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Abstract—The central limit theorem is a fundamental result
in probability theory that characterizes the distribution of
deviation from the mean in the law of large numbers. Similar
distributional behavior emerges in other frameworks such as
maximum likelihood estimation, least squares estimation, and
stochastic approximation. In this paper, we establish a central
limit theorem for the cumulative per-step cost incurred by
the optimal policy in linear quadratic regulators using first
principles. Our proof technique relies on a decomposition
of cumulative cost using a completion of square argument,
properties of the noise sequence with even density, and a central
limit theorem for martingale difference sequences.

I. INTRODUCTION

A. Motivation

The Central Limit Theorem (CLT), is one of the most
important results in probability theory and mathematical
statistics. It establishes that the distribution of deviation from
the mean in the law of large numbers asymptotically con-
verges to a normal distribution. Similar asymptotic normality
for the deviations emerges in other processes as well. For ex-
ample, in the parameter estimation framework, the asymptotic
normality is established for maximum likelihood estimation
(see e.g. [1]–[3]). In regression models, asymptotic normality
is established for various estimation and prediction methods
(see e.g. [4]–[9], for a list of such results, see [10]). This
property is also established in the stochastic approximation
framework (see e.g. [11], [12]). The importance of asymptotic
normality results become evident when they are used to
derive confidence bounds for different frameworks.

In the systems and controls literature, there are various
characterization of the law of large numbers (e.g. [13]–
[19]) but the distribution of the deviation from the mean is
less explored. There are some results on CLT for Markov
cost/reward process (e.g. [16]–[19]) which are derived using
advanced tools in Markov chain theory including weighted
geometric ergodicity and weighted uniform ergodicity. These
results imply a CLT for the LQR setting (i.e., systems
with linear dynamics and quadratic cost). In this paper, we
revisit the distribution of the deviation from the mean for
LQR setting and establish asymptotic normality using an
elementary proof based on first principles. Our result is
different from the existing characterizations in the literature
and uses different and much simpler proof techniques.

The sample path behavior of the cumulative cost has
recently also been studied in the context of regret analysis for
adaptive controllers. These analyses are either in the Bayesian
framework (e.g., in [20], [21]) or in terms of high probability

guarantees for the frequentist regret (e.g., in [22]–[29]) or
almost sure guarantees for the frequentist regret (e.g., in [30]–
[32]). However, these bounds are not not sharp enough to
characterize the distribution of the cumulative cost.

B. Contributions

Our main contribution is to establish asymptotic normality
of the cumulative cost in the LQR framework using an
elementary argument. Under a mild technical assumption on
the noise distribution, we show the cumulative cost incurred
by the optimal policy converges weakly to a Gaussian distri-
bution. Our analysis uses a completion of square argument
to decompose the cumulative cost to bounded terms plus
a Martingale Difference Sequence (MDS). The convergence
argument follows from this decomposition, properties of the
noise sequence with even density, and a version of the CLT
for MDS.

C. Organization

The rest of the paper is organized as follows. In Sec. II,
we present the system model, assumptions, and the main
results. In Sec. III, we present preliminary results on the cost
decomposition, implications of our assumption on the noise
process, a preliminary on the CLT for MDS, and the proof
of the main result. Our concluding remarks are presented in
Sec. IV.

D. Notation

Given a vector v, v(i) denotes its i-th component. Given
a matrix A, Ai,j denotes its (i, j)-th element and λmax(A)
denotes the largest magnitudes of right eigenvalues. For a
square matrix Q, Tr(Q) denotes the trace. For a vector x, ∥x∥
denotes the Euclidean norm. 0 denotes the zero-vector in the
appropriate Euclidean space. For a matrix A, ∥A∥ denotes
the spectral norm. If Q is symmetric, Q ⪰ 0 and Q ≻ 0
denote that Q is positive semi-definite and positive definite,
respectively. Given a sequence of random variables {xt}t≥0,
x0:t is a short hand for (x0, . . . , xt) and σ(x0:t) denotes the
sigma field generated by random variables x0:t. Convergence
in almost sure sense is abbreviated by a.s. Convergence in
distribution is showed by the notation

(d)−−→. Notation N (0, 1)
denotes a standard Gaussian distribution. R and N denote the
sets of real and natural numbers and R+ denotes the set of
positive real numbers. Given a sequence of positive numbers
{at}t≥0, aT ≍ T means that lim supT→∞ aT /T < ∞, and
lim infT→∞ aT /T > 0.



II. PROBLEM FORMULATION AND MAIN RESULT

A. System Model

Consider a discrete-time linear time-invariant system with
full state observation. Let xt ∈ Rn and ut ∈ Rd denote the
state and control input at time t. The system starts at a known
initial state x0 and it evolves according to the following
dynamics:

xt+1 = Axt +But +Dvt+1, t ≥ 0, (1)

where A ∈ Rn×n, B ∈ Rn×d, and D ∈ Rn×n are the system
dynamic matrices and {vt}t≥1, vt+1 ∈ Rn, is an independent
and identically distributed (i.i.d.) zero-mean noise process
with unit covariance I . At each time t, the system incurs a
per-step cost of

c(xt, ut) = x
⊺
tQxt + u

⊺
tRut,

where Q ⪰ 0 and R ≻ 0.
We assume that the control inputs are chosen according to

a time-homogeneous (and measurable) policy π : Rn → Rd,
i.e.,

ut = π(xt).

Let Π denote the set of all such policies. For a fixed policy
π ∈ Π, let {xπ

t }t≥0 and {uπ
t }t≥0 denote the sequence of

states and control inputs generated over time. Let

C(π, T ) :=
T−1∑
t=0

c(xπ
t , u

π
t ),

denote the cumulative cost incurred by policy π up to time T .
Note that our definition of C(π, T ) does not include an
expectation, so C(π, T ) is a random variable.

The long-term average performance of policy π ∈ Π is
given by

J(π) := lim sup
T→∞

1

T
E[C(π, T )],

where the expectation is with respect to the noise process
{vt}t≥1. Let

J∗ = inf
π∈Π

J(π),

denote the optimal performance. A policy π∗ ∈ Π is called
optimal if J(π∗) = J∗.

We impose the following standard assumption on the
model.

Assumption 1. The pair of matrices (A,B) is controllable,
and the pair of matrices (A,Q1/2) is observable.

It is well known (e.g., see [10]) that under Assumption 1,
the optimal policy exists, is unique, and is given by

π∗(xt) = −L∗xt, (2)

where the optimal gain L∗ is given by

L∗ = (R+B
⊺
SB)−1B

⊺
SA, (3)

where S is the unique fixed point of the Discrete Algebraic
Riccatti Equation (DARE) given by:

P = A
⊺
PA−A

⊺
PB(R+B

⊺
PB)−1B

⊺
PA+Q. (4)

Moreover the optimal value J∗ is given by:

J∗ = Tr(SDD
⊺
). (5)

B. Main Result

The classical result described above characterizes the be-
havior of the expected value of C(π∗, T ); in particular,

lim
T→∞

1

T
E[C(π∗, T )] = Tr(SDD

⊺
) = J∗. (6)

Our main result characterizes a much stronger sample path
behavior of C(π∗, T ). In particular, we will show that under
a mild assumption, loosely speaking, the stochastic process
C(π∗, T ) converges in distribution to a Gaussian random
variable. We will present this statement more precisely in
this section.

For our analysis, we impose the following additional
assumption on the noise process {vt}t≥1.

Assumption 2. In addition to being i.i.d. across time and
having a unit covariance, the noise sequence {vt}t≥1 satisfies
the following conditions for each time t:
(A1) The components of vt are independent and admit a

density fv that is even.
(A2) vt is uniformly bounded, that is, there exists a Kv ∈

R+ such that ∥vt∥ ≤ Kv almost surely.
(A3) For matrices D and S, we have Var(v⊺t D

⊺SDvt) ̸= 0.

For the ease of notation, let {(x∗
t , u

∗
t )}t≥0 denote the

(stochastic) trajectory {(xπ∗

t , uπ∗

t )}t≥0 of the optimal policy,
wt = Dvt denote the noise at time t, and A∗ = A − BL∗

denote the closed loop dynamics under the optimal policy.
Define:

M := E[w
⊺
t Swtw

⊺
t Swt]−

(
E[w

⊺
t Swt]

)2
which is a scalar constant. We now define a process
{NT }T≥1 where:

NT :=

T−1∑
t=0

[
M + 4(A∗x∗

t )
⊺
SDD

⊺
SA∗x∗

t

]
and let {νT }T≥1 be a stopping time corresponding to
{NT }T≥1 given by

νT := min
τ≥1

{
τ ;

τ∑
t=1

Nt ≥ T

}
. (7)

Our main result is the following theorem.

Theorem 1. We have that
C(π∗, νT )− νTJ

∗
√
T

(d)−−→ N (0, 1) as T → ∞.

The proof is presented in Sec. III.
Above theorem is presented in terms of the stopping time

in Eq. (7). In the following lemma, we establish the growth
rate of this stopping time in the almost sure sense.

Lemma 1. The stopping time {νT }T≥1 satisfies:

νT ≍ T, a.s.



The proof is presented in App. A.
Theorem 1 and Lemma 1 together give a complete picture

of distributional behavior of C(π∗, νT ), which in the order,
matches with the asymptotic normality results in other frame-
works.

III. PROOF OF THEOREM 1

In this section we present the proof of Theorem 1. Our
proof relies on three techniques: (i) a completion of square
argument to establish a decomposition of the cumulative
cost, similar to one used in [33]; (ii) some implications of
noise having an even density; and (iii) the CLT for bounded
martingale difference sequences [34].

A. Decomposition of Cumulative Cost

The following lemma provides a decomposition of the
cumulative cost of any arbitrary policy π.

Lemma 2. For any π ∈ Π, we have

C(π, T ) = x
⊺
0Sx0 − (xπ

T )
⊺
Sxπ

T

+

T−1∑
t=0

[
(uπ

t + L∗xπ
t )

⊺
(R+B

⊺
SB)(uπ

t + L∗xπ
t )

+

T−1∑
t=0

[
2(Axπ

t +Buπ
t )

⊺
Swt+1 + w

⊺
t+1Swt+1

]
,

where matrices L∗ and S are given by (3) and (4).

The proof is similar to the decomposition of E[C(π, T )]
presented in [33] and is presented in App. B for complete-
ness.

In the following Lemma, we use Lemma 2 to characterize
the cumulative cost function induced by the optimal policy
C(π∗, T ).

Lemma 3. For the optimal policy π∗, we have

C(π∗, T ) = x
⊺
0Sx0 − (x∗

T )
⊺
Sx∗

T

+

T−1∑
t=0

[
2(A∗x∗

t )
⊺
Swt+1 + w

⊺
t+1Swt+1

]
.

Proof. The result follows by substituting u∗
t = −L∗x∗

t in
Lemma 2, and substituting xπ∗

t with x∗
t .

B. Implications of the Assumption on the Noise

The assumed symmetry on the components of vt (i.e., the
components of vt admitting a density fv that is even) has
important implications in our analysis. We show this structure
implies that certain cubic transformation of the noise has zero
mean. Following lemma summarizes these structures.

Lemma 4. Under Assumption 2, we have the following for
any time t:
1) For any odd k ∈ N and any component i ∈ {1, . . . , n},
E[vt(i)

k] = 0.
2) For any i, j ∈ {1, . . . , n}, i ̸= j, E[vt(i)vt(j)2] = 0.
3) For any arbitrary matrix M , let yt = Mvt, then
E[yty

⊺
t yt] = 0.

Proof is presented in App. C.
Furthermore, the boundedness assumption on the noise

sequence {vt}t≥1 implies the boundedness of optimal state
trajectory {x∗

t }t≥0. This is presented in the following lemma.

Lemma 5. Under Assumption 2, there exists a universal
constant Kx ∈ R+ (which depends only on Kv) such that

∥x∗
t ∥ ≤ Kx, a.s., ∀t ≥ 0.

This is a classic result and its proof exists in many
resources. We included a proof in App. D for completeness.

C. CLT for Martingale Difference Sequences

The usual CLT for martingale difference sequences is
the Lindeberg-Levy CLT for triangular array of martingale
difference sequences. In our analysis, we use an implication
of Lindeberg-Levy CLT stated in [34]. Since this version
of the CLT is not as well known, we restate it below for
completeness.

Let {δt}t≥1, δt ∈ R, be a martingale difference sequence
adapted to some filtration sequence {Gt}t≥0, i.e.:

E[δt|Gt−1] = 0.

In addition, for all t ≥ 1, let ∆t :=
∑t

τ=1 δτ denote
the martingale process corresponding to {δt}t≥1. Let ρ2t :=
E[δ2t |Gt−1] denote the conditional variance of δt. For any
T ≥ 0, define the stopping time µT as:

µT = min
τ≥1

{
τ ;

τ∑
t=1

ρ2t ≥ T

}
.

The following theorem states a version of central limit
theorem for the martingale sequence {∆t}t≥1.

Theorem 2 (see [34, Theorem 35.11]). Suppose the mar-
tingale difference sequence {δt}t≥1 satisfies the following
conditions:
(C1) For all t ≥ 1, |δt| is uniformly bounded, i.e., there

exists a Kδ ∈ R+, such that:

|δt| ≤ Kδ, a.s.

(C2) We have:
∞∑
t=1

E[δ2t |Gt−1] = ∞.

Then we have:
∆µT√

T

(d)−−→ N (0, 1) as T → ∞.

In the subsequent subsection, we show some of the terms
in the cumulative cost C(π∗, T ) satisfy martingale difference
property, we then use Theorem 2 to derive the distribution
of the cumulative cost.



D. Preliminary Results

Define the filtration to be the sigma field generated by
the sequence of states and control actions, i.e., Ft :=
σ(x∗

0:t, u
∗
0:t). Using Lemma 3 and the fact that J∗ =

E[w⊺
t+1Swt+1], we rewrite C(π∗, T )− TJ∗ as following:

C(π∗, T )− TJ∗ = x
⊺
0Sx0 − (x∗

T )
⊺
Sx∗

T

+

T−1∑
t=0

[
2(A∗x∗

t )
⊺
wt+1 + w

⊺
t+1Swt+1 − E[w

⊺
t+1Swt+1]

]
.

To simplify the algebra, we define following intermediate
variables for t ≥ 0.

at+1 := w
⊺
t+1Swt+1, (8)

bt+1 := 2(A∗x∗
t )

⊺
Swt+1, (9)

ct+1 := E[w
⊺
t+1Swt+1], (10)

zt+1 := at+1 + bt+1 − ct+1. (11)

As a result of above reparametrization, we have:

C(π∗, T )− TJ∗ =

T−1∑
t=0

zt+1 + (x0)
⊺
S(x0)− (x∗

T )
⊺
S(x∗

T ).

We show that the sequence {zt}t≥1 is a martingale difference
sequence satisfying conditions (C1) and (C2) in Theorem 2.
We first establish the properties of variables at+1, bt+1, and
ct+1 in the following proposition.

Proposition 1. For all t ≥ 0, we have:
(P1) E[bt+1|Ft] = 0.
(P2) E[at+1|Ft] = ct+1.
(P3) E[a2t+1|Ft] = E[a

2
t+1].

(P4) E[ct+1at+1|Ft] = c2t+1.
(P5) E[ct+1bt+1|Ft] = 0.
(P6) E[at+1bt+1|Ft] = 0.

Proof. These properties are the consequences of the assump-
tion on the noise process.
(P1) Follows by the fact that x∗

t is Ft-measurable and based
on Assumption 2, wt+1 = Dvt+1 is zero mean and
independent of Ft.

(P2) Follows from independence of wt+1 from Ft, and the
definition of ct+1.

(P3) Follows from independence of wt+1 from Ft.
(P4) Follows from following equations:

E[ct+1at+1|Ft]
(a)
= ct+1E[at+1|Ft]

(b)
= c2t+1,

where (a) follows from the fact that ct+1 is not a
random variable and (b) follows from Property (P2).

(P5) Follows from following equations:

E[ct+1bt+1|Ft]
(c)
= ct+1E[bt+1|Ft]

(d)
= 0,

where (c) follows from the fact that ct+1 is not a
random variable and (d) follows from Property (P1).

(P6) Follows from Lemma 4. To show this, let:

yt+1 := S1/2Dvt+1 = S1/2wt+1

we have:

E[at+1bt+1|Ft]

(e)
=E[2(x∗

t )
⊺
(A∗)

⊺
S1/2S1/2wt+1w

⊺
t+1S

1/2S1/2wt+1|Ft]

(f)
=2(x∗

t )
⊺
(A∗)

⊺
S1/2E[yty

⊺
t yt]

(g)
= 0,

where (e) follows from the fact that S ≻ 0, (f) follows
from the fact that S1/2 is symmetric, and (g) follows
from Lemma 4 part (3).

E. Proof of Theorem 1
To prove the theorem, we first verify the conditions of

Theorem 2 for the sequence {zt}t≥1. First, recall that by
definition, zt+1 = at+1 + bt+1 − ct+1. We have:

E[zt+1|Ft] = E[at+1 − ct+1|Ft] + E[bt+1|Ft]
(a)
= 0,

where (a) follows from Properties (P1) and (P2) in Proposi-
tion 1. We now verify conditions (C1) and (C2) in Theorem 2.

1) Verifying (C1): We know at+1 and ct+1 are uniformly
bounded by (A2) in Assumption 2. By Lemma 5 and (A2)
in Assumption 2, we know |bt+1| is uniformly bounded. As
a result, |zt+1| is uniformly bounded almost surely.

2) Verifying (C2): We compute the conditional expecta-
tion of z2t+1 given the filtration Ft as following:

E[z2t+1|Ft] = E[(at+1 + bt+1 − ct+1)
2|Ft]

=E[a2t+1|Ft] + E[b
2
t+1|Ft] + E[c

2
t+1|Ft]

+2E[at+1bt+1|Ft]− 2E[ct+1at+1|Ft]− 2E[ct+1bt+1|Ft]

(b)
=E[a2t+1|Ft] + E[b

2
t+1|Ft] + E[c

2
t+1|Ft]− 2E[at+1ct+1|Ft]

(c)
=E[a2t+1]− c2t+1 + E[b

2
t+1|Ft] (12)

where (b) follows from properties (P5) and (P6) in Proposi-
tion 1 and (c) follows from properties (P3) and (P4). Now
the term E[a2t+1]−c2t+1 is independent of t and depends only
on the density fv; therefore, by Jensen’s inequality and (A3)
in Assumption 2, we know that there exists an ϵ > 0, such
that:

E[a2t+1]− c2t+1 > ϵ, (13)

for all t ≥ 0. By definition we know E[b2t+1|Ft] ≥ 0 for all
t ≥ 0. As a result, we have:

T−1∑
t=0

zt+1 ≥ Tϵ.

Implying that: limT→∞
∑T−1

t=0 E[z
2
t+1|Ft] = ∞, almost

surely, verifying the condition (C2).
3) Concluding the proof: Since the conditions (C1) and

(C2) hold for the sequence {zt}t≥1, by Theorem 2, we have:∑νT

t=1 zt√
T

(d)−−→ N (0, 1).

By Lemma 5, we know (x∗
T )

⊺S(x∗
T ) is almost surely

bounded for all T ≥ 0. Moreover xT
0 Sx0 is a constant.

Therefore, we have:

lim
T→∞

x⊺
0Sx0 − (x∗

T )
⊺Sx∗

T√
T

−→ 0, a.s.



As a result, by using Slutsky’s Theorem (see [35, Theo-
rem 7.7.3]), we get:

C(νT , π∗)− νTJ
∗

√
T

(d)−−→ N (0, 1).

Remark 1. In the proof of Theorem 1, each of the two
sequences {at+1 − ct+1}t≥0 and {bt+1}t≥0 is a martingale
difference sequence. However, these two sequences are de-
pendent, and therefore, the fact that each of them converges in
distribution does not trivially imply that their summation also
converges in distribution. As a result, applying Theorem 2
on each of these sequences individually would not imply the
desired result. Therefore, characterizing the behavior of the
sequence {at+1+ bt+1− ct+1}t≥0 similar to the approach in
our proof is necessary.

IV. CONCLUSION

In this paper we have established the asymptotic normality
of the cumulative cost in the LQR framework. We have
shown that under mild assumptions on the noise process,
asymptotic normality holds for the distribution of the cu-
mulative cost only using first principles. Our result gives a
complete description of the cost distribution induced by the
optimal policy. We believe this analysis opens new doors to
understanding the distributional behavior of the cumulative
cost and may pave the way to derive confidence bounds
for this framework. These confidence bounds can be used
in risk-averse or distributional reinforcement learning within
this setup. A natural extension of this work is to derive
similar results for larger classes of policies or to weaken
the assumption on the noise sequence to be Gaussian or sub-
Gaussian.
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APPENDIX A
PROOF OF LEMMA 1

Using Eq. (12), we have:

E[z2t+1|Ft] = E[a
2
t+1]− c2t+1 + E[b

2
t+1|Ft].

By (A3) in Assumption 2 and Jensen’s inequality, we know
there exists a ϵ > 0 such that E[a2t+1] − c2t+1 > ϵ. Since
E[b2t+1|Ft] > 0, we have:

lim inf
T→∞

NT

T
= lim inf

T→∞

∑T−1
t=0 E[z

2
t+1|Ft]

T
≥ ϵ > 0, a.s.

From the definition of bt+1, it is clear that there exists a
constant C ∈ R+ such that E[b2t+1|Ft] ≤ C∥xt∥2 for all
t ≥ 0. As a result, by following arguments similar to [36,
Lemma 5], we have:

lim sup
T→∞

∑T−1
t=0 E[b

2
t+1|Ft]

T
< ∞, a.s.

Since the term E[a2t+1]− c2t+1 is independent of t and only
depends on the density fv , there exists an ϵ̄ > 0, such that:

E[a2t+1]− c2t+1 < ϵ̄.

As a result,

lim sup
T→∞

NT

T
= lim sup

T→∞

∑T−1
t=0 E[b

2
t+1|Ft]

T
+ ϵ̄ < ∞,

almost surely, implying that NT ≍ O(T ) and therefore νT ≍
O(T ), almost surely.
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A. Preliminary Result

The proof of this lemma is similar to the regret decompo-
sition in [32] . Following algebraic lemma is adapted from
[37, Lemma 6.1].

Lemma 6. We have following statements:
1) (Algebraic completion of square) For x ∈ Rn and u ∈ Rd

and matrices A,B, S,R with appropriate dimensions, we
have

u
⊺
Ru+ (Ax+Bu)

⊺
P (Ax+Bu) + x

⊺
Qx

=[u+L(P,R,A,B)x]
⊺
[R+B

⊺
PB][u+L(P,R,A,B)x]

+ x
⊺
K(P,A,B,R,Q)x, (14)

with L(P,R,A,B) := −[R + B⊺PB]−1B⊺PA, and
K(P,A,B,R,Q) is defined as:

Q+A
⊺
PA−A

⊺
PB(R+B

⊺
PB)−1B

⊺
PA.

2) The Discrete Algebraic Riccati Equation (DARE) in
Eq. (4), i.e. K(P,A,B,R,Q) = P has a unique positive
definite fixed point solution S ⪰ 0. As a result, we have:

u
⊺
Ru+ (Ax+Bu)

⊺
S(Ax+Bu) + x

⊺
Qx

=[u+L(S,R,A,B)x]
⊺
[R+B

⊺
SB][u+L(S,R,A,B)x]

+ x
⊺
Sx

B. Proof of Lemma 2

Proof. The proof follows by applying Lemma 6. We start
by adding and subtracting the term (xπ

T )
⊺S(xπ

T ) to the
expression. Recall that {xπ

t }t≥0 and {uπ
t }t≥0 denote the

sequence of state and actions induced by the policy π. We
have:

C(π, T ) =
T−1∑
t=0

[
(xπ

t )
⊺
Q(xπ

t ) + (uπ
t )

⊺
R(uπ

t )
]

+ (xπ
T )

⊺
S(xπ

T )− (xπ
T )

⊺
S(xπ

T )

=

T−2∑
t=0

[
(xπ

t )
⊺
Q(xπ

t ) + (uπ
t )

⊺
R(uπ

t )
]
− (xπ

T )
⊺
Sxπ

T

+
[
(xπ

T−1)
⊺
Q(xπ

T−1) + (uπ
T−1)

⊺
R(uπ

T−1) + (xπ
T )

⊺
S(xπ

T )
]

=
[ T−2∑

t=0

(xπ
t )

⊺
Q(xπ

t ) + (uπ
t )

⊺
R(uπ

t )
]
− (xπ

T )
⊺
S(xπ

T )

+ (xπ
T−1)

⊺
Q(xπ

T−1) + (uπ
T−1)

⊺
R(uπ

T−1)

+ (Axπ
T−1 +Buπ

T−1 + wT )
⊺
S(Axπ

T−1 +Buπ
T−1 + wT )

(a)
=

[ T−2∑
t=0

(xπ
t )

⊺
Q(xπ

t ) + (uπ
t )

⊺
R(uπ

t )
]

+ (xπ
T−1)

⊺
S(xπ

T−1)− (xπ
T )

⊺
S(xπ

T )

+
[
(uπ

T−1 + L∗xπ
T−1)

⊺
(R+B

⊺
SB)(uπ

T−1 + L∗xπ
T−1)

+ w
⊺
TSwT + 2(Axπ

T−1 +Buπ
T−1)

⊺
SwT

]
,

where (a) follows from Lemma 6, with L∗ being the RHS
of Eq. (3). By repeating the same argument, we get:

C(π, T ) = x
⊺
0Sx0 − x

⊺
TSxT

+

T−1∑
t=1

[
(uπ

t + L∗xπ
t )

⊺
(R+B

⊺
SB)(uπ

t + L∗xπ
t )

+ 2(Axπ
t +Buπ

t )
⊺
Swt+1 + w

⊺
t+1Swt+1

]
.
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For an odd n, Assumption 2, implies that for all 1 ≤ i ≤ n
and for all t ≥ 0, we have:

E[vt(i)
k] =

∫ Kv

−Kv

vkfv(v)dv.

1) Proof of part (1): The PDF fv is an even function and for
odd k ∈ N, vk is an odd function . As a result, vkfv is an
odd function, and integrating an odd function from −Kv to
Kv is 0.
2) Proof of part (2): For all i ̸= j, we have:

E[vt(i)vt(j)
2]

(a)
= E[vt(i)]E[vt(j)

2]
(b)
= 0,

where (a) follows from the independence of the components
of vt, and (b) follows from part (1) of this lemma.
3) Proof of part (3): Let mij denote the (i, j)-th component
of M . Then Recall that we have

yt(i) = [Mvt](i) =

n∑
j=1

mijvt(j).



It is clear that E[yt(i)] = 0 for all t ≥ 0 by the linearity of the
expectation operator. We show that for all i ∈ {1, . . . , n} and
all t ≥ 0, we have: E[yt(i)3] = 0. By multinomial theorem,
we have:

E
[
yt(i)

3
]
= E

[( n∑
j=1

mijvt(j)
)3

]

=E

[ ∑
k1+···+kn=3

(
3

k1,. . .,kn

)
(mi1vt(1))

k1 . . . (minvt(n))
kn

]
.

Where the notation
∑

k1+···+kn=3 denotes all possible tuples
(k1, . . . , kn) such that k1 + · · · + kn = 3. Let the tuple
(k′1, . . . , k

′
n) be a decreasing permutation of (k1, . . . , kn),

i.e.,
k′1 ≥ k′2 ≥ · · · ≥ k′n.

Since k1+· · ·+kn = 3, there are only 3 choices for the tuple
(k′1, . . . , k

′
n). These choices are (3, 0, . . . , 0) or (2, 1, . . . , 0)

or (1, 1, 1, 0, . . . , 0). By Parts (1) and (2), we get:
1) For any i ∈ {1, . . . , n}, E[vt(i)3] = 0.
2) For any i, j ∈ {1, . . . , n}, i ̸= j, E[vt(i)2vt(j)] = 0.
3) For any i, j, k ∈ {1, . . . , n}, i ̸= j ̸= k,
E[vt(i)vt(j)vt(k)] = 0.

This implies that all the permutations which are mapped to
the tuples (3, 0, · · · , 0) or (2, 1, · · · , 0) or (1, 1, 1, 0, · · · , 0)
have zero expected value; therefore, E[yt(i)3] = 0. Next we
show for all i, j ∈ {1, . . . , n} such that i ̸= j, we have:
E[yt(i)

2yt(j)] = 0. By using the multinomial theorem, we
have:

E
[
yt(i)

2
]
= E

[( n∑
j=1

mijvt(j)
)2

]

=E

[ ∑
k1+···+kn=2

(
2

k1,. . .,kn

)
(mi1vt(1))

k1 . . . (minvt(n))
kn

]
.

Again let the tuple (k′1, . . . , k
′
n) be a decreasing permuta-

tion of (k1, . . . , kn). Since k1 + · · · + kn = 2, there are
only 2 choices for the tuple (k′1, . . . , k

′
n). These choices

are (2, 0, . . . , 0) or (1, 1, 0, . . . , 0). Now since yt(j) =∑n
k=1 mjkvt(k), expanding yt(i)

2yt(j) and ordering the per-
mutations we again end up with 3 choices for (k′1, . . . , k

′
n),

i.e., (3, 0, . . . , 0) , (2, 1, . . . , 0) , and (1, 1, 1, 0, . . . , 0). By
repeating the arguments similar to the previous part, we have
that E[y(i)2y(j)] = 0. At last, since

E[yy
⊺
y] =

y(1)...
y(n)

(
y(1)2 + · · · y(n)2

)
. (15)

All the terms are either of the form E[y(i)3] or E[y(i)2y(j)],
i ̸= j, implying that:

E[yy
⊺
y] = 0.
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Given that ∥vt∥ ≤ Kv , we have that ∥wt∥ ≤ ∥D∥∥vt∥ =:
Kw. Let ρmax = λmax(A

∗) < 1 (recall A∗ = A−BL∗) since

L∗ is a stabilizing controller gain. Pick an ε > 0 such that
ρmax+ε < 1. Then, by Gelfand’s formula, we know that there
exists a T0 such that for all t > T0, ∥(A∗)t∥ < ρmax + ε.
By the convolutional form of the output, we have that for
T > T0,

∥xT ∥ = ∥(A∗)Tx0∥+
∥∥∥∥ T∑
τ=1

(A∗)τwT−τ

∥∥∥∥
≤ ∥(A∗)T ∥∥x0∥+

T∑
τ=1

∥(A∗)τ∥∥wT−τ∥

≤ ∥(A∗)T ∥∥x0∥+Kw

T∑
τ=1

∥(A∗)τ∥

≤ (ρmax + ε)T ∥x0∥+Kw

T∑
τ=1

(ρmax + ε)τ

(a)

≤ (ρmax + ε)T0∥x0∥+
Kw

1− (ρmax + ε)
=: Kx

where (a) uses the fact that ρmax + ε < 1.
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