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Abstract In this paper, the authors revisit decentralized control of linear quadratic (LQ) systems.
Instead of imposing an assumption that the process and observation noises are Gaussian, the authors
assume that the controllers are restricted to be linear. The authors show that the multiple decentralized
control models, the form of the best linear controllers is identical to the optimal controllers obtained
under the Gaussian noise assumption. The main contribution of the paper is the solution technique.
Traditionally, optimal controllers for decentralized LQ systems are identified using dynamic program-
ming, maximum principle, or spectral decomposition. The authors present an alternative approach
which is based by combining elementary building blocks from linear systems, namely, completion of
squares, state splitting, static reduction, orthogonal projection, (conditional) independence of state
processes, and decentralized estimation.

Keywords Decentralized estimation, decentralized stochastic control, linear quadratic systems, team
theory.

1 Introduction
Optimal control of linear systems with quadratic cost (henceforth referred to as LQ systems)

is one of the most popular areas of Systems and Control. Such models are popular because
dynamical systems arising in various application domains can be approximated to have linear
dynamics; moreover, minimizing the energy used to control such systems naturally corresponds
to a cost that is quadratic in the state and control. But, another reason for the appeal of such
models is that the optimal controllers are easy to implement because they satisfy a separation
property, highlighted below.
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The optimal controller of an LQ is a linear function of the controller’s estimate of the state
of the system. The gain of such a feedback controller can be computed based on a solution of
a backward Riccati equation. When the process and the observation noises are Gaussian, the
state estimate can be recursively updated based on the solution of a forward Riccati equation,
where the forward and backward Riccati equations can be solved separately. This is known as
the separation between estimation and control. See [1] for an overview.

However, the situation is drastically different in decentralized control (also called team
theory). Decentralized control or team problems can be classified as static or dynamic: A team
problem is called static if the observations of an agent do not depend on the past actions of
any agent (including itself); otherwise the problem is called dynamic. Static team problems
were first analyzed by Radner[2] who showed that when all the system variables are jointly
Gaussian and the the cost is quadratic, the optimal decentralized control laws are linear and
the corresponding gains can be obtained by solving a linear system of equations. However, the
situation is drastically different for dynamic teams.

In a seminal paper, Witsenhausen[3] showed that for a two-stage system with linear dy-
namics, quadratic cost, and Gaussian disturbance, non-linear strategies can outperform the
best linear strategies when the agent at stage 2 does not have access to all the information
that was available to the agent at stage 1. A similar counterexample for longer horizons is
presented in [4]. A partial resolution was provided by Ho and Chu[5], who showed that there is
no loss of optimality in restricting attention to linear strategies when the system has partially
nested information structure. The result was generalized in [6] to stochastic nested information
structures. However, these results do not provide a way to identify sufficient statistics for the
optimal control for general models.

An alternative approach is to a priori restrict attention to linear (or affine) control strategies.
There are two challenges in finding the best linear controllers. The first challenge is that the
optimization problem for finding the best linear controllers may not be convex in general. It
may be converted into a convex model matching problem only when the sparsity pattern of
the plant and the controller have a specific structure such as funnel causality[7], quadratic
invariance[8], or their variations[9]. The second challenge is that the best linear controller may
not have a finite-dimensional representation, as was illustrated by Whittle and Rudge[10] for a
completely decentralized controller.

In spite of these challenges, there are several positive results in decentralized control[11–21]

where explicit formulas for the optimal controllers are derived. We refer the reader to [22, 23]
for a detailed literature review. In almost all of this existing literature, it is assumed that the
process and observation noises have a Gaussian distribution.

In an essay on the use of probability theory in Systems and Control, Willems[24] had used
the example of filtering to argue that there are two interpretations of the use of probability in
Systems and Control. The first is prescriptive: For instance, in Kalman (and Wiener) filtering
it is assumed that the underlying physics of the model is such that the noise processes are
Gaussian. The second is descriptive: For instance, in least squares filtering it is assumed
that the signal processing is restricted to be linear without making any assumptions on the
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distribution of the noise process. Both approaches give the same filtering equations but their
justifications and the guarantees provided by them are different.

Inspired by [24], we revisit decentralized LQ systems. Rather than imposing an assump-
tion that the distribution of the noise processes is Gaussian, we assume that the controller is
restricted to be linear function of the data, and seek to identify the best linear controller. Our
main contribution is to present an elementary approach to identify the best linear controller as
an alternative to dynamic programming, maximum principle, and spectral factorization meth-
ods commonly used in the literature.

This paper is dedicated to Prof. Peter E. Caines on his 80th birthday. Peter is an esteemed
colleague, an encouraging and uplifting mentor, and a role model. The approach presented
in this paper combines one of Peter’s favorite results — Viewing optimal estimation through
the lens of orthogonal projection in Hilbert space — With fundamental ideas of linear sys-
tems (namely, state splitting and completion of squares) and probability theory (conditional
independence of dynamical systems).

Notations We use the standard notation of stochastic control where x denotes the state
of a system and u denotes the control input. Moreover, w denotes the process noise and v

denotes the observation noise. Usually, subscripts indicate time and superscripts indicate the
index of the subsystem/agent. So xi

t denotes the state of state of subsystem i at time t. Similar
notation holds for other variables as well. Given vectors x, y, z, we use vec(x, y, z) as a short-
hand notation for [xT, yT, zT]T. Given vectors x1, x2, · · · , xt, we use x1:t as a short-hand
notation for vec(x1, · · · , xt).

We use R to denote the set of real numbers and E[·] to denote expectation of a random
variable. For random variables w, x, y, z defined on a common probability space, we use the
notation x ⊥⊥ y ⊥⊥ z to denote that (x, y, z) are independent and x ⊥⊥ y ⊥⊥ z | w to denote that
(x, y, z) are independent given w.

Given matrices A, B, Q, R, and P of appropriate dimensions, we define the Riccati update
operator as

R(P,A,B,Q,R) = Q+ATPA−ATPB(R+BTPB)BTPA,

and the feedback gain operator as

G(P,A,B,R) = (R+BTPB)−1BTPA.

Moreover, given matrices C, Σv, Σ of appropriate dimensions, we define the filtering gain
opertor as

F(Σ, C,Σv) = ΣCT(Σv + CΣCT)−1.

2 Background on Linear Filtering
2.1 Linear Estimation

Let x and y be random variables defined on a common probability space that are zero mean
and have finite variance. Let L(y) denote the linear subspace spanned by y. We use L[x | y] to
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denote the best linear unbiased estimator (BLUE) of x given y, i.e.,

L[x | y] = argmin
x̂∈L(y)

E[∥x− x̂∥2].

A standard result in least square filtering (see [25, Theorem 3.2.1]) is that

L[x | y] = Ky, where K = cov(x, y)var(y)−1. (1)

When x and y are jointly Gaussian then L[x | y] = E[x | y] but, in general, they are different.
Immediate implication of (1) is that the error x − L[x | y] is orthogonal to y, i.e., for any
z ∈ L(y),

E[(x− L[x | y])zT] = 0 and E[(x− L[x | y])Tz] = 0. (2)

2.2 Linear Filtering
Consider an autonomous linear system with state x ∈ Rdx and output y ∈ Rdy which starts

at a known initial state x1 and evolves as follows:

xt+1 = Axt + wt, yt = Cxt + vt,

where (A,C) are matrices of appropriate dimension and {wt}t≥1 and {vt}t≥1 are process and
observation noise processes. We assume that the random variables {x1, w1, w2, · · · , v1, v2, · · · }
are independent random variables that are zero mean and have finite variance. Let Σx

1 denote
the variance of x1 and Σw

t and Σv
t , t ≥ 1, denote the variance of wt and vt, respectively.

Let x̂t := L[xt | y1:t] denote the best linear estimator of the state xt given the outputs y1:t.
Then, the estimate x̂t can be updated recursively as follows:

x̂t = x̂t|t−1 +Σt|t−1C
T(CΣt|t−1C

T +Σv
t )

−1(yt − Cx̂t|t−1), (3)
x̂t|t = Ax̂t−1|t−1 +Σt|t−1C

T(CΣt|t−1C
T +Σv

t )
−1(yt − CAx̂t−1|t−1), (4)

x̂t = Ax̂t−1 + Lt(yt − CAx̂t−1), (5)

where Lt = F(Σt, C,Σ
v) and the covariance matrices Σt are precomputable and given by the

forward Riccati equation
Σt+1 = R(Σt, A

T, CT,Σw
t ,Σ

v
t ),

with Σ1 = Σx
1 .

When the noise processes {wt}t≥1 and {vt}t≥1 are jointly Gaussian, then the least squares
estimate is optimal over all (possibly non-linear) estimators and the update equation above
coincides with Kalman filtering equation.

3 Centralized Linear Quadratic Regulator Under Output Feedback
In this section, we revisit optimal centralized linear quadratic regulation by a single agent

with output feedback. This is a classical result[1, 26]. Our motivation for presenting a self-
contained proof is two-fold. First, instead of assuming that the process and observation noise
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processes are Gaussian, we do not impose any assumption on the distribution of the noise pro-
cess; rather, we assume that the agent is restricted to linear processing. Second, instead of
proving the result using the standard dynamic programming argument, we present an alterna-
tive proof which introduces four of the critical blocks that we use in our solution framework:
Completion of squares, state splitting, static reduction, and orthogonal projection.

3.1 System Model and Problem Formulation
Consider a discrete-time stochastic dynamical system that runs for a finite horizon T . Let

xt ∈ Rdx denote the state, ut ∈ Rdu denote the control input, and yt ∈ Rdy denote the output.
We assume that the system starts from an initial state x1 and for t ≥ 1 evolves as

xt+1 = Axt +But + wt, yt = Cxt + vt, (6)

where (A,B,C) are matrices of appropriate dimension. We assume that the primitive random
variables {x1, w1, · · · , wT−1, v1, · · · , vT−1} are independent random variables that are zero mean
and have finite variance. We use Σx

1 to denote the variance of x1 and Σw
t and Σv

t to denote the
variance of wt and vt, respectively.

Remark 3.1 In the above model, the assumption that the matrices A, B, and C are
time-invariant is made for notational simplicity. The results generalize to time-varying A, B,
and C in a natural manner.

Information structure: We assume that an agent observes the output of the system and
chooses the control input. The information It available to the agent at time t is given by

It = {y1:t, u1:t−1}.

This information structure is typically called output feedback in the literature.
Admissible control strategies: The controller chooses the control input as a linear†

function of its information. In particular, we assume that the control input is chosen as

ut = gt(It), (7)

where gt is a linear function and is called the control law at time t. The collection g :=

(g1, · · · , gT−1) is called the (linear) control strategy.
System performance and control objective: For time t ∈ {1, · · · , T − 1}, the system

incurs a per-step cost
ct(xt, ut) = xT

t Qtxt + uT
t Rtut (8)

and, at the the terminal time T , the system incurs a terminal cost

cT (xT ) = xT
TQTxT . (9)

†In principle, we should consider affine (i.e., linear plus a constant term) controllers. However, since the
process and observation noises are zero mean, we can show that the constant term in an optimal affine strategy
will always be zero.
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We assume that the matrices {Q1, · · · , QT } are symmetric and positive semi-definite and the
matrices {R1, · · · , RT−1} are symmetric and positive definite.

The performance of any control strategy g is given by

J(g) = Eg

[T−1∑
t=1

ct(xt, ut) + cT (xT )

]
, (10)

where the expectation is with respect to the joint measure on all the system variables induced
by the choice of the strategy g.

We are interested in the following optimization problem:
Problem 3.2 For the system described above, given the horizon T , system dynamics

(A,B,C), the cost matrices (Q1:T , R1:T−1), and the noise statistics Σw
1:T−1 and Σv

1:T−1, choose
a linear control strategy g to minimize the total expected cost given by (10).

3.2 Building Blocks of the Optimal Solution
In this section, we present four building blocks that form the basis of our approach to solve

Problem 3.2.
Block 1: Completion of Squares

By a standard completion of squares argument, we can show the following:
Lemma 3.3 The performance (10) of any control strategy g can be written as

J(g) = E
[T−1∑
t=1

(ut +Ktxt)
T∆t(ut +Ktxt)

]
︸ ︷︷ ︸

Term I

+

T−1∑
t=1

Tr(Σw
t Pt+1) + xT

1 S1x1︸ ︷︷ ︸
Term II

, (11)

where ∆t = Rt + BTPt+1B, Kt = G(Pt+1, A,B,Rt), and the matrices {Pt}Tt=1 are computed
backward in time using the following recursion:

PT = QT and for t ∈ {T − 1, · · · , 1}, Pt = R(Pt+1, A,B,Qt, Rt).

Proof This is a standard result. See, for example, [26, Lemma 6.1].
When the agent can observe the system state (the so called state feedback setting), then

Lemma 3.3 can be used to infer the optimal controller. Observe that Term II in (11) is control
free (i.e., does not depend on the choice of the control actions). Therefore, minimizing J(g) is
equivalent to minimizing Term I of (11). Since Rt is positive definite and we can recursively
show that Pt is positive semi-definite, we have that ∆t = Rt + BTPt+1B is positive definite.
Therefore, Term I of (11) is a sum of squares. Choosing

ut = −Ktxt (12)

sets Term I to its minimum value of 0. Hence, in the case of state feedback, the strategy (12)
is optimal. However, the above argument does not work for output feedback.

In the rest of this section, we describe three additional blocks which help in generalizing
the solution approach for state feedback described above to the output feedback setting of
Problem 3.2.



216 AFSHARI MOHAMMAD · MAHAJAN ADITYA

Block 2: State Splitting
The dynamical system of (6) consists of two inputs: The control input ut and the stochastic

inputs (wt, vt). We exploit the fact that the system dynamics are linear and split the system
into two components: a controlled component with initial state xg

1 = 0 which is driven by the
controlled input as follows:

xg
t+1 = Axg

t +But, ygt = Cxg
t ,

and a stochastic component with initial state xs
1 = x1 which is driven by the stochastic inputs

as follows:
xs
t+1 = Axs

t + wt, yst = Cxs
t + vt.

Due to linearity of the system dynamics, we have xt = xg
t + xs

t and yt = ygt + yst . Moreover,
the state and output (xs

t , y
s
t ) of the stochastic component are control free (i.e., they do not

depend on the control actions).
Block 3: Static Reduction

The term static reduction of an information structure is due to Witsenhausen[27], but the
idea has been used earlier in the literature as well (e.g., [5, 28]). Static reduction means
cancelling out the impact of the past control actions on the information available to the agent.
For the output feedback model being considered here, static reduction implies the following.

Lemma 3.4 The information structure It = {y1:t, u1:t−1} is equivalent to the information
structure

Ist = {ys1:t},

i.e., for a fixed control strategy both information sets generate the same sigma algebra or,
equivalently, they are functions of each other. Furthermore, when the control strategy is affine,
the two information sets are linear functions of each other, i.e., L(It) = L(Ist ).

Proof A proof of the first part of the result is given in [28]. Since we are interested in
showing that both information sets are linear functions of each other, we present the complete
proof. A similar proof argument also appears in [5] for a decentralized control problem.

Both results are immediate implications of state splitting. In particular, to show that Ist is
a linear function of It observe that state splitting implies that yg1:t is a linear function of u1:t.
Therefore, yst = yt − ygt is a linear function of (y1:t, u1:t−1). To show the other direction, we use
induction to show that (y1:t, u1:t−1) is a linear function of ys1:t. At t = 1, yt = yst , so u1 is a linear
function of ys1. This forms the basis of induction. Now assume that the result is true for t− 1,
i.e., It−1 = (y1:t−1, u1:t−2) is a linear function of ys1:t−1. By assumption, ut is a linear function
It−1 and, by the induction hypothesis of ys1:t−1. Hence (y1:t−1, u1:t−1) is a linear function of
ys1:t−1. Since xg

t is a linear function of u1:t−1, it is a linear function of ys1:t−1. Consequently, ygt
is a linear function of ys1:t−1, which implies that yt = ygt + yst is a linear function of ys1:t. This
proves the induction step.
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Block 4: Orthogonal Projection
Define x̂t = L[xt | It] and x̃t = xt − x̂t. A consequence of orthogonality of the estimation

error (2) is the following.
Lemma 3.5 For any fixed control strategy g, we have

E[(ut +Ktxt)
T∆t(ut +Ktxt)] = E[(ut +Ktx̂t)

T∆t(ut +Ktx̂t)] + E[(Ktx̃t)
T∆t(Ktx̃t)].

Proof Since xt = x̂t + x̃t, we have that

E[(ut +Ktxt)
T∆t(ut +Ktxt)] = E[(ut +Ktx̂t)

T∆t(ut +Ktx̂t)] + E[(Ktx̃t)
T∆t(Ktx̃t)]

+ 2E[(ut +Ktx̂t)
T∆t(Ktx̃t)].

Since both ut, x̂t ∈ L(It), we have ut +Ktx̂t ∈ L(It). Therefore, the third term is zero because
the error x̃t is orthogonal to the linear subspace L(It).

A key result which ties state splitting, static reduction, and orthogonal projection together
is the following.

Lemma 3.6 For any fixed control strategy g, we have

x̂t = xg
t + x̂s

t , where x̂s
t := L[xs

t | Ist ]. (13)

The estimate x̂s
t is the standard linear estimation of an uncontrolled linear system and can be

computed recursively as follows

x̂s
t = Ax̂s

t−1 + Lt(y
s
t − CAx̂s

t−1),

where Lt is given by Lt = F(Σt, C,Σ
v
t ) and the covariance matrices {Σt}t≥1 are precomputable

and are given by the forward Riccati equation

Σt+1 = R(Σt, A
T, CT,Σw

t ,Σ
v
t ),

with Σ1 = Σx
1 .

An implication of (13) is that the estimation error can be simplified as

x̃t := xt − x̂t = xs
t − L[xs

t | Ist ]

and is, therefore, control free.

Proof From state splitting, we have that xt = xg
t + xs

t . Therefore,

L[xt | It] = xg
t + L[xs

t | It], (14)

where we have used the fact that xg
t is a linear function of u1:t−1 (and hence It). Now, static

reduction implies that L(It) = L(Ist ). Therefore, L[xs
t | It] = L[xs

t | Ist ]. Substituting this
in (14) establishes the first result. The second result follows from the definition of x̃t and the
fact that both xs

t and Ist are control free.
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We can combine the update of xg
t and L[xs

t | Ist ] to write the update of x̂t as follows.
Lemma 3.7 We have that

x̂t+1 = Axt +But + Lt(yt − Cx̂t),

where Lt is as given in the statement of Lemma 3.6.

Proof This is a simple consequence of the definitions and the update equations for xg
t and

L[xs
t | Ist ]. In particular,

x̂t+1 = x̂g
t+1 + L[xs

t+1 | Ist+1]

= Axg
t +But +AL[xs

t | Ist ] + Lt(y
s
t − CL[xs

t | Ist ])

= A(xg
t + L[xs

t | Ist ]) +But + Lt(yt − ygt − CL[xs
t | Ist ])

= Axt +But + Lt(yt − Cx̂t).

The proof is completed.

3.3 Putting Everything Together
Substituting the result of Lemma 3.5 in Lemma 3.3 we have that the total cost J(g) of a

control strategy g can be written as

J(g) = Ĵ(g) + J̃ ,

where

Ĵ(g) = E
[T−1∑
t=1

(ut +Ktx̂t)
T∆t(ut +Ktx̂t)

]
and

J̃ = E
[T−1∑
t=1

x̃T
t K

T
t ∆tKtx̃t

]
+

T−1∑
t=1

Tr(Σw
t Pt+1) + xT

1 S1x1.

From Lemma 3.6, we get that the term J̃ is control free and is, therefore, not affected by the
choice of control strategy g. Thus, we can pick g to minimize the term Ĵ(g). By an argument
similar to one given after Lemma 3.3 for state feedback, we know that the term Ĵ(g) is a sum
of squares and choosing ut = −Ktx̂t sets Ĵ(g) to its minimum value of zero.

We summarize the main result
Proposition 3.8 The best linear controller for Problem 3.2 is given by

ut = −Ktx̂t,

where the gain Kt is chosen as Kt = G(Pt+1, A,B,Rt) and the matrices {Pt}Tt=1 are computed
backward in time using the following recursion:

PT = QT and for t ∈ {T − 1, · · · , 1}, Pt = R(Pt+1, A,B,Qt, Rt).
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Furthermore, the best linear estimate x̂t is initialized as x̂1 = x1 and is recursively updated as

x̂t = Ax̂t−1 +But−1 + Lt(yt − CAx̂t−1),

where Lt is given by Lt = F(Σt, C,Σ
v
t ) and the covariance matrices {Σt}t≥1 are precomputable

and are given by the forward Riccati equation

Σt+1 = R(Σt, A
T, CT,Σw

t ,Σ
v
t ),

with Σ1 = Σx
1 .

So far, we have shown how the problem of optimal centralized control can be solved by a
combination of four elementary blocks. These four blocks, while useful in the decentralized
setting, are not sufficient. In the next sections, we present two additional building blocks that
are specific to the decentralized setting. We present the simplest models where these blocks are
used.

4 Additional Building Blocks for Multi-Agent Systems
4.1 Optimal Decentralized Control of Dynamically Decoupled Subsystems
4.1.1 System Model and Problem Formulation

Consider a decentralized control system consisting of n subsystems indexed by the set N :=

{1, · · · , n} that runs for a finite horizon T . Let xi
t ∈ Rdi

x and ui
t ∈ Rdi

u , i ∈ N , denote the
state and control input of subsystem i at time t. We use xt = vec(x1

t , · · · , xn
t ) and ut =

vec(u1
t , · · · , un

t ) to denote the global state and control inputs of the system. The subsystems
are dynamically decoupled but coupled via cost. In particular, the system starts at an initial
state x1 and each subsystem i, i ∈ N , evolves as follows

xi
t+1 = Axi

t +Bui
t + wi

t, yit = Cxi
t + vit,

where (Ai, Bi, Ci)i∈N are system matrices of the appropriate dimension. We assume that the
primitive variables {xi

1, w
i
1, · · · , wi

T−1, v
i
1, · · · , viT−1}i∈N are independent random variables that

are zero mean and have finite variance. We use Σxi

1 , i ∈ N , to denote the variance of xi
1 and

Σwi

t and Σvi

t , i ∈ N , t ≥ 1, to denote the variance of wi
t and vit, respectively.

Information structure: The system has a completely decentralized information structure.
The information available to agent i at time t is given by

Iit = {yi1:t, ui
1:t−1}.

Admissible control strategies: As in the centralized setting, we assume that each agent
chooses its control input as a linear function of the information available to it. In particular,

ui
t = git(I

i
t), (15)

where git is a linear function and is called the control law of agent i at time t; the collection
gi = (gi1, · · · , giT−1) is called the (linear) control strategy of agent i, and g = (g1, · · · , gn) is
called the (linear) control strategy of the system.
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System performance and control objective: The subsystems are coupled via the cost.
In particular, for time t ∈ {1, · · · , T − 1}, the system incurs a per-step cost

ct(xt, ut) = xT
t Qtxt + uT

t Rtut (16)

and, at the the terminal time T , the system incurs a terminal cost

cT (xT ) = xT
TQTxT . (17)

We assume that the matrices {Q1, · · · , QT } are symmetric and positive semi-definite and the
matrices {R1, · · · , RT−1} are symmetric and positive definite. We will sometimes consider Qt

and Rt matrices in a block form as follows:

Qt =


Q11

t · · · Q1n
t

... . . . ...
Qn1

t · · · Qnn
t

 and Rt =


R11

t · · · R1n
t

... . . . ...
Rn1

t · · · Rnn
t

 .

The performance of a strategy g is given by

J(g) = E
[T−1∑
t=1

ct(xt, ut) + cT (xT )

]
, (18)

where the expectation is with respect to the joint measure on all the system variables induced
by the choice of the strategy g.

We are interested in the following optimization problem:
Problem 4.1 For the system described above, given the horizon T , system dynamics

(Ai, Bi, Ci)i∈N , the cost matrices (Q1:T , R1:T−1), and the noise statistics {Σwi

1:T ,Σ
vi

1:T−1}i∈N ,
choose a linear control strategy g to minimize the total expected cost given by (18).

The solution to Problem 4.1 relies on establishing an independence property of the state,
which we present below in its simplest form. We will later present a generalization of this
property.
Block 5: Independence of the State, Output, and Control Processes

The main idea is the following.
Lemma 4.2 For any fixed control strategy g, we have

(x1
1:T , y

1
1:T , u

1
1:T ) ⊥⊥ (x2

1:T , y
2
1:T , u

2
1:T ) ⊥⊥ · · · ⊥⊥ (xn

1:T , y
n
1:T , u

n
1:T ).

Proof The proof follows from induction. For t = 1, the components of (xi
1)i∈N and (yi1)i∈N

are independent by assumption. Since ui
1 is a function of yi1, the components of (ui

1)i∈N are
independent. This forms the basis of induction. We now assume that the result is true for T = t.
Now consider T = t+1. Since we assumed that the components of (xi

t)i∈N are independent, the
form of the dynamics and the assumptions on the noise imply that the components of (yit)i∈N

are independent. Combined with the induction hypothesis, this implies that the components of
(Iit)i∈N are independent. Therefore, the components of (ui

t)i∈N , which are functions of Iit are
also independent. This completes the induction step.
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A key implication of Lemma 4.2 is the following.
Lemma 4.3 For t ∈ {1, · · · , T − 1}, the expected per-step cost can be written as

E[ct(xt, ut)] = E
[∑
i∈N

cit(x
i
t, u

i
t)

]
, where cit(x

i
t, u

i
t) = (xi

t)
TQii

t x
i
t + (ui

t)
TRii

t u
i
t, i ∈ N

and, for the terminal time T , the expected terminal cost can be written as

E[cT (xT )] = E
[∑
i∈N

ciT (x
i
T )

]
, where ciT (x

i
T ) = (xi

T )
TQii

Tx
i
T , i ∈ N .

Proof Note that

E[xT
t Qtxt] = E

[∑
i∈N

(xi
t)

TQii
t x

i
t

]
+ 2E

[∑
i∈N

∑
j∈N\{i}

(xi
t)

TQij
t x

j
t

]
and

E[uT
t Rtut] = E

[∑
i∈N

(ui
t)

TRii
t u

i
t

]
+ 2E

[∑
i∈N

∑
j∈N\{i}

(ui
t)

TRij
t u

j
t

]
.

The result then follows from observing that in both these expressions, the cross terms are zero
because the state and the control inputs are zero mean and independent across subsystems (due
to Lemma 4.2).
4.1.2 Solution of Problem 4.1

Lemma 4.3 implies that the total expected cost under strategy g can be written as

J(g) =
∑
i∈N

J i(gi),

where

J i(gi) = E
[T−1∑
t=1

cit(x
i
t, u

i
t) + ciT (x

i
T )

]
.

Thus, the decentralized control problem with decoupled dynamics and independent noise is
effectively equivalent to a decentralized control problem with decoupled dynamics and decoupled
cost. Therefore, J(g) can be minimized by separately choosing gi to minimize J i(gi) for each
i ∈ N . Each of these optimization problems is a centralized optimal control problem and can
be solved in the same manner as Problem 3.2. Thus, the optimal control strategy is given as
follows.

Proposition 4.4 The best linear controller for Problem 4.1 is given by

ui
t = −Ki

t x̂
i
t, i ∈ N ,

where the gain Ki
t for i ∈ N is chosen as Ki

t = G(P i
t+1, A

i, Bi, Rii
t ) and the matrices {P i

t }Tt=1

are computed backward in time using the following recursion: For each i ∈ N ,

P i
T = Qii

T and for t ∈ {T − 1, · · · , 1}, P i
t = R(P i

t+1, A
i, Bi, Qii

t , R
ii
t ).
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Furthermore, the best linear estimate x̂i
t is initialized as x̂i

1 = xi
1 and is recursively updated as

x̂i
t = Aix̂i

t−1 +Biui
t−1 + Li

t(y
i
t − CiAix̂i

t−1),

where Li
t is given by Li

t = F(Σi
t, C

i,Σvi

t ) and the covariance matrices {Σi
t}t≥1 are precomputable

and are given by the forward Riccati equation

Σi
t+1 = R(Σi

t, (A
i)T, (Ci)T,Σwi

t ,Σvi

t ),

with Σi
1 = Σxi

1 .

4.2 Best Decentralized Linear Estimation to Minimize Team Mean Squared Error
Consider a system with n agents that are indexed by a set N = {1, · · · , n}. The agents are

interested in estimating a state x ∈ Rdx . Each agent i, i ∈ N , observe a local measurement
yi ∈ Rdi

y ; in addition, all agents observe a common measurement y0 ∈ Rd0
y . We use N0 to

denote the set {0, 1, · · · , n}.
The variables (x, y0, y1, · · · , yn) are random variables defined on a common probability

space, are zero mean, and have finite variance. For i, j ∈ N0, we use Θi to denote cov(x, yi)
and Σij to denote cov(yi, yj).

Agent i, i ∈ N , generates an estimate ẑi ∈ Rdi
z according to a linear estimation rule

ẑi = gi(y0, yi). The collection g = (g1, · · · , gn) is called the estimation strategy of the system.
Let ẑ = vec(z1, · · · , ẑn) denote the estimates generated by all agents.

The performance of an estimation strategy g is given by an expected cost of estimation error
given by

J(g) = E[c(x, ẑ)], where c(x, ẑ) =
∑
i∈N

∑
i∈N

(Lix− ẑi)Sij(Ljx− ẑj), (19)

where {Li}i∈N and {Sij}i,j∈N are weight matrices of appropriate dimension. We assume that
the matrix S given by

S =


S11 · · · S1n

... . . . ...
Sn1 · · · Snn


is positive definite.

The above model of decentralized estimation was considered in [29] under the assumption
that (x, y0, · · · , yn) are jointly Gaussian. The model considered above is also effectively the
same as the static team problem considered in [2], again under the assumption that the random
variables are jointly Gaussian.

In the model above, we do not assume that the random variables are jointly Gaussian.
Instead of imposing assumptions on the joint distribution of the random variables, we assume
that the estimates are linear function of the measurements. Our main result is to show that
this distinction does not change the nature of the solution.

As in [29], we define three auxiliary variables:
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• The common (linear) estimate of state x given the common measurement y0 of all agents.
We denote this estimate by x̂0 and it is equal to L[x | y0].

• All agent’s common (linear) estimate of agent i’s measurement yi given the common
measurement y0. We denote this estimate by ŷi and it is equal to L[yi | y0].

• The innovation in local measurement of agent i with respect to the common measurement.
We denote this innovation by ỹi and it is equal to yi − ŷi.

We also define Θ̂i to denote the covariance cov(x, ỹi) and Σ̂ij to denote the covariance cov(ỹi, ỹj).
Following a proof argument very similar to that given in [29], we can show the following.

Proposition 4.5 The best linear strategy that minimizes the team mean-squared error
defined in (19) is given by

ẑi = Lix̂0 + F iỹi, ∀i ∈ N , (20)

where the gains {F i}i∈N satisfy the following system of matrix equations:∑
j∈N

[
SijF jΣ̂ji − SijLjΘ̂i

]
= 0, ∀i ∈ N ,

which has a unique solution when Σ̂ii is positive definite.
The above result forms our final building block for decentralized control. We will refer to it

as decentralized estimation block.

5 Solution of Some Multi-Agent Decentralized Control Problems
In this section, we show how the building blocks described earlier can be combined to provide

simple solutions to some multi-agent decentralized control problems.

5.1 Best Linear Decentralized Control of Multi-Agent Systems with One-Step
Delayed Sharing

5.1.1 System Model and Problem Formulation
Consider a decentralized multi-agent system with n systems, indexed by the set N =

{1, · · · , n}, that runs for a finite horizon T . Let xt ∈ Rdx denote the state of the system,
yit ∈ Rdy

i denote the observation of agent i, and ui
t ∈ Rdu

i denote the control action of agent t.
We will use yt = vec(y1t , · · · , ynt ) and ut = vec(u1

t , · · · , un
t ) to denote the set of all observations

and all control actions, respectively, of all agents.
The system starts at an initial state x1 and the state evolves as

xt+1 = Atxt +Btut + wt, yit = Ci
txt + vit, i ∈ N .

We assume that the variables (x1, w1, · · · , wT−1, {vi1, · · · , viT−1}i∈N ) are independent random
variables that are zero mean and have finite variance. We use Σx

1 to denote the variance of x1

and Σw
t and Σvi

t , t ≥ 1, to denote the variance of wt and vit, i ∈ N , respectively.
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As usual, we assume that for t ∈ {1, · · · , T − 1} the system incurs a per-step cost given by

ct(xt, ut) = xT
t Qtxt + uT

t Rtut

and, at the the terminal time T , the system incurs a terminal cost

cT (xT ) = xT
TQTxT .

We assume that the matrices {Q1, · · · , QT } are symmetric and positive semi-definite and the
matrices {R1, · · · , RT−1} are symmetric and positive definite.

Information structure: We assume that each agent observes its local observations and
control inputs as well as one-step delayed observations and controls of all other agents. Thus,
the information Iit available to agent i at time t is given by

Iit = {y1:t−1, u1:t−1, y
i
t}.

This information structure is called one-step delayed sharing. It was proposed by Witsenha-
usen[30]. Under the assumption that the primitive random variables are jointly Gaussian, the
optimal solution has been proposed by various authors including[20, 31, 32]. In contrast, we do
not impose any assumption on the distribution of the primitive random variables; rather we
restrict attention to linear control strategies.

Admissible control strategies: Each agent chooses its control input as a linear function
of its information, i.e.,

ui
t = git(I

i
t), i ∈ N , (21)

where git is a linear function and called the control law of agent i at time t. The collection
gi := (gi1, · · · , giT−1) is called the (linear) control strategy of agent i and g = (g1, · · · , gn) is
called the (linear) control strategy of all agents.

System performance and control objective: The performance of any control strategy
g is given by

J(g) = Eg

[T−1∑
t=1

ct(xt, ut) + cT (xT )

]
, (22)

where the expectation is with respect to the joint measure on all the system variables induced
by the choice of the strategy g.

We are interested in the following optimization problem:
Problem 5.1 For the system described above, given the horizon T , system dynam-

ics (A,B,C1, · · · , Cn), the cost matrices (Q1:T , R1:T−1), and the noise statistics Σw
1:T−1 and

{Σvi

1:T−1}i∈N , choose a linear control strategy g to minimize the total expected cost given
by (22).
5.1.2 Solution of Problem 5.1

We now show how to solve Problem 5.1 using the different building blocks that we have
presented earlier.
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• Completion of squares. By completion of squares, we can argue that minimizing J(g)

is equivalent to minimizing

Jequiv(g) := E
[T−1∑
t=1

(ut +Ktxt)
T∆t(ut +Ktxt)

]
,

where Kt and ∆t are as described in Lemma 3.3.

• State splitting. Following the idea of state splitting for centralized control, we split
the state and output processes into two parts: A controlled part (xg

t , y
g
t ) driven by the

control input ut and a stochastic part (xs
t , y

s
t ) driven by the stochastic inputs (wt, ut). In

particular we have xg
1 = 0, xs

1 = x1 and

xg
t+1 = Axg

t +But, ygt = Cxg
t ,

xs
t+1 = Axs

t + wt, yst = Cxs
t + vt.

We also split the control actions similar to what is done for decentralized estimation. For
that matter, we first define common information as

Ict =
⋂
i∈N

Iit = {y1:t−1, u1:t−1}. (23)

The local information is the remaining information at each agent. Thus,

Ii,ℓt = Ict \ Iit = {yit}. (24)

Now, as we did for decentralized estimation, we split the control action into two compo-
nents: A common control uc

t defined as L[ut | Ict ] and local control uℓ
t = ut − uc

t .

• Static reduction. Following arguments similar to static reduction for the single agent
setting, we can show that the original information structure is equivalent to

Ii,st = {yi,st , ys1:t−1}.

In particular, L(Iit) = L(Ii,st ), i ∈ N .

A direct result of the above equation is that the common information in the original
information structure is equivalent to the common information in the static reduction,
which is given by

Ic,st = {ys1:t−1}.

The implication of static reduction is that in both conditional expectations and linear
estimation we can replace conditioning on Ict by Ic,st .

• Orthogonal projection. Define x̂t = L[xt | Ict ] and x̃t = xt − x̂t. By construction, we
have that L[uℓ

t | Ict ] = 0. Since xg
t is a linear function of u1:t−1, which is part of Ict , we

have
x̂t = xg

t + x̂s
t , where x̂s

t := L[xs
t | I

c,s
t ],
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and consequently,
x̃t = xt − x̂t = xs

t − x̂s
t .

Recall that xs
t is a control free processes; therefore x̃t is control free. We can show that

the estimate x̂s
t equals Ax̂s

t−1|t−1, where x̂s
t−1|t−1 can be recursively updated as follows:

xs
t|t = Axs

t−1|t−1 + Lt(yt − CAx̂s
t−1|t−1),

where Lt = F(Σt, C,Σ
v
t ) and the covariance matrices {Σt}T−1

t=1 can be precomputed as
follows:

Σ1 = Σx
1 and for t ∈ {1, · · · , T − 1} Σt+1 = R(Σt, A

T, CT,Σw
t ,Σ

v
t ).

Then, a consequence of orthogonality of the estimation error is the following: For any
fixed control strategy g, we have

E[(ut+Ktxt)
T∆t(ut+Ktxt)] = E[(uc

t+Ktx̂t)
T∆t(u

c
t+Ktx̂t)]+E[(uℓ

t+Ktx̃t)
T∆t(u

ℓ
t+Ktx̃t)].

Consequently, the total cost Jequiv(g) can be written as

Jequiv(g) = Jc(g) +

T−1∑
t=1

Jℓ
t (g),

where

Jc(g) = E
[T−1∑
t=1

(uc
t +Ktx̂t)

T∆t(u
c
t +Ktx̂t)

]
and

Jℓ
t (g) = E[(uℓ

t +Ktx̃t)
T∆t(u

ℓ
t +Ktx̃t)].

Putting everything together. Minimizing Jequiv(g) is equivalent to minimizing the sum of
Jc(g) and

∑T−1
t=1 Jℓ

t (g). Observe that both these terms are sum of squares. The first term Jc(g)

takes its minimum value of 0 when uc
t is chosen to be −Ktx̂t. The second term

∑T−1
t=1 Jℓ

t (g)

is a sum of decentralized estimation problems. For each t, minimizing Jℓ
t (g) is a decentralized

estimation problem, where the state is x̃t = x̃s
t , each agent has a common observation of ys1:t−1

and agent i has a local observation of yi,st . Therefore, by Proposition 4.5, the optimal controller
is given by

ui,ℓ
t = F i

t ỹ
i,s
t , where ỹi,st = yi,st − L[yi,st | ys1:t−1],

where the gains F i
t are found by solving the following system of linear matrix equation:∑

j∈N
((Bi)TPt+1B

j +Rij)F j
t ((C

j)TΣtC
i +Σij,v

t ) = (Bi)TPt+1AΣt(C
i)T, ∀i ∈ N ,

where Σji,v
t = 0 for i ̸= j is the ji-element of Σv

t . To summarize, let Ki
t denote the i-th row of

Kt. Then, the optimal control action at each agent is given by

ui
t = −Ki

t x̂t + F i
t ỹ

i,s
t , i ∈ N .
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The form of the optimal controller derived above is identical to the form of the optimal
controller derived in [20, 31, 32] under the assumption that the process and observation noises
are Gaussian.

5.2 Optimal Decentralized Control of System with Major and Minor Agents and
State Sharing

5.2.1 System Model and Problem Formulation
Consider a decentralized control system with one major and n minor agents that evolve in

discrete time over a finite horizon T . We use index 0 to indicate the major agent and use index
i, i ∈ N := {1, · · · , n}, to index the minor agents. We also define N0 := {0, 1, · · · , n} as the set
of all agents. Let xi

t ∈ Rdi
x and ui

t ∈ Rdi
u denote the state and control input of agent i ∈ N0.

All agents have linear dynamics. The dynamics of the major agent is not affected by the
minor agents. In particular, the initial state of the major agent is given by x0

1, and for t ≥ 1,
the state of the major agent evolves according to

x0
t+1 = A00x0

t +B00u0
t + w0

t , (25)

where {w0
t }t≥1, w0

t ∈ Rd0
x , is a noise process.

In contrast, the dynamics of the minor agents are affected by the state of the major agent.
For agent i ∈ N , the initial state is given by xi

1, and for t ≥ 1, the state evolves according to

xi
t+1 = Aiixi

t +Ai0x0
t +Biiui

t +Bi0u0
t + wi

t, (26)

where {wi
t}t≥1, wi

t ∈ Rdi
x , is a noise process.

We assume that all primitive random variables-the initial states {x0
1, x

1
1, · · · , xn

1}, and the
process noises {wi

1, · · · , wi
T }i∈N0

, are defined on a common probability space, are independent
and have zero mean and finite variance. We use Σxi

1 to denote the variance of the initial state
xi
1 and use Σwi

t and Σvi

t to denote the variance of wi
t and vit, respectively, i ∈ N .

Let xt = vec(x0
t , · · · , xn

t ) denote the state of the system, ut = vec(u0
t , · · · , un

t ) denote the
control actions of all controllers, and wt = vec(w0

t , · · · , wn
t ) denote the system disturbance.

Then the dynamics (25) and (26) can be written in vector form as

xt+1 = Axt +But + wt, (27)

where

A =



A00 0 0 · · · 0

A10 A11 0 · · · 0

A20 0 A22 · · · 0
...

... . . . . . . ...
An0 0 · · · 0 Ann


, B =



B00 0 0 · · · 0

B10 B11 0 · · · 0

B20 0 B22 · · · 0
...

... . . . . . . ...
Bn0 0 · · · 0 Bnn


.

Note that A and B are sparse block lower triangular matrices.
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Information structure: We assume that the major agent observes its own state, while
minor agent i, i ∈ N , observes the state of both the major agent and its own state. Thus, the
information I0t available to the major agent is given by

I0t := {x0
1:t, u

0
1:t−1}, (28)

while the information Iit available to minor agent i, i ∈ N , is given by

Iit := {x0
1:t, x

i
1:t, u

0
1:t−1, u

i
1:t−1}. (29)

The information structure addressed in this section is studied in the literature and is com-
monly referred to as the two-agent problem. See [16] and [33, 34] and the references therein.

Admissible control strategies: At time t, controller i ∈ N0 chooses control action ui
t as

a linear function of the information Iit available to it, i.e.,

ui
t = git(I

i
t), i ∈ N0,

where git is a linear function and is called the control law of controller i, i ∈ N0, at time t. The
collection gi := (gi1, · · · , giT ) is called the control strategy of controller i and g = (g0, · · · , gn) is
called the control strategy of the system.

System performance and control objective: At time t ∈ {1, · · · , T − 1}, the system
incurs a per-step cost of

ct(xt, ut) = xT
t Qtxt + uT

t Rtut (30)

and at the time T , the system incurs a terminal cost of

cT (xT ) = xT
TQTxT . (31)

It is assumed that Q and QT are symmetric and positive semi-definite and R is symmetric and
positive definite.

The performance of any strategy g is given by

J(g) = E
[ T−1∑

t=1

ct(xt, ut) + cT (xT )

]
, (32)

where the expectation is with respect to the joint measure on all the system variables induced
by the choice of the strategy g.

We are interested in the following optimization problem.
Problem 5.2 For the system described above, given the horizon T , system dynamics

(A,B), the cost matrices (Q1:T , R1:T−1), and the noise statistics {Σwi

1:T−1,Σ
vi

1:T−1}i∈N , choose
a control strategy g to minimize the total expected cost given by (32).
5.2.2 Solution of Problem 5.2

We now show how to solve Problem 5.2 using the different building blocks that we have
presented earlier.
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• Common information based state splitting. We combine the idea of using common
information based decomposition of the state presented in decentralized estimation with
that of state splitting. We first define common information as

Ict :=
⋂

i∈N0

Iit = {x0
1:t, u

0
1:t−1} = I0t . (33)

The local information is the remaining information at each agent. Thus,

I0,ℓt := I0t \ Ict = ∅, (34a)
Ii,ℓt := Iit \ Ict = {xi

1:t, u
i
1:t−1}, i ∈ N . (34b)

Now, as we did for decentralized estimation, we split the control action into two compo-
nents: A common control uc

t defined as L[ut | Ict ] and local control uℓ
t defined as ut − uc

t .
Finally, based on the above splitting of control actions, we split the state into three
components: Common component of the state xc

t which is driven by common control uc
t ,

local component of the state xℓ
t which is driven by the local control uℓ

t, and the stochastic
component of the state xs

t which is driven by the stochastic input wt. In particular, we
have xc

1 = 0, xℓ
1 = 0, xs

1 = x1, and

xc
t+1 = Axc

t +Buc
t , xℓ

t+1 = Axℓ
t +Buℓ

t, xs
t+1 = Axs

t + wt.

By construction, the stochastic component is control free (i.e., does not depend on the
control actions). By linearity of the dynamics, we have xt = xc

t + xℓ
t + xs

t . Moreover, we
define xc,i

t , etc. such that

xc
t = vec(x0,c

t , · · · , xn,c
t ), xℓ

t = vec(x0,ℓ
t , · · · , xn,ℓ

t ), xs
t = vec(x0,s

t , · · · , xn,s
t ).

Note that by construction (x0,c
t , u0,c

t ) = (x0
t , u

0
t ); therefore, x0,ℓ

t = x0,s
t = 0 and u0,ℓ

t = 0.

• Static reduction. Following arguments similar to static reduction for the single agent
setting, we can show that the original information structure is equivalent to

Is,0t = {x0,s
1:t}, Is,it = {x0,s

1:t , x
i,s
1:t}.

In particular, L(Iit) = L(Ii,st ), i ∈ N0.
The implication of static reduction is that in both conditional expectations and linear
estimation we can replace conditioning on I0t by I0,st .

• Conditional independence of state and control processes. We generalize the idea
of independence of state and control processes to establish conditional independence of
state and control processes given the common information Ict = I0t . In particular, for any
control strategy g, we have

(x1
1:t, u

1
1:t) ⊥⊥ (x2

1:t, u
2
1:t) ⊥⊥ · · · ⊥⊥ (xn

1:t, u
n
1:t) | I0t .

Moreover, since L(I0t ) = L(I0,st ) (thus, both I0t and I0,st are linear functions of each other),
we can replace I0t in the conditioning with I0,st .
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• Orthogonal projection. Define x̂t = L[xt | I0t ] and x̃t = xt − x̂t. In order to simplify
x̂t, we observe that by construction, we have that L[uℓ

t | Ict ] = 0. Moreover, since I0,st is
equivalent to w0

1:t−1, for any i ∈ N and τ < t, we have

L[uℓ
τ | I0t ] = L[uℓ

τ | Ist ] = L[uℓ
τ | w0

1:t−1] = L[uℓ
τ | w0

1:τ−1] = L[uℓ
τ | I0,sτ ] = 0.

Consequently, since xℓ
t is a linear function of uℓ

1:t−1, we have

L[xℓ
t | I0t ] = L[xℓ

t | I
0,s
t ] = 0.

Therefore,

L[xt | I0t ] = L[xc
t + xℓ

t + xs
t | I0t ] = xc

t + L[xs
t | I0t ] = xc

t + L[xs
t | I

0,s
t ].

We write this as
x̂t = xc

t + x̂s
t , where x̂s

t := L[xs
t | I

0,s
t ].

Recall that xs
t is a control free processes. We can show that the estimate x̂s

t can be
recursively updated as

x̂s
t+1 = Ax̂s

t + vec(w0
t , 0, · · · , 0).

Therefore, the update of x̂t simplifies to

x̂t = Ax̂t +Buc
t + vec(w0, 0, · · · , 0) (35)

and, consequently,

x̃t = xt − x̂t =


0

A11x̃1
t +B1u1,ℓ

t

...
Annx̃n

t +Bnun,ℓ
t

+


0

w1
t

...
wn

t

 . (36)

Now, by an argument similar to Lemma 3.5, we have

E[xT
t Qtxt + uT

t Rtut] = E[x̂T
t Qtx̂t + (uc

t)
TRtu

c
t ] + E[x̃T

t Qtx̃t + (uℓ
t)

TRtu
ℓ
t]. (37)

Furthermore, conditional independence of state and control processes implies that

(x̃1
t , u

1,ℓ
t ) ⊥⊥ (x̃2

t , u
2,ℓ
t ) ⊥⊥ · · · ⊥⊥ (x̃n

t , u
n,ℓ
t ) | I0t .

Therefore, similar to Lemma 4.3, we have that the second term of (37) can be written as

E[x̃T
t Qtx̃t + (uℓ

t)
TRtu

ℓ
t] = E

[∑
i∈N

[
(x̃i

t)
TQii

t x̃
i
t + (ui,ℓ

t )TRii
t u

i,ℓ
t

]]
.

Consequently, the total cost J(g) can be written as

J(g) = Jc(g) +
∑
i∈N

J i,ℓ(g),
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where

Jc(g) =

T−1∑
t=1

E[x̃T
t Qtx̃t + (uℓ

t)
TRtu

ℓ
t]

and

J i,ℓ(g) =

T−1∑
t=1

E[(x̃i
t)

TQii
t x̃

i
t + (ui,ℓ

t )TRii
t u

i,ℓ
t ].

• Completion of squares. Now, we separately perform completion of squares of Jc(g)

and J i(g) and show that minimizing Jc(g) is equivalent to minimizing

J̃c(g) = E
[T−1∑
t=1

(uc
t +Ktx̂t)

T∆t(u
c
t +Ktx̂t)

]
,

where ∆t = Rt + BTP c
t+1B, Kt = G(P c

t+1, A,B,Rt), and the matrices {P c
t }Tt=1 are com-

puted backwards in time using the following recursion:

P c
T = QT and for t ∈ {T − 1, · · · , 1}, P c

t = R(P c
t , A,B,Qt, Rt).

Moreover, minimizing J i,ℓ(g) is equivalent to minimizing

J̃ i,ℓ(g) = E
[T−1∑
t=1

(ui,ℓ
t +Ki,ℓ

t x̃i
t)

T∆i,ℓ
t (ui,ℓ

t +Ki
t x̃

i
t)

]
,

where ∆i,ℓ
t = Rii

t +(Bii)TP i,ℓ
t+1B

ii, Ki,ℓ
t = G(P i,ℓ

t+1, A
ii, Bii, Rii

t ), and the matrices {P i,ℓ
t }Tt=1

are computed backwards in time using the following recursion: For each i ∈ N ,

P i,ℓ
T = Qii

T and for t ∈ {T − 1, · · · , 1}, P i,ℓ
t = R(P i,ℓ

t , Aii, Bii, Qii
t , R

ii
t ).

Putting everything together. Now, to find the optimal solution, observe that both Jc(g)

and J i,ℓ(g) are sum of squares and they take their minimum value of 0 if we choose

uc
t = −Ktx̂t, ui,ℓ

t = −Ki,ℓ
t x̃t.

Let Ki
t , i ∈ N0, denote the i-th row of Kt. Then, the best linear controllers can be written

as follows: The best linear control strategy of the major agent is given by

u0
t = −K0x̂t,

and at the minor agent i, i ∈ N , the best linear control strategy is given by

ui
t = −Ki

t x̂t −Ki,ℓ
t (xi

t − x̂i
t).

The form of the optimal controller derived above is identical to form of the controller derived
in [16] under the assumption that the process and observation noise processes are Gaussian.
Generalization of [16] to output feedback are presented in [13, 14, 33, 35].
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5.3 Optimal Decentralized Control of System with Remote and Local Controllers
and Packet Drop State Sharing

5.3.1 System Model and Problem Formulation
Consider a discrete-time linear dynamical system consisting of 2 controllers: A remote

controller and a local controller co-located with the system. The information available to the
controllers will be described later. Let xt ∈ Rdx denote the state of the system, u0

t ∈ Rd0
u ,

denote the control action of remote controller and u1
t ∈ Rd1

u denote the control action of local
controller.

The initial state x1 of the system is random and the dynamics of the system is given by

xt+1 = Axt +
[
B0 B1

]u0
t

u1
t

+ wt, (38)

where wt ∈ Rdx is the process noise and A, B0, and B1 are matrices of appropriate dimensions.
We assume that random variables {x1, w0, · · · , wT−1} are independent and have zero mean and
finite variance. We use Σx

1 to denote the variance of x1 and Σw
t , t ≥ 1, to denote the variance

of wt.
Let ut := vec(u0

t , u
1
t ) denote the control actions of the overall system. Then, the system

dynamics can be written as
xt+1 = Axt +But + wt, (39)

where B is given by B = [B0 B1].

At time t, the local controller perfectly observes the state xt of the system and sends it
to the remote controller over an unreliable packet drop channel. Let Γt ∈ {0, 1} denote the
state of the channel, where Γt = 0 means that the channel is in the off state where the
transmitted packet gets dropped while Γt = 1 means that the channel is in the on state where
the transmitted packet gets delivered. Thus, Γt is a Bernoulli random variable and we denote
the packet drop probability P(Γt = 0) by p. We assume that the primitive random variables
{x0, w0, · · · , wT−1, Γ0, · · · , ΓT−1} are independent.

Let zt denote the output of the channel, i.e.,

zt = f(xt, Γt) =

xt, if Γt = 1,

E, if Γt = 0,
(40)

where E denotes a dropped packet. It is assumed that there is a perfect channels from the
remote controller to the local controller. Using this channel, the remote controller can share zt

and ur
t−1 with the local controller. Note that it is possible to recover Γt from zt. Hence, all

controllers also have access to Γt.
Information structure: Let I0 and I1t denote the information available to the remote and

local controllers, respectively, at time t. We have

I0t = {z0:t, Γ0:t, u
0
0:t−1}, (41a)

I1t = {x0:t, u
1
0:t−1, z0:t, Γ0:t, u

0
0:t−1}. (41b)



BEST LINEAR CONTROLLERS FOR DECENTRALIZED LQ SYSTEMS 233

Admissible control strategies: In this section we do not explicitly restrict attention
to linear control strategies. We assume that the controllers choose their control action as a
measurable function of their observations, i.e.,

u0
t = g0t (I

0
t ), u1

t = g1t (I
1
t ), (42)

where g0t and g1t are called the control laws of the remote and local controllers, respectively. The
collections g0 = (g01 , · · · , g0T−1) and g1 = (g11 , · · · , g1T−1) are called the control strategies of the
remote and local controllers, respectively and g = (g0, g1) is called the control strategy profile
of the system.

System performance and control objective: The system operates for a finite horizon T .
For time t ∈ {1, · · · , T − 1}, the system incurs a per-step cost

ct(xt, ut) = xT
t Qtxt + uT

t Rtut,

and for the terminal time T , the system incurs a terminal cost

cT (xT ) = xT
TQTxT ,

where Qt, and Rt are matrices of appropriate dimensions. It is assumed that Q and QT are
symmetric and positive semi-definite and R is symmetric and positive definite. We also assume
that Rt has a block-wise structure given by

Rt =

R00
t R01

t

R10
t R11

t

 .

The performance of a strategy profile g is given by

J(g) = Eg
[ T−1∑

t=0

ct(xt, ut) + cT (xT )
]
, (43)

where the expectation is with respect to the measure induced on all the system variables by
the choice of strategy profile g.

Problem 5.3 For the system described above, given the horizon T , system dynamics
(A,B), the cost matrices (Q1:T , R1:T−1), and the noise statistics Σw

1:T−1 and the packet drop
probability p, choose a control strategy g to minimize the total expected cost given by (43).

The above model was considered in [36] where a dynamic programming solution was pre-
sented. The solution presented below is adapted from [37].
5.3.2 Solution of Problem 5.3

We now show how to solve Problem 5.3 using the different building blocks that we have
presented earlier.

• Common information based estimates. Following [38], we define the common infor-
mation Ict between agents as

Ict = I0t ∩ I1t .
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The information structure of the model (41) implies that Ict = I0t = {z0:t, Γ0:t, u
0
0:t−1}.

Now we define the common information based “estimates” of the state and control actions
and the corresponding “estimation errors” as follows:

x̂t = E[xt | Ict ], x̃t = xt − x̂t, (44)
ût = E[ut | Ict ], ũt = ut − ût. (45)

It can be shown that the state estimates and the estimation error satisfy the following
property.

Lemma 5.4 The state estimates and estimation errors evolve as follows:

x̂0 =

0, if Γ0 = 0,

x0, if Γ0 = 1,

and for t > 0,

x̂t+1 =

Ax̂t +B0u0
t +B1û1

t , if Γt+1 = 0,

xt+1, if Γt+1 = 1.

Therefore,

x̃0 =

x0, if Γ0 = 0,

0, if Γ0 = 1,

and for t > 0,

x̃t+1 =

Ax̃t +B1ũ1
t + wt, if Γt+1 = 0,

0, if Γt+1 = 1.

A proof is presented in [37].

• Orthogonal projection for per-step cost. A direct result of the common information
based state estimates is the following.

E[xT
t Qtxt] = E

[
x̂T
t Qtx̂t + (x̃t)

TQtx̃t

]
, (46)

E[uT
t Rtut] = E

[
ûT
t Rtût + (ũℓ

t)
TRtũ

1
t

]
. (47)

• Completion of squares. Now, we utilize the result of the orthogonal projection for the
completion of squares. However, the exact details are slightly different: The completion
of squares must take the packet drop nature of the channel and Lemma 5.4 into account.
Using such a completion of squares, we obtain the following:

J(g) =Eg

[
x̂T
0 Ptx̂0 + (x̃0)

TP̃0x̃0 +

T−1∑
s=0

(ûs +Ksx̂s)
T∆s(ûs +Ksx̂s)

+

T−1∑
s=0

(ũs + K̃sx̃s)
T∆̃s(ũs + K̃sx̃s) +

T−1∑
s=0

(ws)
TΠt+1ws

]
, (48)
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where ∆s = Rs+BTPs+1B, ∆̃s = R11
s +(B1)TΠs+1B

1, the gains {Kt}T−1
t=0 and {K̃t}T−1

t=0

are given by

Kt = G(Pt+1, A,B,Rt), K̃t = G(Πt+1, A,B1, R11
t ),

where the matrices {Pt}Tt=1, {Πt}Tt=1, and {P̃t}Tt=1 are given by as follows:

PT = QT and for t ∈ {1, · · · , T − 1}, we have Pt = R(Pt+1, A,B,Qt, Rt),

P̃T = QT and for t ∈ {1, · · · , T − 1}, we have P̃t = R(Πt+1, A,B1, Qt, R
11
t ),

Πt = (1− p)Pt + pP̃t.

See [37] for details.

• Putting everything together. The optimal control strategy for Problem 5.3 is given
by

vec(u0
t , û

1
t ) = −Ktx̂t (49)

and
ũ1
t = −K̃tx̃t, (50)

where the time evolution of x̂t and x̃t are given above.

Let K0
t and K1

t denote the rows of Kt. Then, we have

u0
t = −K0

t x̂t, u1
t = −K1

t x̂t − K̃t(xt − x̃t), (51)

which is the same as the optimal controllers derived in [36, 37].

6 Conclusion
In this paper, we revisit decentralized control of multi-agent systems. Instead of identifying

the optimal decentralized controllers under the assumption that the process and observation
noises are Gaussian, we identify the best linear controller without any restriction on the noise
distribution. We present an elementary approach to identify the best linear controller: The
fundamental ideas of our approach are completion of squares, state splitting, static reduction of
information structure, and orthogonal projection. The approach presented here is not a panacea
for all the conceptual challenges in decentralized control. All the models considered in the paper
have a partially nested information structure[5], so we know that if the noise processes were
Gaussian, then there is no loss of optimality in restricting attention to linear control strategies.
Effectively, we derive the same control laws but by providing a descriptive justification (that
we are limited to use linear controllers) rather than by assuming a prescriptive justification
(that the underlying physics of the system being modelled is such that the noise processes
are Gaussian). Verifying whether the proposed approach works for more general information
structures remains an interesting future direction.
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