 0 and ŭ(t)M̄ = 0.
(P5) x̆(t)M̄k = 0 and ŭ(t)M̄k = 0.
(P6) x̆(t)G = q0x̆(t) and ŭ(t)H = r0ŭ(t).
(P7) x(t)G = q0x̆(t) +

∑L
�=1 q

�x�(t) and u(t)G =

r0ŭ(t) +
∑L

�=1 r
�u�(t).

(P8)
∑

i∈N x�
i(t)

TQx�′
i (t) = δ��′

∑
i∈N x�

i(t)
TQx�′

i (t),
where δ��′ is the Kronecker delta function.

(P9)
∑

i∈N xi(t)
TQx�

i(t) =
∑

i∈N x�
i(t)

TQx�
i(t) and∑

i∈N ui(t)
TRu�

i(t) =
∑

i∈N u�
i(t)

TRu�
i(t).

Proof: We show the result for x̆(t). The result for ŭ(t) follows
from a similar argument.

Since v1, . . . , vL are orthonormal, from (9) we have
v�v�

T
M̄ = λ̄�v�v�

T
, which implies (P1). (P2) follows imme-

diately from (P1) and (P3) follows from (P2).
(P4) follows immediately from the definition of x̆(t), (14),

and (P1). (P5) follows immediately from (P4) and (P6) follows
from (P5). (P7) follows from (18), (P3), and (P6). To prove (P8),
we observe that (10) implies that∑

i∈N
x�
i(t)

TQx�′
i (t) =

∑
i∈N

v�iv
�T
x(t)TQx(t)v�

′
v�

′
i

T

=

(∑
i∈N

v�iv
�′
i

)
v�

T
x(t)TQx(t)v�

′
. (47)

Since v1, . . . , vL are orthonormal, we get
∑

i∈N v�iv
�′
i =

v�
T
v�

′
= δ��′ . Substituting this in (47) completes the proof of

1There are faster algorithms without explicit complexity which rely on struc-
tures of parameter matrices of algebraic Riccati equations [52].

(P8). To prove (P9) observe that∑
i∈N

xi(t)
TQx�

i(t) =
∑
i∈N

xi(t)
TQx(t)v�v�i

=
∑
i∈N

v�ixi(t)
TQx(t)v� = v�

T
x(t)TQx(t)v�. (48)

From (47), we get that the expression in (48) is equal to∑
i∈N x�

i(t)
TQx�

i(t). �
Lemma 3: Let P , x, and y be defined in (20). Let Pi denote

the ith column of P . Then, we can write

〈x, y〉P =
∑
i∈N

xT
i yPi or 〈x, y〉P =

∑
j∈N

P T
j x

Tyj .

Proof: The result follows from the definition of 〈x, y〉P . �

B. Proof for Proposition 2

We consider the terms depending onx(t). The term depending
on u(t) may be simplified in a similar manner.

From (18) and linearity of 〈·, ·〉G in both arguments, we get

〈x(t), Qx(t)〉G =

〈
x̆(t) +

L∑
�=1

x�(t), Q

(
x̆(t) +

L∑
�=1

x�(t)

)〉
G

= 〈x̆(t), Qx̆(t)〉G + 2

〈
L∑

�=1

x�(t), Qx̆(t)

〉
G

+

〈
L∑

�=1

x�(t), Q

(
L∑

�=1

x�(t)

)〉
G

. (49)

From Lemma 3 and (P6), the first term of (49) simplifies to

〈x̆(t), Qx̆(t)〉G = q0
∑
i∈N

x̆i(t)
TQx̆i(t) (50)

and the second term simplifies to〈
L∑

�=1

x�(t), Qx̆(t)

〉
G

= q0
∑
i∈N

L∑
�=1

x�
i(t)

TQx̆i(t)

= q0

L∑
�=1

∑
i∈N

x�
i(t)

TQ

(
xi(t)−

L∑
�′=1

x�′
i (t)

)

(a)
= q0

L∑
�=1

∑
i∈N

(
x�
i(t)

TQx�
i(t)− x�

i(t)
TQx�

i(t)
)
= 0

where (a) follows from (P8) and (P9). From Lemma 3 and (P3),
the third term of (49) simplifies to〈

L∑
�=1

x�(t), Q

(
L∑

�=1

x�(t)

)〉
G

=
∑
i∈N

L∑
�=1

x�
i(t)

TQ

(
L∑

�′=1

q�
′
x�′
i (t)

)

=

L∑
�=1

∑
i∈N

x�
i(t)

TQ

(
L∑

�′=1

q�
′
x�′
i (t)

)

(b)
=

L∑
�=1

∑
i∈N

q�x�
i(t)

TQx�
i(t) (51)
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where (b) follows from (P8). We get the result by substitut-
ing (50)–(51) in (49).
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