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Abstract— In this paper, we investigate optimal control of
network-coupled subsystems, where the coupling between the
dynamics of the subsystems is represented by the adjacency or
Laplacian matrix of a directed graph. Under the assumption
that the coupling matrix is normal and the cost coupling is
compatible with the dynamics coupling, we use the spectral
decomposition of the coupling matrix to decompose the overall
system into at most n systems with noise coupled dynamics and
decoupled cost, where n is the size of the network. Furthermore,
the optimal control input at each subsystem can be computed
by solving n1 decoupled Riccati equations where n1 (n1 ≤ n)
denotes the number of distinct eigenvalues of the coupling matrix,
where complex conjugate pairs are not double-counted. A salient
feature of the result is that the solution complexity depends
on the number of distinct eigenvalues of the coupling matrix
rather than the size of the network. Therefore, the proposed
solution framework provides a scalable method for synthesizing
and implementing optimal control laws for large-scale network-
coupled subsystems.

I. INTRODUCTION

A. Background and Motivation

Many modern technological systems involve many sub-
systems connected over networks with multiple sensors
and actuators. Such network systems appear in smart grids,
Internet of Things, and autonomous vehicle fleets, among
others. For large network systems, it is important to identify
conditions that allow low-complexity control synthesis and
implementation. These conditions typically involve simpli-
fications in control structures (e.g., pinning control [1] and
ensemble control [2]), control objectives (e.g., consensus [3]–
[5] and synchronization [6]), and couplings among subsystems
(e.g., symmetric interconnections [7]–[10], exchangeable or
anonymous subsystems [11]–[14], sparse connections or
structure reduction [15], [16], hierarchical decompositions
[17] and patterned systems [18]), as well as approximations
in optimality and control (e.g., mean-field games [19], [20],
control based on approximate aggregations [21], approximate
distributed control [22], [23], and graphon control [24]).

Spectral decompositions for controlling large-scale systems
have been used in different problem formulations. An earlier
work [21] considered the problem of approximating a high-
dimensional system with a low-dimensional system using
state aggregation. Spectral decomposition of large-scale
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systems with symmetric interconnected subsystems have been
considered in [10], [25]. Algebraic decomposition of mean-
field coupled subsystems has been considered in [12]–[14].
Spectral decomposition of large network-coupled systems
with heterogeneous couplings over an undirected network
has been investigated in [26]. Similar decomposition for
controlling systems coupled over large undirected graphs and
graph limits has been investigated in [27].

The goal of the current paper is to extend results in
[26] to analyze systems coupled over directed networks.
Control of multiple subsystems over directed graphs has
also been investigated extensively by many researchers
(e.g. in the context of consensus problems [28], [29] and
cooperative optimal control [29]–[31]) where the graphs
typically represent the underlying communication networks.
These are different problems compared to the current paper.

The main idea of [26] is to leverage the spectral decom-
position of the coupling matrix to reduce the computational
complexity of control. When the coupling corresponds to an
undirected graph, the coupling matrix is real and symmetric,
and therefore all the eigenvalues are real and non-negative.
This feature was exploited in [26] to decompose the original
system into decoupled eigen-directions. The same idea does
not work in the directed case because the coupling matrix
is not necessarily symmetric and hence the eigenvalues are
complex, in general. Therefore, naively using the approach
of [26] will result in the cost along each eigen-direction to
be complex valued, leading to an ill posed optimal control
problem.

B. Contributions of this Article

In this paper, we investigate a control system where
the coupling between the dynamics of the subsystems is
represented by the adjacency or Laplacian matrix of a directed
graph. Each subsystem has a local state and takes a local
control action. The evolution of the state of each subsystem
depends on its local state and local control as well as a
weighted combination (which we call the network field) of
the states and controls of its neighbors. Those weighted
combinations from the network field are encoded in the
coupling matrix. This paper focuses on the case where the
coupling matrix is normal, in which case it has a spectral
decomposition. The objective is to choose the control inputs
of each subsystem to minimize the total cost over time. The
above model is a linear quadratic regulation problem and a
centralized solution can be obtained by solving an ndx×ndx-
dimensional Riccati equation, where n is the number of
subsystems and dx is the dimension of the state of each



subsystem. We propose an alternative solution that has low
complexity and may be implemented in a local manner with
projected state information. The most important difference
with the work in [26] is that real normal matrices have a
complex spectral decomposition, meaning that the dynamics
and cost need to be expressed in terms of a well-posed in a
complex LQR problem.

The main contributions of our paper are the following:
• A spectral decomposition technique is developed to

decompose the linear quadratic control problem for
network-coupled dynamical subsystems into n decoupled
subproblems, where n is the number of subsystems.

• These n0 decoupled subproblems can be solved by solv-
ing only n1 decoupled Riccati equations of dimension
dx × dx, where n1 denotes the number of distinct,
eigenvalues of the coupling matrix (without double-
counting conjugate pairs and duplicate eigenvalues),
and dx is the state dimension of each subsystem. In
contrast, a direct centralized solution requires solving an
ndx × ndx-dimensional Riccati equation where n is the
number of subsystems. We note that for any coupling
matrix, the inequalities n1 ≤ n0 ≤ n always hold. Thus
the method proposed in this paper leads to considerable
simplifications in synthesizing optimal control laws.

• The solution method is applied to study networks coupled
by a circulant matrix, meaning that the locally-perceived
coupling is node-invariant.

C. Notations and Definitions

Let R denote the set of real numbers. The notation
A = [aij ] means that aij is the (i, j)th element of the
matrix A. For a vector v, vi denotes its ith element. For a
matrix A, A⊺ denotes its transpose, A† denotes its Hermitian,
and Tr(A) denotes its trace. Given vectors v1, . . . , vn,
cols(v1, . . . , vn) denotes the matrix formed by horizontally
stacking the vectors. For any natural number n, In denotes
the n-dimensional identity matrix, 1n×n denotes the n× n-
dimensional matrix of ones, and 1n denotes the n-dimensional
vector of ones. E denotes the expectation. x(0 :T ) denotes
the family {x(t), t ∈ {0, . . . , T}}.

√
−1 is used for the

imaginary unit. We define a sesquilinear form on Cd×n

with weight P = [pij ] ∈ Cn×n as follows: for any x =
cols(x1, . . . , xn), y = cols(y1, . . . , yn) ∈ Cd×n,

⟨x, y⟩P =
∑

i,j∈N
pijx

†
iyj = Tr(x†yP ). (1)

Two equivalent characterizations of this map are

⟨x, y⟩P =
∑
i∈N

x†
iyPi and ⟨x, y⟩P =

∑
j∈N

P
⊺
j x

†yj ,

where Pi ∈ Cn denotes the ith column of P . When P is
equal to its Hermitian and positive definite, ⟨·, ·⟩P is an inner
product on Cd×n.

For a linear system with (possible complex-valued1) system
matrices A, B, per-step cost matrices Q, R, and terminal
cost matrices QT of compatible dimensions, we use the
notation P (0:T ) = RT (A,B,Q,R,QT ) to denote the
solution P (0:T )) of the backward Riccati difference equation
initialized at P (T ) = QT and for t ∈ {0, . . . , T − 1},
computed recursively using

P (t) = Q+A†P (t+1)A

−A†P (t+1)B
(
R+B†P (t+1)B

)−1
B†P (t+1)A,

and the notation K(0:T−1) = KT (A,B,Q,R,QT ) to
denote the sequence of gains K(0:T−1) obtained using

K(t) = −
(
R+B†P (t+ 1)B

)−1
B†P (t+ 1)A.

D. Background on Normal Matrices

A square matrix M ∈ Rn×n is called normal if MM⊺ =
M⊺M . Examples include orthogonal, symmetric, skew-
symmetric, and circulant matrices.

A key property of normal matrices is that their eigenvectors
can be written to be orthogonal, thus they have a spectral
decomposition of the following form

M =
∑
ℓ∈N

λℓvℓ(vℓ)†

where {λ1, . . . , λn} are the eigenvalues of M and
{v1, . . . , vn} are the corresponding set of orthonormal
eigenvectors. Since M is real, the eigenvalues are either
real or occur in complex conjugate pairs. Moreover, the
eigenvector of a real eigenvalue can be chosen to be real
while preserving orthogonality and eigenvectors of complex
conjugate eigenvalues are complex conjugates of each other.

In our analysis, we are interested in normal matrices that
commute. The following lemma states equivalent characteri-
zations of such matrices.

Lemma 1 Let M1,M2 ∈ Rn×n be normal. Then, the
following statements are equivalent:

1) M1 and M2 commute (i.e., M1M2 = M2M1).
2) M1 and M2 are simultaneously diagonalizable (i.e.,

there exists an orthogonal matrix P ∈ Cn×n such that
P †M1P and P †M2P are both diagonal matrices).

3) M1 and M2 share a same set of n orthonormal
eigenvectors, where any eigenvalue of M1 is real if
and only if the corresponding eigenvalue of M2 is real.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the model of network coupled
subsystems. The model is similar to the model proposed in
[26] with two differences: (i) we consider the coupling of the
subsystems to be directed, while the coupling in [26] was
undirected. (ii) We also consider the model to be in discrete

1In the standard literature on linear quadratic regulation it is assumed
that the state, control, the system dynamics, and the cost are real-valued but
all the standard results continue to hold for complex-valued states, control,
and dynamics as long as the per-step cost is real-valued and lower bounded;
provided we replace transposes by conjugate transpose. Such results can be
obtained by adapting the proof steps in [32], [33].



time, while the model in [26] was in continuous time, though
this does not affect proposed solution.

A. System Model

Consider a network made of n nodes labeled N =
{1, . . . , n}. Let M = [mji] ∈ Rn×n denote a coupling matrix
that corresponds to the connection between the nodes. This
connected network may be visualized using a directed graph.
For simplicity, the system is said to evolve in discrete time,
though the analysis remains unchanged in the continuous-
time case. The time horizon will also be taken to be finite,
denoting it as {0, . . . , T−1}.

There is a subsystem associated with each node of the
graph. Let xi(t) ∈ Rdx , ui(t) ∈ Rdu , and ξi(t) ∈ Rdx

denote respectively the state, control input, and noise of
node i ∈ N at time t. The system starts from a known
initial state, x(0) = {xi(0), i ∈ N}, and for any time
t ∈ {0, 1, . . . , T−1}, the state at node i follows

xi(t+1) = Axi(t)+Bui(t)+DxG
i (t)+EuG

i (t)+ξi(t) (2)

where A, B, D, and E are matrices of appropriate di-
mensions2 that do not depend on i, and {ξi(t)}t≥0 is an
independent and identically distributed noise process with
zero mean and finite variance Ξi. Moreover, the processes
{ξi(t)}t≥0, i ∈ N are independent.

Define the network field as

xG
i (t) =

∑
j∈N

xj(t)mji and uG
i (t) =

∑
j∈N

uj(t)mji, (3)

to denote the locally perceived state and the control of the
network at node i, The weight mji quantifies the influence
of node j on node i. Following [26], we adopt the atypical
notation of describing the system state and system control
outputs as a matrix rather than a vector. In particular, define

x(t) := cols(x1(t), . . . , xn(t)) ∈ Rdx×n,

xG(t) := cols(xG
1 (t), . . . , x

G
n(t)) ∈ Rdx×n,

u(t) := cols(u1(t), . . . , un(t)) ∈ Rdu×n,

uG(t) := cols(uG
1 (t), . . . , u

G
n(t)) ∈ Rdu×n,

ξ(t) := cols(ξ1(t), . . . , ξn(t)) ∈ Rdx×n.

We may write xG(t) = x(t)M , uG(t) = u(t)M . Given an
initial state x(0) the dynamics for the system state can be
written for t ≥ 0 as:

x(t+ 1) = Ax(t) +Bu(t) +DxG(t) +EuG(t) + ξ(t). (4)

B. System Performance and Control Objective

At time t ∈ {0, 1, . . . , T − 1}, the system incurs an
instantaneous cost

c(x(t), u(t)) =
∑

i,j∈N

[
qijxi(t)

⊺
Qxj(t) + rijui(t)

⊺
Ruj(t)

]
= ⟨x(t), Qx(t)⟩Mq

+ ⟨u(t), Ru(t)⟩Mr
. (5)

2In principle, the system matrices can vary with time, but we restrict
ourselves to the time-invariant setting for simpler notation.

and at the terminal time T , the system incurs a terminal cost

cT (x(T )) =
∑

i,j∈N
qijxi(T )

⊺
QTxj(T ) = ⟨x(T ), QTx(T )⟩Mq

(6)
where Q, QT , and R are matrices of appropriate dimensions
and Mq = [qij ] and Mr = [rij ] belong to Rn×n.

We assume that there is a controller that observes the sys-
tem state x(t) and chooses the control action u(t) according
to a state feedback control law g = (g0, . . . , gT−1), i.e, for
t ∈ {0, . . . , T−1}, we have

u(t) = gt(x(t)). (7)

The performance of a control law g is quantified by the
expected total cost which is given by

J(g) = E

[
T−1∑
t=0

c(x(t), u(t)) + cT (x(T ))

]
. (8)

We are interested in the following optimization problem.

Problem 1 Choose a control policy g = (g1, . . . , gT−1) of
the form (7) to minimize the cost J(g) given by (8), subject
to the dynamics described in (2).

This problem can be solved centrally using standard LQR
theory, which requires solving a ndx × ndx-dimensional
Riccati equation, whose naive solution is O(n3d3x). Our main
result is to present a scalable solution which requires solving
at most n distinct dx × dx-dimensional Riccati equations,
which has a worst case complexity of O(nd3x).

III. SPECTRAL DECOMPOSITION OF THE SYSTEM

A. Assumptions on the Coupled Dynamics

We impose the following assumptions on the model.
(A0) The coupling matrix M ∈ Rn×n is normal.

In the setting of [26], the network was assumed to be
undirected, in which case the matrix M is symmetric and
assumption (A0) automatically holds. However, Assumption
(A0) also holds in more general settings. An important class
of normal matrices are circulant matrices, which may be
viewed as the adjacency matrix of a circulant graph. See [34]
for a discussion and Sec. V for an example.
(A1) The weight matrices Mq,Mr both commute with M .

One instance where (A1) is true is when Mq and Mr

are polynomials of M (with real-valued coefficients). The
intuition behind taking powers of M in a directed, weighted
graph is that (Mk)ij represents the total weight of all paths
of length k from node i to node j. Each entry accounts for
the contributions of different paths of length k in the graph.

We now present some implications of these assumptions.
Assumption (A1) with Lemma 1 implies that M , Mq, and
Mr share a common set of orthonormal eigenvectors. Since
M , Mq , and Mr admit a spectral decomposition, we have

M =
∑
ℓ∈N

λℓvℓ(vℓ)†, (9a)

Mq =
∑
ℓ∈N

qℓvℓ(vℓ)†, Mr =
∑
ℓ∈N

rℓvℓ(vℓ)† (9b)



B. Spectral Decomposition of the Dynamics

We now show that the spectral decomposition of M
provided in (9) can be leveraged to obtain a spectral
decomposition of the dynamics. For that matter, define the
eigenstates xℓ(t), eigencontrols yℓ(t), and eigennoise ξℓ(t),
ℓ ∈ N , as follows

xℓ(t) = x(t)vℓ(vℓ)†, uℓ(t) = u(t)vℓ(vℓ)†, (10)

ξℓ(t) = ξ(t)vℓ(vℓ)†. (11)

The eigenstates and eigencontrols capture the coupling
between the subsystems in the following sense.

Lemma 2 (Network field decomposition) The following
relationships hold:

xG(t) =
∑
ℓ∈N

λℓxℓ(t) and uG(t) =
∑
ℓ∈N

λℓuℓ(t). (12)

PROOF We present the proof for x, the proof for u is identical.
The spectral decomposition of M in (9) gives:

xG(t) = x(t)M =
∑
ℓ∈N

λℓx(t)vℓ(vℓ)† =
∑
ℓ∈N

λℓxℓ(t). (13)
■

A key implication of Lemma 2 is the following. Let xℓ(t) =
cols(xℓ

i(t), . . . , x
ℓ
i(t)) and uℓ(t) = cols(uℓ

i(t), . . . , u
ℓ
i(t)).

Proposition 1 The local state and control at each node i ∈
N may be decomposed as

xi(t) =
∑
ℓ∈N

xℓ
i(t), ui(t) =

∑
ℓ∈N

uℓ
i(t), (14)

where the dynamics of xℓ
i(t) depends on only uℓ

i(t) and are

xℓ
i(t+1) = (A+λℓD)xℓ

i(t)+(B+λℓE)uℓ
i(t)+ξℓi (t) (15)

PROOF The relationships (14) follow from definition. For
the dynamics (15), observe that Lemma 2 implies that

xG(t)vℓvℓ
†
= x(t)Mvℓ(vℓ)† = λℓx(t)vℓ(vℓ)†, ■

with a similar relationship holding for uG(t).

A similar eigendecomposition was presented in [26], where
it was assumed that M is symmetric and, therefore, the
eigenvectors {v1, . . . , vn} were real. In our setting, M is not
symmetric, so the eigenvectors {v1, . . . , vn} are complex,
in general. Hence, the eigenstates {x1(t), . . . , xn(t)} and
eigencontrols {u1(t), . . . , un(t)} are also complex, in general.
Our main result is to present a framework to handle such
complex-valued eigenstates and eigencontrols.

C. Assumptions on the Coupled Cost

Two assumptions must be made to have a well-defined
cost function:
(A2) For ℓ ∈ N , Re(qℓ) ≥ 0 and Re(rℓ) > 0, where qℓ

and qℓ are respectively the eigenvalues of Mq and Mr

associated with eigenvector vℓ.
(A3) The matrices Q and QT are symmetric and positive

semidefinite, and R is symmetric and positive definite.

We now present the implication of these assumptions.
As already mentioned, (A1) implies that {v1, . . . , vn} are
eigenvectors of Mq and Mr. For ℓ ∈ N , the eigenvalues of
Mq and Mr corresponding to vℓ are qℓ and rℓ, respectively.
By (A2), 1

2 (Mq +M⊺
q ) and 1

2 (Mr +M⊺
r ) are respectively

symmetric positive semidefinite and symmetric positive
definite. Hence, for any y ∈ Cd×n, ⟨y, y⟩(Mq+M⊺

q ) ≥
0, and ⟨y, y⟩(Mr+M⊺

r ) > 0.
Additionally, (A3) ensures that ( 12 (Mq +M⊺

q ))⊗Q and
( 12 (Mq +M⊺

q )) ⊗ QT are symmetric positive semidefinite,
and ( 12 (Mr +M⊺

r ))⊗R is symmetric positive definite. Thus,
Problem 1 satisfies the standard assumptions on the per-step
cost for the finite-horizon LQR problem to have a unique
optimal solution.

D. Spectral Decomposition of the Cost

Since M is real, all its complex eigenvalues occur in com-
plex conjugate pairs. Moreover, eigenvectors corresponding
to complex conjugate eigenvalues are complex conjugates
of each other. Therefore, we can partition the indices
of eigenvalues into three sets: the index set Nr for real
eigenvalues given by

Nr = {ℓ ∈ N : Im(λℓ) = 0},

the index set N+
c for complex eigenvalues with positive

imaginary parts given by

N+
c = {ℓ ∈ N : Im(λℓ) > 0},

and the index set N−
c for complex eigenvalues with negative

imaginary parts given by

N−
c = {ℓ ∈ N : Im(λℓ) < 0},

where N = Nr ∪N+
c ∪N−

c . Moreover, for every ℓ+ ∈ N+
c ,

there exists an ℓ− ∈ N−
c such that (λℓ+ , λℓ−) and (vℓ

+

, vℓ
−
)

are complex conjugate pairs.

Proposition 2 The instantaneous cost given by (5) can be
simplified as follows:

c(x(t), u(t)) =
∑
i∈N

∑
ℓ∈N

cℓ(xℓ
i(t), u

ℓ
i(t))

where

cℓ(xℓ
i(t), u

ℓ
i(t)) = qℓxℓ

i(t)
†Qxℓ

i(t) + rℓuℓ
i(t)

†Ruℓ
i(t).

A similar simplification holds for the terminal cost (6).

See Section IV for the proof.
The decomposition of Prop. 2 is similar to the cost

decomposition obtained in [26]. In [26], the coupling matrix
M was symmetric, so all the eigenvalues, and hence the
coefficients qℓ and rℓ were real-valued. The main idea
of [26] was then to consider the certainty equivalent version
of Problem 1 (i.e., consider the problem where the noise
ξ(t) ≡ 0), which led to n components with decoupled
dynamics and cost. The same approach does not work in our
setting because the coupling matrix M is not symmetric and
therefore the coefficients qℓ and rℓ are not real-valued. Thus,



the cost objective of component ℓ may be complex-valued,
so the cost minimization problem is not well-posed.

Our key result is to leverage the conjugate symmetry of
eigenstates and eigencontrol for ℓ ∈ N+

c and N−
c . In partic-

ular, as was already stated, for each ℓ+ ∈ N+
c , there exists a

corresponding ℓ− ∈ N−
c such that the eigenvalues (λℓ+ , λℓ−)

and eigenvectors (vℓ
+

, vℓ
−
) form complex conjugate pairs.

As a result, the states xℓ(t) = x(t)vℓ(vℓ)† and control inputs
uℓ(t) = u(t)vℓ(vℓ)† also form complex conjugate pairs for
ℓ ∈ {ℓ+, ℓ−}. By leveraging this conjugate symmetry, we
can reduce the cost to real-valued terms by grouping the
conjugate pairs together.

Proposition 3 The component Cℓ
t := cℓ(xℓ

i(t), u
ℓ
i(t)) of the

cost identified in Prop. 2 satisfies the following:
1) For ℓ ∈ Nr, Cℓ

t is real.
2) Let ℓ+ ∈ N+

c and ℓ− ∈ N−
c be such that (λℓ+ , λℓ−)

form a complex conjugate pair. Then, Cℓ+

t and Cℓ−

t are
also complex conjugate pairs.

Consequently, the per-step cost can be written as

c(x(t), u(t)) =
∑
i∈N

∑
ℓ∈N

c̄ℓ(xℓ
i(t), u

ℓ
i(t))

where

c̄ℓ(xℓ
i(t), u

ℓ
i(t)) = Re(qℓ)xℓ

i(t)
†Qxℓ

i(t)+Re(rℓ)uℓ
i(t)

†Ruℓ
i(t).

PROOF (SKETCH) The proof follows from the conjugate
symmetry argument given above. Details are omitted due
to space limitations.

E. Main Results

The main result is the following.

Theorem 1 Let P ℓ ∈ Cdx×dx , ℓ ∈ N , be the solution of the
following Riccati equations:

P ℓ(0:T ) = RT (A+ λℓD,B + λℓE,

Re(qℓ)Q,Re(rℓ)R,Re(qℓ)QT ), (16)

and Kℓ(0:T ) ∈Cdu×du×T , ℓ ∈ N , be the respective gains:

Kℓ(0:T−1) = KT (A+ λℓD,B + λℓE,

Re(qℓ)Q,Re(rℓ)R,Re(qℓ)QT ).

Then, under assumptions (A1), (A2) and (A3), the optimal
control law for Problem 1 is given, for all i ∈ N , by

ui(t) =
∑
ℓ∈Nr

Kℓ(t)xℓ
i(t) + 2

∑
ℓ∈N+

c

Re(Kℓ(t)xℓ
i(t)). (17)

Remark 1 Although the eigenstates {xℓ
i(t)}ℓ∈N depend on

the eigenvectors (v1, . . . , vn), the Riccati equations (16)
depend only on the eigenvalues (λ1, . . . , λn). Consequently,
if the coupling matrix has repeated eigenvalues, e.g. due
to the presence of certain symmetries in the graph G, the
eigendirections associated with the same eigenvalue satisfy
the same Riccati equation. Thus, it suffices to solve only
n0 := |Nr|+ 2|N+

c | Riccati equations. This number can be
further reduced by noting that the cost terms for conjugate

eigenvalues are identical, as shown in the proof of the main
result. As a result, the required number of Riccati equations
reduces to

n1 := |uniq{λℓ : ℓ ∈ Nr}|+ |uniq{λℓ : ℓ ∈ Nc}|.

PROOF (THEOREM 1) Consider the following collections of
dynamical systems:

• Eigensystem (ℓ, i), ℓ, i ∈ N , with state xℓ
i(t), control

input uℓ
i(t), dynamics

xℓ
i(t+1) = (A+λℓD)xℓ

i(t)+(B+λℓE)uℓ
i(t)+ξℓi (t),

and the performance for control policy gℓi =
(gℓi,0, . . . , g

ℓ
i,T−1), where uℓ

i(t) = gℓi,t(x
ℓ
i(t)), given by

Jℓ
i (g

ℓ
i ) = E

[
T−1∑
t=0

c̄ℓ(xℓ
i(t), u

ℓ
i(t)) + c̄ℓT (x

ℓ
i(T )))

]
.

Propositions 2 and 3 imply that

J(g) =
∑
i∈N

∑
ℓ∈N

Jℓ
i (g

ℓ
i ). (18)

Note that these subsystems have decoupled cost and
dynamics that are simply coupled by the noise. From the
certainty equivalence principle, we know that the optimal
control law for a stochastic system with noise is the same
as that of a deterministic system without noise. Such a
deterministic system will have decoupled dynamics. Thus,
instead of solving:
(CP) choose a policy g that minimizes J(g),
we can equivalently solve the following optimal control
problems:
(CP-ℓ) choose a policy gℓi that minimizes Jℓ

i (g
ℓ
i ) for i ∈ N ,

ℓ ∈ N
Therefore, given the solutions of Problems (CP-ℓ), we can
use the Proposition 1 and choose ui(t) via (14).

Problem (CP-ℓ) for ℓ ∈ Nr are standard optimal con-
trol problems and their solution are given as follows. Let
P ℓ : {0, . . . , T} → Cdx×dx be as given by (16). Then, for
all i ∈ N , the optimal solution of (CP-ℓ) is given by
uℓ
i(t) = Kℓ(t)xℓ

i(t), ℓ ∈ N ,
When ℓ ∈ N+

c ∪N−
c , we note that the state xℓ(t) and the

control uℓ(t) are both complex-valued. Nonetheless, (CP-ℓ)
is a well-posed optimal control problem because the per-step
cost c̄ℓ(xℓ

i(t), u
ℓ
i(t)) and the terminal cost c̄ℓT (x

ℓ
i(T )) are

real-valued and non-negative due to (A2) and (A3). Thus, as
argued in footnote 1 on page 2, the optimal control problem
(CP-ℓ) is well-posed and the standard Riccati equation based
optimal control law is optimal. Hence, the optimal solution
(CP-ℓ) is given by uℓ

i(t) = Kℓ(t)xℓ
i(t), for all ℓ ∈ Nr.

Therefore, from (14) we get that the optimal control action
is given by

ui(t) =
∑
ℓ∈N

Kℓ(t)xℓ
i(t). (19)

Now, consider ℓ+ ∈ N+
c and ℓ− ∈ N−

c such that
(λℓ+ , λℓ−) form a complex-conjugate pair. We can show
via backward induction that the corresponding Riccati gains



(P ℓ+(t), P ℓ−(t)) also form a complex conjugate pair and
so do the corresponding gains (Kℓ+(t),Kℓ−(t)). Then,
we can show via forward induction that the eigenstates
(xℓ+(t), xℓ−(t)) and the eigencontrols (xℓ+(t), xℓ−(t)) also
form a complex conjugate pair. Thus,

Kℓ+(t)xℓ+

i (t) +Kℓ−(t)xℓ−

i (t) = 2Re(Kℓ+(t)xℓ+

i (t))

Substituting the above in (19) gives (17). ■

Remark 2 The Riccati equations (16) are significantly sim-
pler to solve than the naive centralized Riccati equation. Each
Riccati equation in (16) is of dimension dx × dx, while the
centralized Riccati equation is of dimension ndx × ndx. So,
even if the coupling matrix’s eigenvalues are distinct (i.e.,
n0 = n), solving the n Riccati equations (16) of dimension
dx × dx is significantly simpler than solving one centralized
“n-dimensional” Riccati equation. For graphs where n1 ≪ n,
these savings become even more drastic.

IV. PROOF OF PROPOSITION 2

A. Preliminary properties of the state decomposition

Lemma 3 Let k be a positive integer and ℓ, ℓ′ ∈ N , then
we have the following:
(P1) xℓ(t)M = λℓxℓ(t) and uℓ(t)M = λℓuℓ(t).

(P2) xℓ(t)Mk = (λℓ)kxℓ(t) and uℓ(t)Mk = (λℓ)kuℓ(t).

(P3) xℓ(t)Mq = qℓxℓ(t) and uℓ(t)Mr = rℓuℓ(t).

(P4) x(t)Mq=
∑

ℓ∈N qℓxℓ(t) and u(t)Mr=
∑

ℓ∈N rℓuℓ(t).

(P5)
∑

i∈N xℓ
i(t)

†Qxℓ′

i (t) = δℓℓ′
∑

i∈N xℓ
i(t)

†Qxℓ′

i (t),
where δℓℓ′ is the Kronecker delta function.

(P6)
∑

i∈N xi(t)
⊺Qxℓ

i(t) =
∑

i∈N xℓ
i(t)

†Qxℓ
i(t) and∑

i∈N ui(t)
⊺Ruℓ

i(t) =
∑

i∈N uℓ
i(t)

†Ruℓ
i(t)

PROOF We show the result for x(t). The result for u(t)
follows from a similar argument.

Since v1, . . . , vn are orthonormal, from (9) we have
vℓ(vℓ)

†
M = λℓvℓ(vℓ)

†, which implies (P1). The proof for
(P3) is identical to that of (P1), and (P2) follows from (P1).

(P4) follows from (9) and (P3). To prove (P5), we observe
that (10) implies that∑
i∈N

xℓ
i(t)

†Qxℓ′

i (t) =
∑
i∈N

vℓi (v
ℓ)

†
x(t)†Qx(t)vℓ

′
vℓ

′

i
†

=
(∑
i∈N

vℓi (v
ℓ′

i )
∗
)
(vℓ)

†
x(t)†Qx(t)vℓ

′
. (20)

Since v1, . . . , vn is orthonormal, we get
∑

i∈N vℓi (v
ℓ′

i )
∗ =

(vℓ
′
)
†
vℓ = δℓℓ′ . Substituting this in (20) completes the proof

of (P5). To prove (P6) observe that∑
i∈N

xi(t)
⊺
Qxℓ

i(t) =
∑
i∈N

xi(t)
⊺
Qx(t)vℓvℓi

=
∑
i∈N

vℓixi(t)
⊺
Qx(t)vℓ = (vℓ)

†
x(t)

⊺
Qx(t)vℓ. (21)

From (20), we get that the expression in (21) is equal to∑
i∈N xℓ

i(t)
†Qxℓ

i(t). ■

B. Proof for Proposition 2

From (1) and (P3), we obtain〈∑
ℓ∈N

xℓ(t), Q
(∑
ℓ∈N

xℓ(t)
)〉

Mq

=
∑
i∈N

∑
ℓ∈N

xℓ
i(t)

†Q
( n∑
ℓ′=1

qℓ
′
xℓ′

i (t)
)

=
∑
ℓ∈N

∑
i∈N

xℓ
i(t)

†Q
( n∑
ℓ′=1

qℓ
′
xℓ′

i (t)
)

(b)
=

∑
ℓ∈N

∑
i∈N

qℓxℓ
i(t)

†Qxℓ
i(t), (22)

where (b) follows from (P5). The same holds with cost
incurred by the control input u, proving the claim.

V. AN ILLUSTRATIVE EXAMPLE
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1

11

1

1

Fig. 1. Directed n-node circle graph.

Consider a n-node net-
work connected over a di-
rected cycle graph G shown
in Fig. 1. Its adjacent ma-
trix is the sparse n×n ma-
trix with 1’s above the diag-
onal and in the bottom left,
and 0 elsewhere. M is a cir-
culant matrix with eigenval-
ues λℓ = e−2π

√
−1(ℓ−1)/n,

ℓ ∈ N , being the n roots
of unity.

Consider a circle graph
with n = 9 for which case we have M = [mij ] with mij = 1
if j ≡ i + 1 (mod n) and 0 otherwise. We assume each
subsystem is scalar, thus dx = du = 1, and assume that the
system matrices are A = 1, B = 2, D = 1, and E = 2, with
weighting matrices Q = 5, R = 1, and QT = 10; Gaussian
noise with time-invariant distribution ξi(t) ∼ N (0, 0.02I9),
a random initial condition with distribution N (0, I9), time
horizon T = 40; and the weight matrices Mq = 5I3 +2M +
3M2 and Mr = I3.

In this case, |Nr| = 1 and |N+
c | = 4. So, we need to

solve n1 = 5 separate 1 × 1 Riccati equations need to be
solved (instead of a 9 × 9 Riccati equation needed for the
centralized solution). The computational savings are more
drastic for larger n. Two of the resulting trajectories of the
global state, and eigenstates, and the corresponding control
inputs are shown in Fig. 2.

VI. CONCLUSION

In this paper, we investigate the optimal control of network-
coupled subsystems where the dynamics and cost are coupled
via a weighted coupling matrix corresponding to a directed
graph. Under the assumption that the coupling matrix is
normal, we provide a low-dimensional decomposition of the
optimal control problem by projecting the state x(t) into n
orthogonal eigendirections, leading to components that are
decoupled in the cost and only coupled via the noise in
the dynamics, enabling the computation of optimal control
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Fig. 2. Plots of eigencomponents xℓ(t), uℓ(t), ℓ ∈ {1, 2}, and global components x(t), u(t).

inputs for each component by solving the n decoupled Riccati
equations, leading to considerable computational savings in
computing the optimal controller.

REFERENCES

[1] X. F. Wang and G. Chen, “Pinning control of scale-free dynamical
networks,” Physica A: Statistical Mechanics and Its Applications, vol.
310, no. 3-4, pp. 521–531, 2002.

[2] J.-S. Li, “Ensemble control of finite-dimensional time-varying linear
systems,” IEEE Trans. Autom. Control, vol. 56, no. 2, pp. 345–357,
2011.

[3] R. Olfati-Saber and R. M. Murray, “Consensus protocols for networks
of dynamic agents,” in Proc. American Control Conf., vol. 2. IEEE,
2003, pp. 951–956.

[4] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE Trans.
Autom. Control, vol. 48, no. 6, pp. 988–1001, Jun 2003.

[5] K. H. Movric and F. L. Lewis, “Cooperative optimal control for multi-
agent systems on directed graph topologies,” IEEE Trans. Autom.
Control, vol. 59, no. 3, pp. 769–774, 2013.

[6] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou,
“Synchronization in complex networks,” Physics Reports, vol. 469,
no. 3, pp. 93–153, 2008.

[7] J. Lunze, “Dynamics of strongly coupled symmetric composite systems,”
International Journal of Control, vol. 44, no. 6, pp. 1617–1640, 1986.

[8] J. Grizzle and S. Marcus, “The structure of nonlinear control systems
possessing symmetries,” IEEE Trans. Autom. Control, vol. 30, no. 3,
pp. 248–258, 1985.

[9] G.-H. Yang and S.-Y. Zhang, “Structural properties of large-scale
systems possessing similar structures,” Automatica, vol. 31, no. 7, pp.
1011–1017, 1995.

[10] ——, “Decentralized control of a class of large-scale systems with
symmetrically interconnected subsystems,” IEEE Trans. Autom. Control,
vol. 41, no. 5, pp. 710–713, May 1996.

[11] D. Madjidian and L. Mirkin, “Distributed control with low-rank
coordination,” IEEE Trans. Control Netw. Syst., vol. 1, no. 1, pp.
53–63, 2014.

[12] J. Arabneydi and A. Mahajan, “Team-optimal solution of finite number
of mean-field coupled LQG subsystems,” in Proc. Conf. Decision and
Control, Dec 2015, pp. 5308–5313.

[13] ——, “Linear quadratic mean field teams: Optimal and approximately
optimal decentralized solutions,” arXiv:1609.00056v2, 2017.

[14] R. Elliott, X. Li, and Y.-H. Ni, “Discrete time mean-field stochastic
linear-quadratic optimal control problems,” Automatica, vol. 49, no. 11,
pp. 3222–3233, 2013.

[15] L. Arditti, G. Como, and F. Fagnani, “Graphical games and decompo-
sition,” arXiv preprint arXiv:2003.13123, 2020.

[16] P. Benner, “Solving large-scale control problems,” IEEE Control Syst.
Mag., vol. 24, no. 1, pp. 44–59, 2004.

[17] S.-C. Chang, T.-S. Chang, and P. B. Luh, “A hierarchical decomposition
for large-scale optimal control problems with parallel processing
structure,” Automatica, vol. 25, no. 1, pp. 77–86, 1989.

[18] S. C. Hamilton and M. E. Broucke, “Patterned linear systems,”
Automatica, vol. 48, no. 2, pp. 263–272, 2012.

[19] M. Huang, R. P. Malhamé, and P. E. Caines, “Large population
stochastic dynamic games: closed-loop McKean-Vlasov systems and the
nash certainty equivalence principle,” Communications in Information
& Systems, vol. 6, no. 3, pp. 221–252, 2006.

[20] J.-M. Lasry and P.-L. Lions, “Jeux à champ moyen. I–le cas stationnaire,”
Comptes Rendus Mathématique, vol. 343, no. 9, pp. 619–625, 2006.

[21] M. Aoki, “Control of large-scale dynamic systems by aggregation,”
IEEE Trans. Autom. Control, vol. 13, no. 3, pp. 246–253, 1968.

[22] J. Jiao, H. L. Trentelman, and M. K. Camlibel, “A suboptimality
approach to distributed linear quadratic optimal control,” IEEE Trans.
Autom. Control, vol. 65, no. 3, pp. 1218–1225, 2020.

[23] F. Borrelli and T. Keviczky, “Distributed LQR design for identical
dynamically decoupled systems,” IEEE Trans. Autom. Control, vol. 53,
no. 8, pp. 1901–1912, 2008.

[24] S. Gao and P. E. Caines, “Graphon control of large-scale networks of
linear systems,” IEEE Trans. Autom. Control, November 2019.

[25] M. K. Sundareshan and R. M. Elbanna, “Qualitative analysis and
decentralized controller synthesis for a class of large-scale systems
with symmetrically interconnected subsystems,” Automatica, vol. 27,
no. 2, pp. 383–388, 1991.

[26] S. Gao and A. Mahajan, “Optimal control of network-coupled subsys-
tems: Spectral decomposition and low-dimensional solutions,” IEEE
Trans. Control Netw. Syst., vol. 9, no. 2, p. 657–669, Jun. 2022.

[27] S. Gao and P. E. Caines, “Subspace decomposition for graphon LQR:
Applications to VLSNs of harmonic oscillators,” IEEE Trans. Control
Netw. Syst., vol. 8, no. 2, pp. 576–586, 2021.

[28] Z. Li, G. Wen, Z. Duan, and W. Ren, “Designing fully distributed
consensus protocols for linear multi-agent systems with directed graphs,”
IEEE Trans. Autom. Control, vol. 60, no. 4, pp. 1152–1157, 2014.

[29] H. Zhang, F. L. Lewis, and Z. Qu, “Lyapunov, adaptive, and optimal
design techniques for cooperative systems on directed communication
graphs,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 3026–3041,
2012.

[30] K. H. Movric and F. L. Lewis, “Cooperative optimal control for multi-
agent systems on directed graph topologies,” IEEE Trans. Autom.
Control, vol. 59, no. 3, pp. 769–774, Mar 2014.

[31] F. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das, Cooperative
control of multi-agent systems: optimal and adaptive design approaches.
Springer Science & Business Media, 2013.

[32] R. E. Kalman, “Mathematical description of linear dynamical systems,”
J. Soc. Ind. Appl. Math. Ser. A Control, vol. 1, no. 2, pp. 152–192,
1963.

[33] B. Zhou, “Analysis and design of complex-valued linear systems,” Int.
J. Syst. Sci., vol. 49, no. 15, pp. 3063–3081, 2018.

[34] J. Usevitch and D. Panagou, “r-robustness and (r,s)-robustness of
circulant graphs,” 2017.


	Introduction
	Background and Motivation
	Contributions of this Article
	Notations and Definitions
	Background on Normal Matrices

	System Model and Problem Formulation
	System Model
	System Performance and Control Objective

	Spectral Decomposition of the System
	Assumptions on the Coupled Dynamics
	Spectral Decomposition of the Dynamics
	Assumptions on the Coupled Cost
	Spectral Decomposition of the Cost
	Main Results

	Proof of Proposition 2
	Preliminary properties of the state decomposition
	Proof for Proposition 2

	An Illustrative Example
	Conclusion
	References

